socket.cpp revision 625fbb1328649ec29bf92374a6a980cdcd163726
/* $Id$ */
/** @file
* IPRT - Network Sockets.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#ifdef RT_OS_WINDOWS
# include <winsock2.h>
# include <ws2tcpip.h>
#else /* !RT_OS_WINDOWS */
# include <errno.h>
# include <sys/select.h>
# include <sys/stat.h>
# include <sys/socket.h>
# include <netinet/in.h>
# include <netinet/tcp.h>
# include <arpa/inet.h>
# ifdef IPRT_WITH_TCPIP_V6
# include <netinet6/in6.h>
# endif
# include <sys/un.h>
# include <netdb.h>
# include <unistd.h>
# include <fcntl.h>
# include <sys/uio.h>
#endif /* !RT_OS_WINDOWS */
#include <limits.h>
#include "internal/iprt.h"
#include <iprt/socket.h>
#include <iprt/alloca.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/ctype.h>
#include <iprt/err.h>
#include <iprt/mempool.h>
#include <iprt/poll.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#include <iprt/mem.h>
#include <iprt/sg.h>
#include <iprt/log.h>
#include "internal/magics.h"
#include "internal/socket.h"
#include "internal/string.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/* non-standard linux stuff (it seems). */
#ifndef MSG_NOSIGNAL
# define MSG_NOSIGNAL 0
#endif
/* Windows has different names for SHUT_XXX. */
#ifndef SHUT_RDWR
# ifdef SD_BOTH
# define SHUT_RDWR SD_BOTH
# else
# define SHUT_RDWR 2
# endif
#endif
#ifndef SHUT_WR
# ifdef SD_SEND
# define SHUT_WR SD_SEND
# else
# define SHUT_WR 1
# endif
#endif
#ifndef SHUT_RD
# ifdef SD_RECEIVE
# define SHUT_RD SD_RECEIVE
# else
# define SHUT_RD 0
# endif
#endif
/* fixup backlevel OSes. */
#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS)
# define socklen_t int
#endif
/** How many pending connection. */
#define RTTCP_SERVER_BACKLOG 10
/* Limit read and write sizes on Windows and OS/2. */
#ifdef RT_OS_WINDOWS
# define RTSOCKET_MAX_WRITE (INT_MAX / 2)
# define RTSOCKET_MAX_READ (INT_MAX / 2)
#elif defined(RT_OS_OS2)
# define RTSOCKET_MAX_WRITE 0x10000
# define RTSOCKET_MAX_READ 0x10000
#endif
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Socket handle data.
*
* This is mainly required for implementing RTPollSet on Windows.
*/
typedef struct RTSOCKETINT
{
/** Magic number (RTSOCKET_MAGIC). */
uint32_t u32Magic;
/** Exclusive user count.
* This is used to prevent two threads from accessing the handle concurrently.
* It can be higher than 1 if this handle is reference multiple times in a
* polling set (Windows). */
uint32_t volatile cUsers;
/** The native socket handle. */
RTSOCKETNATIVE hNative;
/** Indicates whether the handle has been closed or not. */
bool volatile fClosed;
/** Indicates whether the socket is operating in blocking or non-blocking mode
* currently. */
bool fBlocking;
#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
/** The pollset currently polling this socket. This is NIL if no one is
* polling. */
RTPOLLSET hPollSet;
#endif
#ifdef RT_OS_WINDOWS
/** The event semaphore we've associated with the socket handle.
* This is WSA_INVALID_EVENT if not done. */
WSAEVENT hEvent;
/** The events we're polling for. */
uint32_t fPollEvts;
/** The events we're currently subscribing to with WSAEventSelect.
* This is ZERO if we're currently not subscribing to anything. */
uint32_t fSubscribedEvts;
/** Saved events which are only posted once. */
uint32_t fEventsSaved;
#endif /* RT_OS_WINDOWS */
} RTSOCKETINT;
/**
* Address union used internally for things like getpeername and getsockname.
*/
typedef union RTSOCKADDRUNION
{
struct sockaddr Addr;
struct sockaddr_in IPv4;
#ifdef IPRT_WITH_TCPIP_V6
struct sockaddr_in6 IPv6;
#endif
} RTSOCKADDRUNION;
/**
* Get the last error as an iprt status code.
*
* @returns IPRT status code.
*/
DECLINLINE(int) rtSocketError(void)
{
#ifdef RT_OS_WINDOWS
return RTErrConvertFromWin32(WSAGetLastError());
#else
return RTErrConvertFromErrno(errno);
#endif
}
/**
* Resets the last error.
*/
DECLINLINE(void) rtSocketErrorReset(void)
{
#ifdef RT_OS_WINDOWS
WSASetLastError(0);
#else
errno = 0;
#endif
}
/**
* Get the last resolver error as an iprt status code.
*
* @returns iprt status code.
*/
int rtSocketResolverError(void)
{
#ifdef RT_OS_WINDOWS
return RTErrConvertFromWin32(WSAGetLastError());
#else
switch (h_errno)
{
case HOST_NOT_FOUND:
return VERR_NET_HOST_NOT_FOUND;
case NO_DATA:
return VERR_NET_ADDRESS_NOT_AVAILABLE;
case NO_RECOVERY:
return VERR_IO_GEN_FAILURE;
case TRY_AGAIN:
return VERR_TRY_AGAIN;
default:
return VERR_UNRESOLVED_ERROR;
}
#endif
}
/**
* Converts from a native socket address to a generic IPRT network address.
*
* @returns IPRT status code.
* @param pSrc The source address.
* @param cbSrc The size of the source address.
* @param pAddr Where to return the generic IPRT network
* address.
*/
static int rtSocketNetAddrFromAddr(RTSOCKADDRUNION const *pSrc, size_t cbSrc, PRTNETADDR pAddr)
{
/*
* Convert the address.
*/
if ( cbSrc == sizeof(struct sockaddr_in)
&& pSrc->Addr.sa_family == AF_INET)
{
RT_ZERO(*pAddr);
pAddr->enmType = RTNETADDRTYPE_IPV4;
pAddr->uPort = RT_N2H_U16(pSrc->IPv4.sin_port);
pAddr->uAddr.IPv4.u = pSrc->IPv4.sin_addr.s_addr;
}
#ifdef IPRT_WITH_TCPIP_V6
else if ( cbSrc == sizeof(struct sockaddr_in6)
&& pSrc->Addr.sa_family == AF_INET6)
{
RT_ZERO(*pAddr);
pAddr->enmType = RTNETADDRTYPE_IPV6;
pAddr->uPort = RT_N2H_U16(pSrc->IPv6.sin6_port);
pAddr->uAddr.IPv6.au32[0] = pSrc->IPv6.sin6_addr.s6_addr32[0];
pAddr->uAddr.IPv6.au32[1] = pSrc->IPv6.sin6_addr.s6_addr32[1];
pAddr->uAddr.IPv6.au32[2] = pSrc->IPv6.sin6_addr.s6_addr32[2];
pAddr->uAddr.IPv6.au32[3] = pSrc->IPv6.sin6_addr.s6_addr32[3];
}
#endif
else
return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
return VINF_SUCCESS;
}
/**
* Converts from a generic IPRT network address to a native socket address.
*
* @returns IPRT status code.
* @param pAddr Pointer to the generic IPRT network address.
* @param pDst The source address.
* @param cbSrc The size of the source address.
* @param pcbAddr Where to store the size of the returned address.
* Optional
*/
static int rtSocketAddrFromNetAddr(PCRTNETADDR pAddr, RTSOCKADDRUNION *pDst, size_t cbDst, int *pcbAddr)
{
RT_BZERO(pDst, cbDst);
if ( pAddr->enmType == RTNETADDRTYPE_IPV4
&& cbDst >= sizeof(struct sockaddr_in))
{
pDst->Addr.sa_family = AF_INET;
pDst->IPv4.sin_port = RT_H2N_U16(pAddr->uPort);
pDst->IPv4.sin_addr.s_addr = pAddr->uAddr.IPv4.u;
if (pcbAddr)
*pcbAddr = sizeof(pDst->IPv4);
}
#ifdef IPRT_WITH_TCPIP_V6
else if ( pAddr->enmType == RTNETADDRTYPE_IPV6
&& cbDst >= sizeof(struct sockaddr_in6))
{
pDst->Addr.sa_family = AF_INET6;
pDst->IPv6.sin6_port = RT_H2N_U16(pAddr->uPort);
pSrc->IPv6.sin6_addr.s6_addr32[0] = pAddr->uAddr.IPv6.au32[0];
pSrc->IPv6.sin6_addr.s6_addr32[1] = pAddr->uAddr.IPv6.au32[1];
pSrc->IPv6.sin6_addr.s6_addr32[2] = pAddr->uAddr.IPv6.au32[2];
pSrc->IPv6.sin6_addr.s6_addr32[3] = pAddr->uAddr.IPv6.au32[3];
if (pcbAddr)
*pcbAddr = sizeof(pDst->IPv6);
}
#endif
else
return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
return VINF_SUCCESS;
}
/**
* Tries to lock the socket for exclusive usage by the calling thread.
*
* Call rtSocketUnlock() to unlock.
*
* @returns @c true if locked, @c false if not.
* @param pThis The socket structure.
*/
DECLINLINE(bool) rtSocketTryLock(RTSOCKETINT *pThis)
{
return ASMAtomicCmpXchgU32(&pThis->cUsers, 1, 0);
}
/**
* Unlocks the socket.
*
* @param pThis The socket structure.
*/
DECLINLINE(void) rtSocketUnlock(RTSOCKETINT *pThis)
{
ASMAtomicCmpXchgU32(&pThis->cUsers, 0, 1);
}
/**
* The slow path of rtSocketSwitchBlockingMode that does the actual switching.
*
* @returns IPRT status code.
* @param pThis The socket structure.
* @param fBlocking The desired mode of operation.
* @remarks Do not call directly.
*/
static int rtSocketSwitchBlockingModeSlow(RTSOCKETINT *pThis, bool fBlocking)
{
#ifdef RT_OS_WINDOWS
u_long uBlocking = fBlocking ? 0 : 1;
if (ioctlsocket(pThis->hNative, FIONBIO, &uBlocking))
return rtSocketError();
#else
int fFlags = fcntl(pThis->hNative, F_GETFL, 0);
if (fFlags == -1)
return rtSocketError();
if (fBlocking)
fFlags &= ~O_NONBLOCK;
else
fFlags |= O_NONBLOCK;
if (fcntl(pThis->hNative, F_SETFL, fFlags) == -1)
return rtSocketError();
#endif
pThis->fBlocking = fBlocking;
return VINF_SUCCESS;
}
/**
* Switches the socket to the desired blocking mode if necessary.
*
* The socket must be locked.
*
* @returns IPRT status code.
* @param pThis The socket structure.
* @param fBlocking The desired mode of operation.
*/
DECLINLINE(int) rtSocketSwitchBlockingMode(RTSOCKETINT *pThis, bool fBlocking)
{
if (pThis->fBlocking != fBlocking)
return rtSocketSwitchBlockingModeSlow(pThis, fBlocking);
return VINF_SUCCESS;
}
/**
* Creates an IPRT socket handle for a native one.
*
* @returns IPRT status code.
* @param ppSocket Where to return the IPRT socket handle.
* @param hNative The native handle.
*/
int rtSocketCreateForNative(RTSOCKETINT **ppSocket, RTSOCKETNATIVE hNative)
{
RTSOCKETINT *pThis = (RTSOCKETINT *)RTMemPoolAlloc(RTMEMPOOL_DEFAULT, sizeof(*pThis));
if (!pThis)
return VERR_NO_MEMORY;
pThis->u32Magic = RTSOCKET_MAGIC;
pThis->cUsers = 0;
pThis->hNative = hNative;
pThis->fClosed = false;
pThis->fBlocking = true;
#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
pThis->hPollSet = NIL_RTPOLLSET;
#endif
#ifdef RT_OS_WINDOWS
pThis->hEvent = WSA_INVALID_EVENT;
pThis->fPollEvts = 0;
pThis->fSubscribedEvts = 0;
#endif
*ppSocket = pThis;
return VINF_SUCCESS;
}
RTDECL(int) RTSocketFromNative(PRTSOCKET phSocket, RTHCINTPTR uNative)
{
AssertReturn(uNative != NIL_RTSOCKETNATIVE, VERR_INVALID_PARAMETER);
#ifndef RT_OS_WINDOWS
AssertReturn(uNative >= 0, VERR_INVALID_PARAMETER);
#endif
AssertPtrReturn(phSocket, VERR_INVALID_POINTER);
return rtSocketCreateForNative(phSocket, uNative);
}
/**
* Wrapper around socket().
*
* @returns IPRT status code.
* @param phSocket Where to store the handle to the socket on
* success.
* @param iDomain The protocol family (PF_XXX).
* @param iType The socket type (SOCK_XXX).
* @param iProtocol Socket parameter, usually 0.
*/
int rtSocketCreate(PRTSOCKET phSocket, int iDomain, int iType, int iProtocol)
{
/*
* Create the socket.
*/
RTSOCKETNATIVE hNative = socket(iDomain, iType, iProtocol);
if (hNative == NIL_RTSOCKETNATIVE)
return rtSocketError();
/*
* Wrap it.
*/
int rc = rtSocketCreateForNative(phSocket, hNative);
if (RT_FAILURE(rc))
{
#ifdef RT_OS_WINDOWS
closesocket(hNative);
#else
close(hNative);
#endif
}
return rc;
}
RTDECL(uint32_t) RTSocketRetain(RTSOCKET hSocket)
{
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, UINT32_MAX);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
return RTMemPoolRetain(pThis);
}
/**
* Worker for RTSocketRelease and RTSocketClose.
*
* @returns IPRT status code.
* @param pThis The socket handle instance data.
* @param fDestroy Whether we're reaching ref count zero.
*/
static int rtSocketCloseIt(RTSOCKETINT *pThis, bool fDestroy)
{
/*
* Invalidate the handle structure on destroy.
*/
if (fDestroy)
{
Assert(ASMAtomicReadU32(&pThis->u32Magic) == RTSOCKET_MAGIC);
ASMAtomicWriteU32(&pThis->u32Magic, RTSOCKET_MAGIC_DEAD);
}
int rc = VINF_SUCCESS;
if (ASMAtomicCmpXchgBool(&pThis->fClosed, true, false))
{
/*
* Close the native handle.
*/
RTSOCKETNATIVE hNative = pThis->hNative;
if (hNative != NIL_RTSOCKETNATIVE)
{
pThis->hNative = NIL_RTSOCKETNATIVE;
#ifdef RT_OS_WINDOWS
if (closesocket(hNative))
#else
if (close(hNative))
#endif
{
rc = rtSocketError();
#ifdef RT_OS_WINDOWS
AssertMsgFailed(("\"%s\": closesocket(%p) -> %Rrc\n", (uintptr_t)hNative, rc));
#else
AssertMsgFailed(("\"%s\": close(%d) -> %Rrc\n", hNative, rc));
#endif
}
}
#ifdef RT_OS_WINDOWS
/*
* Close the event.
*/
WSAEVENT hEvent = pThis->hEvent;
if (hEvent == WSA_INVALID_EVENT)
{
pThis->hEvent = WSA_INVALID_EVENT;
WSACloseEvent(hEvent);
}
#endif
}
return rc;
}
RTDECL(uint32_t) RTSocketRelease(RTSOCKET hSocket)
{
RTSOCKETINT *pThis = hSocket;
if (pThis == NIL_RTSOCKET)
return 0;
AssertPtrReturn(pThis, UINT32_MAX);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
/* get the refcount without killing it... */
uint32_t cRefs = RTMemPoolRefCount(pThis);
AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
if (cRefs == 1)
rtSocketCloseIt(pThis, true);
return RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
}
RTDECL(int) RTSocketClose(RTSOCKET hSocket)
{
RTSOCKETINT *pThis = hSocket;
if (pThis == NIL_RTSOCKET)
return VINF_SUCCESS;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
uint32_t cRefs = RTMemPoolRefCount(pThis);
AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
int rc = rtSocketCloseIt(pThis, cRefs == 1);
RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
return rc;
}
RTDECL(RTHCUINTPTR) RTSocketToNative(RTSOCKET hSocket)
{
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, RTHCUINTPTR_MAX);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, RTHCUINTPTR_MAX);
return (RTHCUINTPTR)pThis->hNative;
}
RTDECL(int) RTSocketSetInheritance(RTSOCKET hSocket, bool fInheritable)
{
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
int rc = VINF_SUCCESS;
#ifdef RT_OS_WINDOWS
if (!SetHandleInformation((HANDLE)pThis->hNative, HANDLE_FLAG_INHERIT, fInheritable ? HANDLE_FLAG_INHERIT : 0))
rc = RTErrConvertFromWin32(GetLastError());
#else
if (fcntl(pThis->hNative, F_SETFD, fInheritable ? 0 : FD_CLOEXEC) < 0)
rc = RTErrConvertFromErrno(errno);
#endif
return rc;
}
static bool rtSocketIsIPv4Numerical(const char *pszAddress, PRTNETADDRIPV4 pAddr)
{
/* Empty address resolves to the INADDR_ANY address (good for bind). */
if (!pszAddress || !*pszAddress)
{
pAddr->u = INADDR_ANY;
return true;
}
/* Four quads? */
char *psz = (char *)pszAddress;
for (int i = 0; i < 4; i++)
{
uint8_t u8;
int rc = RTStrToUInt8Ex(psz, &psz, 0, &u8);
if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS)
return false;
if (*psz != (i < 3 ? '.' : '\0'))
return false;
psz++;
pAddr->au8[i] = u8; /* big endian */
}
return true;
}
RTDECL(int) RTSocketParseInetAddress(const char *pszAddress, unsigned uPort, PRTNETADDR pAddr)
{
int rc;
/*
* Validate input.
*/
AssertReturn(uPort > 0, VERR_INVALID_PARAMETER);
AssertPtrNullReturn(pszAddress, VERR_INVALID_POINTER);
#ifdef RT_OS_WINDOWS
/*
* Initialize WinSock and check version.
*/
WORD wVersionRequested = MAKEWORD(1, 1);
WSADATA wsaData;
rc = WSAStartup(wVersionRequested, &wsaData);
if (wsaData.wVersion != wVersionRequested)
{
AssertMsgFailed(("Wrong winsock version\n"));
return VERR_NOT_SUPPORTED;
}
#endif
/*
* Resolve the address. Pretty crude at the moment, but we have to make
* sure to not ask the NT 4 gethostbyname about an IPv4 address as it may
* give a wrong answer.
*/
/** @todo this only supports IPv4, and IPv6 support needs to be added.
* It probably needs to be converted to getaddrinfo(). */
RTNETADDRIPV4 IPv4Quad;
if (rtSocketIsIPv4Numerical(pszAddress, &IPv4Quad))
{
Log3(("rtSocketIsIPv4Numerical: %#x (%RTnaipv4)\n", pszAddress, IPv4Quad.u, IPv4Quad));
RT_ZERO(*pAddr);
pAddr->enmType = RTNETADDRTYPE_IPV4;
pAddr->uPort = uPort;
pAddr->uAddr.IPv4 = IPv4Quad;
return VINF_SUCCESS;
}
struct hostent *pHostEnt;
pHostEnt = gethostbyname(pszAddress);
if (!pHostEnt)
{
rc = rtSocketResolverError();
AssertMsgFailed(("Could not resolve '%s', rc=%Rrc\n", pszAddress, rc));
return rc;
}
if (pHostEnt->h_addrtype == AF_INET)
{
RT_ZERO(*pAddr);
pAddr->enmType = RTNETADDRTYPE_IPV4;
pAddr->uPort = uPort;
pAddr->uAddr.IPv4.u = ((struct in_addr *)pHostEnt->h_addr)->s_addr;
Log3(("gethostbyname: %s -> %#x (%RTnaipv4)\n", pszAddress, pAddr->uAddr.IPv4.u, pAddr->uAddr.IPv4));
}
else
return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
return VINF_SUCCESS;
}
/*
* New function to allow both ipv4 and ipv6 addresses to be resolved.
* Breaks compatibility with windows before 2000.
*/
RTDECL(int) RTSocketQueryAddressStr(const char *pszHost, char *pszResult, size_t *pcbResult, PRTNETADDRTYPE penmAddrType)
{
AssertPtrReturn(pszHost, VERR_INVALID_POINTER);
AssertPtrReturn(pcbResult, VERR_INVALID_POINTER);
AssertPtrNullReturn(penmAddrType, VERR_INVALID_POINTER);
AssertPtrNullReturn(pszResult, VERR_INVALID_POINTER);
#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) /** @todo dynamically resolve the APIs not present in NT4! */
return VERR_NOT_SUPPORTED;
#else
int rc;
if (*pcbResult < 16)
return VERR_NET_ADDRESS_NOT_AVAILABLE;
/* Setup the hint. */
struct addrinfo grHints;
RT_ZERO(grHints);
grHints.ai_socktype = 0;
grHints.ai_flags = 0;
grHints.ai_protocol = 0;
grHints.ai_family = AF_UNSPEC;
if (penmAddrType)
{
switch (*penmAddrType)
{
case RTNETADDRTYPE_INVALID:
/*grHints.ai_family = AF_UNSPEC;*/
break;
case RTNETADDRTYPE_IPV4:
grHints.ai_family = AF_INET;
break;
case RTNETADDRTYPE_IPV6:
grHints.ai_family = AF_INET6;
break;
default:
AssertFailedReturn(VERR_INVALID_PARAMETER);
}
}
# ifdef RT_OS_WINDOWS
/*
* Winsock2 init
*/
/** @todo someone should check if we really need 2, 2 here */
WORD wVersionRequested = MAKEWORD(2, 2);
WSADATA wsaData;
rc = WSAStartup(wVersionRequested, &wsaData);
if (wsaData.wVersion != wVersionRequested)
{
AssertMsgFailed(("Wrong winsock version\n"));
return VERR_NOT_SUPPORTED;
}
# endif
/** @todo r=bird: getaddrinfo and freeaddrinfo breaks the additions on NT4. */
struct addrinfo *pgrResults = NULL;
rc = getaddrinfo(pszHost, "", &grHints, &pgrResults);
if (rc != 0)
return VERR_NET_ADDRESS_NOT_AVAILABLE;
// return data
// on multiple matches return only the first one
if (!pgrResults)
return VERR_NET_ADDRESS_NOT_AVAILABLE;
struct addrinfo const *pgrResult = pgrResults->ai_next;
if (!pgrResult)
{
freeaddrinfo(pgrResults);
return VERR_NET_ADDRESS_NOT_AVAILABLE;
}
uint8_t const *pbDummy;
RTNETADDRTYPE enmAddrType = RTNETADDRTYPE_INVALID;
size_t cchIpAddress;
char szIpAddress[48];
if (pgrResult->ai_family == AF_INET)
{
struct sockaddr_in const *pgrSa = (struct sockaddr_in const *)pgrResult->ai_addr;
pbDummy = (uint8_t const *)&pgrSa->sin_addr;
cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress), "%u.%u.%u.%u",
pbDummy[0], pbDummy[1], pbDummy[2], pbDummy[3]);
Assert(cchIpAddress >= 7 && cchIpAddress < sizeof(szIpAddress) - 1);
enmAddrType = RTNETADDRTYPE_IPV4;
rc = VINF_SUCCESS;
}
else if (pgrResult->ai_family == AF_INET6)
{
struct sockaddr_in6 const *pgrSa6 = (struct sockaddr_in6 const *)pgrResult->ai_addr;
pbDummy = (uint8_t const *) &pgrSa6->sin6_addr;
char szTmp[32+1];
size_t cchTmp = RTStrPrintf(szTmp, sizeof(szTmp),
"%02x%02x%02x%02x"
"%02x%02x%02x%02x"
"%02x%02x%02x%02x"
"%02x%02x%02x%02x",
pbDummy[0], pbDummy[1], pbDummy[2], pbDummy[3],
pbDummy[4], pbDummy[5], pbDummy[6], pbDummy[7],
pbDummy[8], pbDummy[9], pbDummy[10], pbDummy[11],
pbDummy[12], pbDummy[13], pbDummy[14], pbDummy[15]);
Assert(cchTmp == 32);
rc = rtStrToIpAddr6Str(szTmp, szIpAddress, sizeof(szIpAddress), NULL, 0, true);
if (RT_SUCCESS(rc))
cchIpAddress = strlen(szIpAddress);
else
{
szIpAddress[0] = '\0';
cchIpAddress = 0;
}
enmAddrType = RTNETADDRTYPE_IPV6;
}
else
{
rc = VERR_NET_ADDRESS_NOT_AVAILABLE;
szIpAddress[0] = '\0';
cchIpAddress = 0;
}
freeaddrinfo(pgrResults);
/*
* Copy out the result.
*/
size_t const cbResult = *pcbResult;
*pcbResult = cchIpAddress + 1;
if (cchIpAddress < cbResult)
memcpy(pszResult, szIpAddress, cchIpAddress + 1);
else
{
RT_BZERO(pszResult, cbResult);
if (RT_SUCCESS(rc))
rc = VERR_BUFFER_OVERFLOW;
}
if (penmAddrType && RT_SUCCESS(rc))
*penmAddrType = enmAddrType;
return rc;
#endif /* !RT_OS_OS2 */
}
RTDECL(int) RTSocketRead(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
AssertPtr(pvBuffer);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
/*
* Read loop.
* If pcbRead is NULL we have to fill the entire buffer!
*/
size_t cbRead = 0;
size_t cbToRead = cbBuffer;
for (;;)
{
rtSocketErrorReset();
#ifdef RTSOCKET_MAX_READ
int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead;
#else
size_t cbNow = cbToRead;
#endif
ssize_t cbBytesRead = recv(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL);
if (cbBytesRead <= 0)
{
rc = rtSocketError();
Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
if (RT_SUCCESS_NP(rc))
{
if (!pcbRead)
rc = VERR_NET_SHUTDOWN;
else
{
*pcbRead = 0;
rc = VINF_SUCCESS;
}
}
break;
}
if (pcbRead)
{
/* return partial data */
*pcbRead = cbBytesRead;
break;
}
/* read more? */
cbRead += cbBytesRead;
if (cbRead == cbBuffer)
break;
/* next */
cbToRead = cbBuffer - cbRead;
}
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketReadFrom(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead, PRTNETADDR pSrcAddr)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
AssertPtr(pvBuffer);
AssertPtr(pcbRead);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
/*
* Read data.
*/
size_t cbRead = 0;
size_t cbToRead = cbBuffer;
rtSocketErrorReset();
RTSOCKADDRUNION u;
#ifdef RTSOCKET_MAX_READ
int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead;
int cbAddr = sizeof(u);
#else
size_t cbNow = cbToRead;
socklen_t cbAddr = sizeof(u);
#endif
ssize_t cbBytesRead = recvfrom(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL, &u.Addr, &cbAddr);
if (cbBytesRead <= 0)
{
rc = rtSocketError();
Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
if (RT_SUCCESS_NP(rc))
{
*pcbRead = 0;
rc = VINF_SUCCESS;
}
}
else
{
if (pSrcAddr)
rc = rtSocketNetAddrFromAddr(&u, cbAddr, pSrcAddr);
*pcbRead = cbBytesRead;
}
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketWrite(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
/*
* Try write all at once.
*/
#ifdef RTSOCKET_MAX_WRITE
int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
#else
size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
#endif
ssize_t cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
rc = VINF_SUCCESS;
else if (cbWritten < 0)
rc = rtSocketError();
else
{
/*
* Unfinished business, write the remainder of the request. Must ignore
* VERR_INTERRUPTED here if we've managed to send something.
*/
size_t cbSentSoFar = 0;
for (;;)
{
/* advance */
cbBuffer -= (size_t)cbWritten;
if (!cbBuffer)
break;
cbSentSoFar += (size_t)cbWritten;
pvBuffer = (char const *)pvBuffer + cbWritten;
/* send */
#ifdef RTSOCKET_MAX_WRITE
cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
#else
cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
#endif
cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
if (cbWritten >= 0)
AssertMsg(cbBuffer >= (size_t)cbWritten, ("Wrote more than we requested!!! cbWritten=%zu cbBuffer=%zu rtSocketError()=%d\n",
cbWritten, cbBuffer, rtSocketError()));
else
{
rc = rtSocketError();
if (rc != VERR_INTERNAL_ERROR || cbSentSoFar == 0)
break;
cbWritten = 0;
rc = VINF_SUCCESS;
}
}
}
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketWriteTo(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
/* no locking since UDP reads may be done concurrently to writes, and
* this is the normal use case of this code. */
int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
/* Figure out destination address. */
struct sockaddr *pSA = NULL;
#ifdef RT_OS_WINDOWS
int cbSA = 0;
#else
socklen_t cbSA = 0;
#endif
RTSOCKADDRUNION u;
if (pAddr)
{
rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL);
if (RT_FAILURE(rc))
return rc;
pSA = &u.Addr;
cbSA = sizeof(u);
}
/*
* Must write all at once, otherwise it is a failure.
*/
#ifdef RT_OS_WINDOWS
int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
#else
size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
#endif
ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA);
if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
rc = VINF_SUCCESS;
else if (cbWritten < 0)
rc = rtSocketError();
else
rc = VERR_TOO_MUCH_DATA;
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketSgWrite(RTSOCKET hSocket, PCRTSGBUF pSgBuf)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
/*
* Construct message descriptor (translate pSgBuf) and send it.
*/
rc = VERR_NO_TMP_MEMORY;
#ifdef RT_OS_WINDOWS
AssertCompileSize(WSABUF, sizeof(RTSGSEG));
AssertCompileMemberSize(WSABUF, buf, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
LPWSABUF paMsg = (LPWSABUF)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(WSABUF));
if (paMsg)
{
for (unsigned i = 0; i < pSgBuf->cSegs; i++)
{
paMsg[i].buf = (char *)pSgBuf->paSegs[i].pvSeg;
paMsg[i].len = (u_long)pSgBuf->paSegs[i].cbSeg;
}
DWORD dwSent;
int hrc = WSASend(pThis->hNative, paMsg, pSgBuf->cSegs, &dwSent,
MSG_NOSIGNAL, NULL, NULL);
if (!hrc)
rc = VINF_SUCCESS;
/** @todo check for incomplete writes */
else
rc = rtSocketError();
RTMemTmpFree(paMsg);
}
#else /* !RT_OS_WINDOWS */
AssertCompileSize(struct iovec, sizeof(RTSGSEG));
AssertCompileMemberSize(struct iovec, iov_base, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
AssertCompileMemberSize(struct iovec, iov_len, RT_SIZEOFMEMB(RTSGSEG, cbSeg));
struct iovec *paMsg = (struct iovec *)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(struct iovec));
if (paMsg)
{
for (unsigned i = 0; i < pSgBuf->cSegs; i++)
{
paMsg[i].iov_base = pSgBuf->paSegs[i].pvSeg;
paMsg[i].iov_len = pSgBuf->paSegs[i].cbSeg;
}
struct msghdr msgHdr;
RT_ZERO(msgHdr);
msgHdr.msg_iov = paMsg;
msgHdr.msg_iovlen = pSgBuf->cSegs;
ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
if (RT_LIKELY(cbWritten >= 0))
rc = VINF_SUCCESS;
/** @todo check for incomplete writes */
else
rc = rtSocketError();
RTMemTmpFree(paMsg);
}
#endif /* !RT_OS_WINDOWS */
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketSgWriteL(RTSOCKET hSocket, size_t cSegs, ...)
{
va_list va;
va_start(va, cSegs);
int rc = RTSocketSgWriteLV(hSocket, cSegs, va);
va_end(va);
return rc;
}
RTDECL(int) RTSocketSgWriteLV(RTSOCKET hSocket, size_t cSegs, va_list va)
{
/*
* Set up a S/G segment array + buffer on the stack and pass it
* on to RTSocketSgWrite.
*/
Assert(cSegs <= 16);
PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
for (size_t i = 0; i < cSegs; i++)
{
paSegs[i].pvSeg = va_arg(va, void *);
paSegs[i].cbSeg = va_arg(va, size_t);
}
RTSGBUF SgBuf;
RTSgBufInit(&SgBuf, paSegs, cSegs);
return RTSocketSgWrite(hSocket, &SgBuf);
}
RTDECL(int) RTSocketReadNB(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
AssertPtr(pvBuffer);
AssertPtrReturn(pcbRead, VERR_INVALID_PARAMETER);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
rtSocketErrorReset();
#ifdef RTSOCKET_MAX_READ
int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
#else
size_t cbNow = cbBuffer;
#endif
#ifdef RT_OS_WINDOWS
int cbRead = recv(pThis->hNative, (char *)pvBuffer, cbNow, MSG_NOSIGNAL);
if (cbRead >= 0)
{
*pcbRead = cbRead;
rc = VINF_SUCCESS;
}
else
rc = rtSocketError();
if (rc == VERR_TRY_AGAIN)
rc = VINF_TRY_AGAIN;
#else
ssize_t cbRead = recv(pThis->hNative, pvBuffer, cbNow, MSG_NOSIGNAL);
if (cbRead >= 0)
*pcbRead = cbRead;
else if (errno == EAGAIN)
{
*pcbRead = 0;
rc = VINF_TRY_AGAIN;
}
else
rc = rtSocketError();
#endif
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketWriteNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, size_t *pcbWritten)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
rtSocketErrorReset();
#ifdef RTSOCKET_MAX_WRITE
int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
#else
size_t cbNow = cbBuffer;
#endif
#ifdef RT_OS_WINDOWS
int cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
if (cbWritten >= 0)
{
*pcbWritten = cbWritten;
rc = VINF_SUCCESS;
}
else
rc = rtSocketError();
if (rc == VERR_TRY_AGAIN)
rc = VINF_TRY_AGAIN;
#else
ssize_t cbWritten = send(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL);
if (cbWritten >= 0)
*pcbWritten = cbWritten;
else if (errno == EAGAIN)
{
*pcbWritten = 0;
rc = VINF_TRY_AGAIN;
}
else
rc = rtSocketError();
#endif
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketSgWriteNB(RTSOCKET hSocket, PCRTSGBUF pSgBuf, size_t *pcbWritten)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
if (RT_FAILURE(rc))
return rc;
unsigned cSegsToSend = 0;
rc = VERR_NO_TMP_MEMORY;
#ifdef RT_OS_WINDOWS
LPWSABUF paMsg = NULL;
RTSgBufMapToNative(paMsg, pSgBuf, WSABUF, buf, char *, len, u_long, cSegsToSend);
if (paMsg)
{
DWORD dwSent = 0;
int hrc = WSASend(pThis->hNative, paMsg, cSegsToSend, &dwSent,
MSG_NOSIGNAL, NULL, NULL);
if (!hrc)
rc = VINF_SUCCESS;
else
rc = rtSocketError();
*pcbWritten = dwSent;
RTMemTmpFree(paMsg);
}
#else /* !RT_OS_WINDOWS */
struct iovec *paMsg = NULL;
RTSgBufMapToNative(paMsg, pSgBuf, struct iovec, iov_base, void *, iov_len, size_t, cSegsToSend);
if (paMsg)
{
struct msghdr msgHdr;
RT_ZERO(msgHdr);
msgHdr.msg_iov = paMsg;
msgHdr.msg_iovlen = cSegsToSend;
ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
if (RT_LIKELY(cbWritten >= 0))
{
rc = VINF_SUCCESS;
*pcbWritten = cbWritten;
}
else
rc = rtSocketError();
RTMemTmpFree(paMsg);
}
#endif /* !RT_OS_WINDOWS */
rtSocketUnlock(pThis);
return rc;
}
RTDECL(int) RTSocketSgWriteLNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, ...)
{
va_list va;
va_start(va, pcbWritten);
int rc = RTSocketSgWriteLVNB(hSocket, cSegs, pcbWritten, va);
va_end(va);
return rc;
}
RTDECL(int) RTSocketSgWriteLVNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, va_list va)
{
/*
* Set up a S/G segment array + buffer on the stack and pass it
* on to RTSocketSgWrite.
*/
Assert(cSegs <= 16);
PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
for (size_t i = 0; i < cSegs; i++)
{
paSegs[i].pvSeg = va_arg(va, void *);
paSegs[i].cbSeg = va_arg(va, size_t);
}
RTSGBUF SgBuf;
RTSgBufInit(&SgBuf, paSegs, cSegs);
return RTSocketSgWriteNB(hSocket, &SgBuf, pcbWritten);
}
RTDECL(int) RTSocketSelectOne(RTSOCKET hSocket, RTMSINTERVAL cMillies)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
int const fdMax = (int)pThis->hNative + 1;
AssertReturn(fdMax - 1 == pThis->hNative, VERR_INTERNAL_ERROR_5);
/*
* Set up the file descriptor sets and do the select.
*/
fd_set fdsetR;
FD_ZERO(&fdsetR);
FD_SET(pThis->hNative, &fdsetR);
fd_set fdsetE = fdsetR;
int rc;
if (cMillies == RT_INDEFINITE_WAIT)
rc = select(fdMax, &fdsetR, NULL, &fdsetE, NULL);
else
{
struct timeval timeout;
timeout.tv_sec = cMillies / 1000;
timeout.tv_usec = (cMillies % 1000) * 1000;
rc = select(fdMax, &fdsetR, NULL, &fdsetE, &timeout);
}
if (rc > 0)
rc = VINF_SUCCESS;
else if (rc == 0)
rc = VERR_TIMEOUT;
else
rc = rtSocketError();
return rc;
}
RTDECL(int) RTSocketSelectOneEx(RTSOCKET hSocket, uint32_t fEvents, uint32_t *pfEvents,
RTMSINTERVAL cMillies)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertPtrReturn(pfEvents, VERR_INVALID_PARAMETER);
AssertReturn(!(fEvents & ~RTSOCKET_EVT_VALID_MASK), VERR_INVALID_PARAMETER);
AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
int const fdMax = (int)pThis->hNative + 1;
AssertReturn(fdMax - 1 == pThis->hNative, VERR_INTERNAL_ERROR_5);
*pfEvents = 0;
/*
* Set up the file descriptor sets and do the select.
*/
fd_set fdsetR;
fd_set fdsetW;
fd_set fdsetE;
FD_ZERO(&fdsetR);
FD_ZERO(&fdsetW);
FD_ZERO(&fdsetE);
if (fEvents & RTSOCKET_EVT_READ)
FD_SET(pThis->hNative, &fdsetR);
if (fEvents & RTSOCKET_EVT_WRITE)
FD_SET(pThis->hNative, &fdsetW);
if (fEvents & RTSOCKET_EVT_ERROR)
FD_SET(pThis->hNative, &fdsetE);
int rc;
if (cMillies == RT_INDEFINITE_WAIT)
rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, NULL);
else
{
struct timeval timeout;
timeout.tv_sec = cMillies / 1000;
timeout.tv_usec = (cMillies % 1000) * 1000;
rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, &timeout);
}
if (rc > 0)
{
if (FD_ISSET(pThis->hNative, &fdsetR))
*pfEvents |= RTSOCKET_EVT_READ;
if (FD_ISSET(pThis->hNative, &fdsetW))
*pfEvents |= RTSOCKET_EVT_WRITE;
if (FD_ISSET(pThis->hNative, &fdsetE))
*pfEvents |= RTSOCKET_EVT_ERROR;
rc = VINF_SUCCESS;
}
else if (rc == 0)
rc = VERR_TIMEOUT;
else
rc = rtSocketError();
return rc;
}
RTDECL(int) RTSocketShutdown(RTSOCKET hSocket, bool fRead, bool fWrite)
{
/*
* Validate input, don't lock it because we might want to interrupt a call
* active on a different thread.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
AssertReturn(fRead || fWrite, VERR_INVALID_PARAMETER);
/*
* Do the job.
*/
int rc = VINF_SUCCESS;
int fHow;
if (fRead && fWrite)
fHow = SHUT_RDWR;
else if (fRead)
fHow = SHUT_RD;
else
fHow = SHUT_WR;
if (shutdown(pThis->hNative, fHow) == -1)
rc = rtSocketError();
return rc;
}
RTDECL(int) RTSocketGetLocalAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
/*
* Get the address and convert it.
*/
int rc;
RTSOCKADDRUNION u;
#ifdef RT_OS_WINDOWS
int cbAddr = sizeof(u);
#else
socklen_t cbAddr = sizeof(u);
#endif
RT_ZERO(u);
if (getsockname(pThis->hNative, &u.Addr, &cbAddr) == 0)
rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
else
rc = rtSocketError();
return rc;
}
RTDECL(int) RTSocketGetPeerAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
/*
* Get the address and convert it.
*/
int rc;
RTSOCKADDRUNION u;
#ifdef RT_OS_WINDOWS
int cbAddr = sizeof(u);
#else
socklen_t cbAddr = sizeof(u);
#endif
RT_ZERO(u);
if (getpeername(pThis->hNative, &u.Addr, &cbAddr) == 0)
rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
else
rc = rtSocketError();
return rc;
}
/**
* Wrapper around bind.
*
* @returns IPRT status code.
* @param hSocket The socket handle.
* @param pAddr The address to bind to.
*/
int rtSocketBind(RTSOCKET hSocket, PCRTNETADDR pAddr)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
RTSOCKADDRUNION u;
int cbAddr;
int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
if (RT_SUCCESS(rc))
{
if (bind(pThis->hNative, &u.Addr, cbAddr) != 0)
rc = rtSocketError();
}
rtSocketUnlock(pThis);
return rc;
}
/**
* Wrapper around listen.
*
* @returns IPRT status code.
* @param hSocket The socket handle.
* @param cMaxPending The max number of pending connections.
*/
int rtSocketListen(RTSOCKET hSocket, int cMaxPending)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = VINF_SUCCESS;
if (listen(pThis->hNative, cMaxPending) != 0)
rc = rtSocketError();
rtSocketUnlock(pThis);
return rc;
}
/**
* Wrapper around accept.
*
* @returns IPRT status code.
* @param hSocket The socket handle.
* @param phClient Where to return the client socket handle on
* success.
* @param pAddr Where to return the client address.
* @param pcbAddr On input this gives the size buffer size of what
* @a pAddr point to. On return this contains the
* size of what's stored at @a pAddr.
*/
int rtSocketAccept(RTSOCKET hSocket, PRTSOCKET phClient, struct sockaddr *pAddr, size_t *pcbAddr)
{
/*
* Validate input.
* Only lock the socket temporarily while we get the native handle, so that
* we can safely shutdown and destroy the socket from a different thread.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
/*
* Call accept().
*/
rtSocketErrorReset();
int rc = VINF_SUCCESS;
#ifdef RT_OS_WINDOWS
int cbAddr = (int)*pcbAddr;
#else
socklen_t cbAddr = *pcbAddr;
#endif
RTSOCKETNATIVE hNativeClient = accept(pThis->hNative, pAddr, &cbAddr);
if (hNativeClient != NIL_RTSOCKETNATIVE)
{
*pcbAddr = cbAddr;
/*
* Wrap the client socket.
*/
rc = rtSocketCreateForNative(phClient, hNativeClient);
if (RT_FAILURE(rc))
{
#ifdef RT_OS_WINDOWS
closesocket(hNativeClient);
#else
close(hNativeClient);
#endif
}
}
else
rc = rtSocketError();
rtSocketUnlock(pThis);
return rc;
}
/**
* Wrapper around connect.
*
* @returns IPRT status code.
* @param hSocket The socket handle.
* @param pAddr The socket address to connect to.
*/
int rtSocketConnect(RTSOCKET hSocket, PCRTNETADDR pAddr)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
RTSOCKADDRUNION u;
int cbAddr;
int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
if (RT_SUCCESS(rc))
{
if (connect(pThis->hNative, &u.Addr, cbAddr) != 0)
rc = rtSocketError();
}
rtSocketUnlock(pThis);
return rc;
}
/**
* Wrapper around setsockopt.
*
* @returns IPRT status code.
* @param hSocket The socket handle.
* @param iLevel The protocol level, e.g. IPPORTO_TCP.
* @param iOption The option, e.g. TCP_NODELAY.
* @param pvValue The value buffer.
* @param cbValue The size of the value pointed to by pvValue.
*/
int rtSocketSetOpt(RTSOCKET hSocket, int iLevel, int iOption, void const *pvValue, int cbValue)
{
/*
* Validate input.
*/
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = VINF_SUCCESS;
if (setsockopt(pThis->hNative, iLevel, iOption, (const char *)pvValue, cbValue) != 0)
rc = rtSocketError();
rtSocketUnlock(pThis);
return rc;
}
/**
* Internal RTPollSetAdd helper that returns the handle that should be added to
* the pollset.
*
* @returns Valid handle on success, INVALID_HANDLE_VALUE on failure.
* @param hSocket The socket handle.
* @param fEvents The events we're polling for.
* @param phNative Where to put the primary handle.
*/
int rtSocketPollGetHandle(RTSOCKET hSocket, uint32_t fEvents, PRTHCINTPTR phNative)
{
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
#ifdef RT_OS_WINDOWS
AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
int rc = VINF_SUCCESS;
if (pThis->hEvent != WSA_INVALID_EVENT)
*phNative = (RTHCINTPTR)pThis->hEvent;
else
{
pThis->hEvent = WSACreateEvent();
*phNative = (RTHCINTPTR)pThis->hEvent;
if (pThis->hEvent == WSA_INVALID_EVENT)
rc = rtSocketError();
}
rtSocketUnlock(pThis);
return rc;
#else /* !RT_OS_WINDOWS */
*phNative = (RTHCUINTPTR)pThis->hNative;
return VINF_SUCCESS;
#endif /* !RT_OS_WINDOWS */
}
#ifdef RT_OS_WINDOWS
/**
* Undos the harm done by WSAEventSelect.
*
* @returns IPRT status code.
* @param pThis The socket handle.
*/
static int rtSocketPollClearEventAndRestoreBlocking(RTSOCKETINT *pThis)
{
int rc = VINF_SUCCESS;
if (pThis->fSubscribedEvts)
{
if (WSAEventSelect(pThis->hNative, WSA_INVALID_EVENT, 0) == 0)
{
pThis->fSubscribedEvts = 0;
/*
* Switch back to blocking mode if that was the state before the
* operation.
*/
if (pThis->fBlocking)
{
u_long fNonBlocking = 0;
int rc2 = ioctlsocket(pThis->hNative, FIONBIO, &fNonBlocking);
if (rc2 != 0)
{
rc = rtSocketError();
AssertMsgFailed(("%Rrc; rc2=%d\n", rc, rc2));
}
}
}
else
{
rc = rtSocketError();
AssertMsgFailed(("%Rrc\n", rc));
}
}
return rc;
}
/**
* Updates the mask of events we're subscribing to.
*
* @returns IPRT status code.
* @param pThis The socket handle.
* @param fEvents The events we want to subscribe to.
*/
static int rtSocketPollUpdateEvents(RTSOCKETINT *pThis, uint32_t fEvents)
{
LONG fNetworkEvents = 0;
if (fEvents & RTPOLL_EVT_READ)
fNetworkEvents |= FD_READ;
if (fEvents & RTPOLL_EVT_WRITE)
fNetworkEvents |= FD_WRITE;
if (fEvents & RTPOLL_EVT_ERROR)
fNetworkEvents |= FD_CLOSE;
LogFlowFunc(("fNetworkEvents=%#x\n", fNetworkEvents));
if (WSAEventSelect(pThis->hNative, pThis->hEvent, fNetworkEvents) == 0)
{
pThis->fSubscribedEvts = fEvents;
return VINF_SUCCESS;
}
int rc = rtSocketError();
AssertMsgFailed(("fNetworkEvents=%#x rc=%Rrc\n", fNetworkEvents, rtSocketError()));
return rc;
}
#endif /* RT_OS_WINDOWS */
#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
/**
* Checks for pending events.
*
* @returns Event mask or 0.
* @param pThis The socket handle.
* @param fEvents The desired events.
*/
static uint32_t rtSocketPollCheck(RTSOCKETINT *pThis, uint32_t fEvents)
{
uint32_t fRetEvents = 0;
LogFlowFunc(("pThis=%#p fEvents=%#x\n", pThis, fEvents));
# ifdef RT_OS_WINDOWS
/* Make sure WSAEnumNetworkEvents returns what we want. */
int rc = VINF_SUCCESS;
if ((pThis->fSubscribedEvts & fEvents) != fEvents)
rc = rtSocketPollUpdateEvents(pThis, pThis->fSubscribedEvts | fEvents);
/* Get the event mask, ASSUMES that WSAEnumNetworkEvents doesn't clear stuff. */
WSANETWORKEVENTS NetEvts;
RT_ZERO(NetEvts);
if (WSAEnumNetworkEvents(pThis->hNative, pThis->hEvent, &NetEvts) == 0)
{
if ( (NetEvts.lNetworkEvents & FD_READ)
&& (fEvents & RTPOLL_EVT_READ)
&& NetEvts.iErrorCode[FD_READ_BIT] == 0)
fRetEvents |= RTPOLL_EVT_READ;
if ( (NetEvts.lNetworkEvents & FD_WRITE)
&& (fEvents & RTPOLL_EVT_WRITE)
&& NetEvts.iErrorCode[FD_WRITE_BIT] == 0)
fRetEvents |= RTPOLL_EVT_WRITE;
if (fEvents & RTPOLL_EVT_ERROR)
{
if (NetEvts.lNetworkEvents & FD_CLOSE)
fRetEvents |= RTPOLL_EVT_ERROR;
else
for (uint32_t i = 0; i < FD_MAX_EVENTS; i++)
if ( (NetEvts.lNetworkEvents & (1L << i))
&& NetEvts.iErrorCode[i] != 0)
fRetEvents |= RTPOLL_EVT_ERROR;
}
}
else
rc = rtSocketError();
/* Fall back on select if we hit an error above. */
if (RT_FAILURE(rc))
{
}
#else /* RT_OS_OS2 */
int aFds[4] = { pThis->hNative, pThis->hNative, pThis->hNative, -1 };
int rc = os2_select(aFds, 1, 1, 1, 0);
if (rc > 0)
{
if (aFds[0] == pThis->hNative)
fRetEvents |= RTPOLL_EVT_READ;
if (aFds[1] == pThis->hNative)
fRetEvents |= RTPOLL_EVT_WRITE;
if (aFds[2] == pThis->hNative)
fRetEvents |= RTPOLL_EVT_ERROR;
fRetEvents &= fEvents;
}
#endif /* RT_OS_OS2 */
LogFlowFunc(("fRetEvents=%#x\n", fRetEvents));
return fRetEvents;
}
/**
* Internal RTPoll helper that polls the socket handle and, if @a fNoWait is
* clear, starts whatever actions we've got running during the poll call.
*
* @returns 0 if no pending events, actions initiated if @a fNoWait is clear.
* Event mask (in @a fEvents) and no actions if the handle is ready
* already.
* UINT32_MAX (asserted) if the socket handle is busy in I/O or a
* different poll set.
*
* @param hSocket The socket handle.
* @param hPollSet The poll set handle (for access checks).
* @param fEvents The events we're polling for.
* @param fFinalEntry Set if this is the final entry for this handle
* in this poll set. This can be used for dealing
* with duplicate entries.
* @param fNoWait Set if it's a zero-wait poll call. Clear if
* we'll wait for an event to occur.
*
* @remarks There is a potential race wrt duplicate handles when @a fNoWait is
* @c true, we don't currently care about that oddity...
*/
uint32_t rtSocketPollStart(RTSOCKET hSocket, RTPOLLSET hPollSet, uint32_t fEvents, bool fFinalEntry, bool fNoWait)
{
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, UINT32_MAX);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
/** @todo This isn't quite sane. Replace by critsect and open up concurrent
* reads and writes! */
if (rtSocketTryLock(pThis))
pThis->hPollSet = hPollSet;
else
{
AssertReturn(pThis->hPollSet == hPollSet, UINT32_MAX);
ASMAtomicIncU32(&pThis->cUsers);
}
/* (rtSocketPollCheck will reset the event object). */
# ifdef RT_OS_WINDOWS
uint32_t fRetEvents = pThis->fEventsSaved;
pThis->fEventsSaved = 0; /* Reset */
fRetEvents |= rtSocketPollCheck(pThis, fEvents);
if ( !fRetEvents
&& !fNoWait)
{
pThis->fPollEvts |= fEvents;
if ( fFinalEntry
&& pThis->fSubscribedEvts != pThis->fPollEvts)
{
int rc = rtSocketPollUpdateEvents(pThis, pThis->fPollEvts);
if (RT_FAILURE(rc))
{
pThis->fPollEvts = 0;
fRetEvents = UINT32_MAX;
}
}
}
# else
uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents);
# endif
if (fRetEvents || fNoWait)
{
if (pThis->cUsers == 1)
{
# ifdef RT_OS_WINDOWS
rtSocketPollClearEventAndRestoreBlocking(pThis);
# endif
pThis->hPollSet = NIL_RTPOLLSET;
}
ASMAtomicDecU32(&pThis->cUsers);
}
return fRetEvents;
}
/**
* Called after a WaitForMultipleObjects returned in order to check for pending
* events and stop whatever actions that rtSocketPollStart() initiated.
*
* @returns Event mask or 0.
*
* @param hSocket The socket handle.
* @param fEvents The events we're polling for.
* @param fFinalEntry Set if this is the final entry for this handle
* in this poll set. This can be used for dealing
* with duplicate entries. Only keep in mind that
* this method is called in reverse order, so the
* first call will have this set (when the entire
* set was processed).
* @param fHarvestEvents Set if we should check for pending events.
*/
uint32_t rtSocketPollDone(RTSOCKET hSocket, uint32_t fEvents, bool fFinalEntry, bool fHarvestEvents)
{
RTSOCKETINT *pThis = hSocket;
AssertPtrReturn(pThis, 0);
AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, 0);
Assert(pThis->cUsers > 0);
Assert(pThis->hPollSet != NIL_RTPOLLSET);
/* Harvest events and clear the event mask for the next round of polling. */
uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents);
# ifdef RT_OS_WINDOWS
pThis->fPollEvts = 0;
/*
* Save the write event if required.
* It is only posted once and might get lost if the another source in the
* pollset with a higher priority has pending events.
*/
if ( !fHarvestEvents
&& fRetEvents)
{
pThis->fEventsSaved = fRetEvents;
fRetEvents = 0;
}
# endif
/* Make the socket blocking again and unlock the handle. */
if (pThis->cUsers == 1)
{
# ifdef RT_OS_WINDOWS
rtSocketPollClearEventAndRestoreBlocking(pThis);
# endif
pThis->hPollSet = NIL_RTPOLLSET;
}
ASMAtomicDecU32(&pThis->cUsers);
return fRetEvents;
}
#endif /* RT_OS_WINDOWS || RT_OS_OS2 */