tstRTSemEventMulti.cpp revision 93d83967c7ad57b530ecfa5cfbe82f6b986dd58a
/* $Id$ */
/** @file
* IPRT Testcase - Multiple Release Event Semaphores.
*/
/*
* Copyright (C) 2009-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/semaphore.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/rand.h>
#include <iprt/stream.h>
#include <iprt/string.h>
#include <iprt/test.h>
#include <iprt/thread.h>
#include <iprt/time.h>
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** The test handle. */
static RTTEST g_hTest;
static DECLCALLBACK(int) test1Thread1(RTTHREAD ThreadSelf, void *pvUser)
{
RTSEMEVENTMULTI hSem = *(PRTSEMEVENTMULTI)pvUser;
uint64_t u64 = RTTimeSystemMilliTS();
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(hSem, 1000), VERR_TIMEOUT);
u64 = RTTimeSystemMilliTS() - u64;
RTTEST_CHECK_MSG(g_hTest, u64 < 1500 && u64 > 950, (g_hTest, "u64=%llu\n", u64));
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(hSem, 2000), VINF_SUCCESS);
return VINF_SUCCESS;
}
static DECLCALLBACK(int) test1Thread2(RTTHREAD ThreadSelf, void *pvUser)
{
RTSEMEVENTMULTI hSem = *(PRTSEMEVENTMULTI)pvUser;
RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS);
return VINF_SUCCESS;
}
static void test1(void)
{
RTTestISub("Three threads");
/*
* Create the threads and let them block on the event multi semaphore.
*/
RTSEMEVENTMULTI hSem;
RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS);
RTTHREAD hThread2;
RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread2, test1Thread2, &hSem, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test2"), VINF_SUCCESS);
RTThreadSleep(100);
RTTHREAD hThread1;
RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread1, test1Thread1, &hSem, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test1"), VINF_SUCCESS);
/* Force first thread (which has a timeout of 1 second) to timeout in the
* first wait, and the second wait will succeed. */
RTTESTI_CHECK_RC(RTThreadSleep(1500), VINF_SUCCESS);
RTTESTI_CHECK_RC(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC(RTThreadWait(hThread1, 5000, NULL), VINF_SUCCESS);
RTTESTI_CHECK_RC(RTThreadWait(hThread2, 5000, NULL), VINF_SUCCESS);
RTTESTI_CHECK_RC(RTSemEventMultiDestroy(hSem), VINF_SUCCESS);
}
static void testBasicsWaitTimeout(RTSEMEVENTMULTI hSem, unsigned i)
{
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWait(hSem, 0), VERR_TIMEOUT);
#if 0
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitNoResume(hSem, 0), VERR_TIMEOUT);
#else
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE,
0),
VERR_TIMEOUT);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE,
RTTimeSystemNanoTS() + 1000*i),
VERR_TIMEOUT);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE,
RTTimeNanoTS() + 1000*i),
VERR_TIMEOUT);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_RELATIVE,
0),
VERR_TIMEOUT);
#endif
}
static void testBasicsWaitSuccess(RTSEMEVENTMULTI hSem, unsigned i)
{
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWait(hSem, 0), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWait(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS);
#if 0
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitNoResume(hSem, 0), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitNoResume(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS);
#else
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE,
0),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE,
RTTimeSystemNanoTS() + 1000*i),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE,
RTTimeNanoTS() + 1000*i),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE,
0),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE,
_1G),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE,
UINT64_MAX),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE,
RTTimeSystemMilliTS() + 1000*i),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE,
RTTimeMilliTS() + 1000*i),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE,
0),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE,
_1M),
VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem,
RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE,
UINT64_MAX),
VINF_SUCCESS);
#endif
}
static void testBasics(void)
{
RTTestISub("Basics");
RTSEMEVENTMULTI hSem;
RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS);
/* The semaphore is created in a reset state, calling reset explicitly
shouldn't make any difference. */
testBasicsWaitTimeout(hSem, 0);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS);
testBasicsWaitTimeout(hSem, 1);
if (RTTestIErrorCount())
return;
/* When signalling the semaphore all successive wait calls shall
succeed, signalling it again should make no difference. */
RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
testBasicsWaitSuccess(hSem, 2);
if (RTTestIErrorCount())
return;
/* After resetting it we should time out again. */
RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS);
testBasicsWaitTimeout(hSem, 3);
if (RTTestIErrorCount())
return;
/* The number of resets or signal calls shouldn't matter. */
RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS);
testBasicsWaitTimeout(hSem, 4);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
testBasicsWaitSuccess(hSem, 5);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS);
testBasicsWaitTimeout(hSem, 6);
/* Destroy it. */
RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(NIL_RTSEMEVENTMULTI), VINF_SUCCESS);
/* Whether it is reset (above), signalled or not used shouldn't matter. */
RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS);
RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(hSem), VINF_SUCCESS);
RTTestISubDone();
}
int main(int argc, char **argv)
{
RTEXITCODE rcExit = RTTestInitAndCreate("tstRTSemEventMulti", &g_hTest);
if (rcExit != RTEXITCODE_SUCCESS)
return rcExit;
testBasics();
if (!RTTestErrorCount(g_hTest))
{
test1();
}
return RTTestSummaryAndDestroy(g_hTest);
}