timer-posix.cpp revision a438caaf732f7839dc66b4f8dad672527845a003
/* $Id$ */
/** @file
* IPRT - Timer, POSIX.
*/
/*
* Copyright (C) 2006-2007 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** Enables the use of POSIX RT timers. */
#ifndef RT_OS_SOLARIS /* Solaris 10 doesn't have SIGEV_THREAD */
# define IPRT_WITH_POSIX_TIMERS
#endif /* !RT_OS_SOLARIS */
/** @def RT_TIMER_SIGNAL
* The signal number that the timers use.
* We currently use SIGALRM for both setitimer and posix real time timers
* out of simplicity, but we might want change this later for the posix ones. */
#ifdef IPRT_WITH_POSIX_TIMERS
# define RT_TIMER_SIGNAL SIGALRM
#else
# define RT_TIMER_SIGNAL SIGALRM
#endif
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP RTLOGGROUP_TIMER
#include <iprt/timer.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/thread.h>
#include <iprt/log.h>
#include <iprt/asm.h>
#include <iprt/semaphore.h>
#include <iprt/string.h>
#include <iprt/once.h>
#include <iprt/err.h>
#include <iprt/critsect.h>
#include "internal/magics.h"
#include <unistd.h>
#include <sys/fcntl.h>
#include <sys/ioctl.h>
#ifdef RT_OS_LINUX
# include <linux/rtc.h>
#endif
#include <sys/time.h>
#include <signal.h>
#include <errno.h>
#include <pthread.h>
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef IPRT_WITH_POSIX_TIMERS
/** Init the critsect on first call. */
static RTONCE g_TimerOnce = RTONCE_INITIALIZER;
/** Global critsect that serializes timer creation and destruction.
* This is lazily created on the first RTTimerCreateEx call and will not be
* freed up (I'm afraid). */
static RTCRITSECT g_TimerCritSect;
/**
* Global counter of RTTimer instances. The signal thread is
* started when it changes from 0 to 1. The signal thread
* terminates when it becomes 0 again.
*/
static uint32_t volatile g_cTimerInstances;
/** The signal handling thread. */
static RTTHREAD g_TimerThread;
#endif /* IPRT_WITH_POSIX_TIMERS */
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The internal representation of a timer handle.
*/
typedef struct RTTIMER
{
/** Magic.
* This is RTTIMER_MAGIC, but changes to something else before the timer
* is destroyed to indicate clearly that thread should exit. */
uint32_t volatile u32Magic;
/** Flag indicating the timer is suspended. */
uint8_t volatile fSuspended;
/** Flag indicating that the timer has been destroyed. */
uint8_t volatile fDestroyed;
#ifndef IPRT_WITH_POSIX_TIMERS /** @todo We have to take the signals on a dedicated timer thread as
* we (might) have code assuming that signals doesn't screw around
* on existing threads. (It would be sufficient to have one thread
* per signal of course since the signal will be masked while it's
* running, however, it may just cause more complications than its
* worth - sigwait/sigwaitinfo work atomically anyway...)
* Also, must block the signal in the thread main procedure too. */
/** The timer thread. */
RTTHREAD Thread;
/** Event semaphore on which the thread is blocked. */
RTSEMEVENT Event;
#endif /* !IPRT_WITH_POSIX_TIMERS */
/** User argument. */
void *pvUser;
/** Callback. */
PFNRTTIMER pfnTimer;
/** The timer interval. 0 if one-shot. */
uint64_t u64NanoInterval;
#ifndef IPRT_WITH_POSIX_TIMERS
/** The first shot interval. 0 if ASAP. */
uint64_t volatile u64NanoFirst;
#endif /* !IPRT_WITH_POSIX_TIMERS */
/** The current timer tick. */
uint64_t volatile iTick;
#ifndef IPRT_WITH_POSIX_TIMERS
/** The error/status of the timer.
* Initially -1, set to 0 when the timer have been successfully started, and
* to errno on failure in starting the timer. */
int volatile iError;
#else /* IPRT_WITH_POSIX_TIMERS */
timer_t NativeTimer;
#endif /* IPRT_WITH_POSIX_TIMERS */
} RTTIMER;
#ifdef IPRT_WITH_POSIX_TIMERS
/**
* RTOnce callback that initializes the critical section.
*
* @returns RTCritSectInit return code.
* @param pvUser NULL, ignored.
*
*/
static DECLCALLBACK(int) rtTimerOnce(void *pvUser)
{
NOREF(pvUser);
return RTCritSectInit(&g_TimerCritSect);
}
#endif
/**
* Signal handler which ignore everything it gets.
*
* @param iSignal The signal number.
*/
static void rttimerSignalIgnore(int iSignal)
{
//AssertBreakpoint();
NOREF(iSignal);
}
/**
* RT_TIMER_SIGNAL wait thread.
*/
static DECLCALLBACK(int) rttimerThread(RTTHREAD hThreadSelf, void *pvArg)
{
NOREF(hThreadSelf); NOREF(pvArg);
#ifndef IPRT_WITH_POSIX_TIMERS
PRTTIMER pTimer = (PRTTIMER)pvArg;
RTTIMER Timer = *pTimer;
Assert(pTimer->u32Magic == RTTIMER_MAGIC);
#endif /* !IPRT_WITH_POSIX_TIMERS */
/*
* Install signal handler.
*/
struct sigaction SigAct;
memset(&SigAct, 0, sizeof(SigAct));
SigAct.sa_flags = SA_RESTART;
sigemptyset(&SigAct.sa_mask);
SigAct.sa_handler = rttimerSignalIgnore;
if (sigaction(RT_TIMER_SIGNAL, &SigAct, NULL))
{
SigAct.sa_flags &= ~SA_RESTART;
if (sigaction(RT_TIMER_SIGNAL, &SigAct, NULL))
AssertMsgFailed(("sigaction failed, errno=%d\n", errno));
}
/*
* Mask most signals except those which might be used by the pthread implementation (linux).
*/
sigset_t SigSet;
sigfillset(&SigSet);
sigdelset(&SigSet, SIGTERM);
sigdelset(&SigSet, SIGHUP);
sigdelset(&SigSet, SIGINT);
sigdelset(&SigSet, SIGABRT);
sigdelset(&SigSet, SIGKILL);
#ifdef SIGRTMIN
for (int iSig = SIGRTMIN; iSig < SIGRTMAX; iSig++)
sigdelset(&SigSet, iSig);
#endif
if (sigprocmask(SIG_SETMASK, &SigSet, NULL))
{
#ifdef IPRT_WITH_POSIX_TIMERS
int rc = RTErrConvertFromErrno(errno);
#else
int rc = pTimer->iError = RTErrConvertFromErrno(errno);
#endif
AssertMsgFailed(("sigprocmask -> errno=%d\n", errno));
return rc;
}
/*
* The work loop.
*/
RTThreadUserSignal(hThreadSelf);
#ifndef IPRT_WITH_POSIX_TIMERS
while ( !pTimer->fDestroyed
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
/*
* Wait for a start or destroy event.
*/
if (pTimer->fSuspended)
{
int rc = RTSemEventWait(pTimer->Event, RT_INDEFINITE_WAIT);
if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED)
{
AssertRC(rc);
if (pTimer->fDestroyed)
continue;
RTThreadSleep(1000); /* Don't cause trouble! */
}
if ( pTimer->fSuspended
|| pTimer->fDestroyed)
continue;
}
/*
* Start the timer.
*
* For some SunOS (/SysV?) threading compatibility Linux will only
* deliver the RT_TIMER_SIGNAL to the thread calling setitimer(). Therefore
* we have to call it here.
*
* It turns out this might not always be the case, see RT_TIMER_SIGNAL killing
* processes on RH 2.4.21.
*/
struct itimerval TimerVal;
if (pTimer->u64NanoFirst)
{
uint64_t u64 = RT_MAX(1000, pTimer->u64NanoFirst);
TimerVal.it_value.tv_sec = u64 / 1000000000;
TimerVal.it_value.tv_usec = (u64 % 1000000000) / 1000;
}
else
{
TimerVal.it_value.tv_sec = 0;
TimerVal.it_value.tv_usec = 10;
}
if (pTimer->u64NanoInterval)
{
uint64_t u64 = RT_MAX(1000, pTimer->u64NanoInterval);
TimerVal.it_interval.tv_sec = u64 / 1000000000;
TimerVal.it_interval.tv_usec = (u64 % 1000000000) / 1000;
}
else
{
TimerVal.it_interval.tv_sec = 0;
TimerVal.it_interval.tv_usec = 0;
}
if (setitimer(ITIMER_REAL, &TimerVal, NULL))
{
ASMAtomicXchgU8(&pTimer->fSuspended, true);
pTimer->iError = RTErrConvertFromErrno(errno);
RTThreadUserSignal(hThreadSelf);
continue; /* back to suspended mode. */
}
pTimer->iError = 0;
RTThreadUserSignal(hThreadSelf);
/*
* Timer Service Loop.
*/
sigemptyset(&SigSet);
sigaddset(&SigSet, RT_TIMER_SIGNAL);
do
{
siginfo_t SigInfo;
RT_ZERO(SigInfo);
#ifdef RT_OS_DARWIN
if (RT_LIKELY(sigwait(&SigSet, &SigInfo.si_signo) >= 0))
{
#else
if (RT_LIKELY(sigwaitinfo(&SigSet, &SigInfo) >= 0))
{
if (RT_LIKELY(SigInfo.si_signo == RT_TIMER_SIGNAL))
#endif
{
if (RT_UNLIKELY( pTimer->fSuspended
|| pTimer->fDestroyed
|| pTimer->u32Magic != RTTIMER_MAGIC))
break;
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pTimer->iTick);
/* auto suspend one-shot timers. */
if (RT_UNLIKELY(!pTimer->u64NanoInterval))
{
ASMAtomicWriteU8(&pTimer->fSuspended, true);
break;
}
}
}
else if (errno != EINTR)
AssertMsgFailed(("sigwaitinfo -> errno=%d\n", errno));
} while (RT_LIKELY( !pTimer->fSuspended
&& !pTimer->fDestroyed
&& pTimer->u32Magic == RTTIMER_MAGIC));
/*
* Disable the timer.
*/
struct itimerval TimerVal2 = {{0,0}, {0,0}};
if (setitimer(ITIMER_REAL, &TimerVal2, NULL))
AssertMsgFailed(("setitimer(ITIMER_REAL,&{0}, NULL) failed, errno=%d\n", errno));
/*
* ACK any pending suspend request.
*/
if (!pTimer->fDestroyed)
{
pTimer->iError = 0;
RTThreadUserSignal(hThreadSelf);
}
}
/*
* Exit.
*/
pTimer->iError = 0;
RTThreadUserSignal(hThreadSelf);
#else /* IPRT_WITH_POSIX_TIMERS */
sigemptyset(&SigSet);
sigaddset(&SigSet, RT_TIMER_SIGNAL);
while (g_cTimerInstances)
{
siginfo_t SigInfo;
RT_ZERO(SigInfo);
if (RT_LIKELY(sigwaitinfo(&SigSet, &SigInfo) >= 0))
{
LogFlow(("rttimerThread: signo=%d pTimer=%p\n", SigInfo.si_signo, SigInfo.si_value.sival_ptr));
if (RT_LIKELY( SigInfo.si_signo == RT_TIMER_SIGNAL
&& SigInfo.si_code == SI_TIMER)) /* The SI_TIMER check is *essential* because of the pthread_kill. */
{
PRTTIMER pTimer = (PRTTIMER)SigInfo.si_value.sival_ptr;
AssertPtr(pTimer);
if (RT_UNLIKELY( !VALID_PTR(pTimer)
|| ASMAtomicUoReadU8(&pTimer->fSuspended)
|| ASMAtomicUoReadU8(&pTimer->fDestroyed)
|| pTimer->u32Magic != RTTIMER_MAGIC))
continue;
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pTimer->iTick);
/* auto suspend one-shot timers. */
if (RT_UNLIKELY(!pTimer->u64NanoInterval))
ASMAtomicWriteU8(&pTimer->fSuspended, true);
}
}
}
#endif /* IPRT_WITH_POSIX_TIMERS */
return VINF_SUCCESS;
}
RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
/*
* We don't support the fancy MP features.
*/
if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
return VERR_NOT_SUPPORTED;
#ifndef IPRT_WITH_POSIX_TIMERS
/*
* Check if timer is busy.
*/
struct itimerval TimerVal;
if (getitimer(ITIMER_REAL, &TimerVal))
{
AssertMsgFailed(("getitimer() -> errno=%d\n", errno));
return VERR_NOT_IMPLEMENTED;
}
if ( TimerVal.it_value.tv_usec
|| TimerVal.it_value.tv_sec
|| TimerVal.it_interval.tv_usec
|| TimerVal.it_interval.tv_sec)
{
AssertMsgFailed(("A timer is running. System limit is one timer per process!\n"));
return VERR_TIMER_BUSY;
}
#endif /* !IPRT_WITH_POSIX_TIMERS */
/*
* Block RT_TIMER_SIGNAL from calling thread.
*/
sigset_t SigSet;
sigemptyset(&SigSet);
sigaddset(&SigSet, RT_TIMER_SIGNAL);
sigprocmask(SIG_BLOCK, &SigSet, NULL);
#ifndef IPRT_WITH_POSIX_TIMERS /** @todo combine more of the setitimer/timer_create code. setitimer could also use the global thread. */
/** @todo Move this RTC hack else where... */
static bool fDoneRTC;
if (!fDoneRTC)
{
fDoneRTC = true;
/* check resolution. */
TimerVal.it_interval.tv_sec = 0;
TimerVal.it_interval.tv_usec = 1000;
TimerVal.it_value = TimerVal.it_interval;
if ( setitimer(ITIMER_REAL, &TimerVal, NULL)
|| getitimer(ITIMER_REAL, &TimerVal)
|| TimerVal.it_interval.tv_usec > 1000)
{
/*
* Try open /dev/rtc to set the irq rate to 1024 and
* turn periodic
*/
Log(("RTTimerCreate: interval={%ld,%ld} trying to adjust /dev/rtc!\n", TimerVal.it_interval.tv_sec, TimerVal.it_interval.tv_usec));
# ifdef RT_OS_LINUX
int fh = open("/dev/rtc", O_RDONLY);
if (fh >= 0)
{
if ( ioctl(fh, RTC_IRQP_SET, 1024) < 0
|| ioctl(fh, RTC_PIE_ON, 0) < 0)
Log(("RTTimerCreate: couldn't configure rtc! errno=%d\n", errno));
ioctl(fh, F_SETFL, O_ASYNC);
ioctl(fh, F_SETOWN, getpid());
/* not so sure if closing it is a good idea... */
//close(fh);
}
else
Log(("RTTimerCreate: couldn't configure rtc! open failed with errno=%d\n", errno));
# endif
}
/* disable it */
TimerVal.it_interval.tv_sec = 0;
TimerVal.it_interval.tv_usec = 0;
TimerVal.it_value = TimerVal.it_interval;
setitimer(ITIMER_REAL, &TimerVal, NULL);
}
/*
* Create a new timer.
*/
int rc;
PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer));
if (pTimer)
{
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->fSuspended = true;
pTimer->fDestroyed = false;
pTimer->Thread = NIL_RTTHREAD;
pTimer->Event = NIL_RTSEMEVENT;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->u64NanoInterval = u64NanoInterval;
pTimer->u64NanoFirst = 0;
pTimer->iTick = 0;
pTimer->iError = 0;
rc = RTSemEventCreate(&pTimer->Event);
AssertRC(rc);
if (RT_SUCCESS(rc))
{
rc = RTThreadCreate(&pTimer->Thread, rttimerThread, pTimer, 0, RTTHREADTYPE_TIMER, RTTHREADFLAGS_WAITABLE, "Timer");
AssertRC(rc);
if (RT_SUCCESS(rc))
{
/*
* Wait for the timer thread to initialize it self.
* This might take a little while...
*/
rc = RTThreadUserWait(pTimer->Thread, 45*1000);
AssertRC(rc);
if (RT_SUCCESS(rc))
{
rc = RTThreadUserReset(pTimer->Thread); AssertRC(rc);
rc = pTimer->iError;
AssertRC(rc);
if (RT_SUCCESS(rc))
{
RTThreadYield(); /* <-- Horrible hack to make tstTimer work. (linux 2.6.12) */
*ppTimer = pTimer;
return VINF_SUCCESS;
}
}
/* bail out */
ASMAtomicXchgU8(&pTimer->fDestroyed, true);
ASMAtomicXchgU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
RTThreadWait(pTimer->Thread, 45*1000, NULL);
}
RTSemEventDestroy(pTimer->Event);
pTimer->Event = NIL_RTSEMEVENT;
}
RTMemFree(pTimer);
}
else
rc = VERR_NO_MEMORY;
#else /* IPRT_WITH_POSIX_TIMERS */
/*
* Do the global init first.
*/
int rc = RTOnce(&g_TimerOnce, rtTimerOnce, NULL);
if (RT_FAILURE(rc))
return rc;
/*
* Create a new timer structure.
*/
LogFlow(("RTTimerCreateEx: u64NanoInterval=%llu fFlags=%lu\n", u64NanoInterval, fFlags));
PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer));
if (pTimer)
{
/* Initialize timer structure. */
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->fSuspended = true;
pTimer->fDestroyed = false;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->u64NanoInterval = u64NanoInterval;
pTimer->iTick = 0;
/*
* Create a timer that deliver RT_TIMER_SIGNAL upon timer expiration.
*/
struct sigevent SigEvt;
SigEvt.sigev_notify = SIGEV_SIGNAL;
SigEvt.sigev_signo = RT_TIMER_SIGNAL;
SigEvt.sigev_value.sival_ptr = pTimer; /* sigev_value gets copied to siginfo. */
int err = timer_create(CLOCK_REALTIME, &SigEvt, &pTimer->NativeTimer);
if (!err)
{
/*
* Increment the timer count, do this behind the critsect to avoid races.
*/
RTCritSectEnter(&g_TimerCritSect);
if (ASMAtomicIncU32(&g_cTimerInstances) != 1)
{
Assert(g_cTimerInstances > 1);
RTCritSectLeave(&g_TimerCritSect);
LogFlow(("RTTimerCreateEx: rc=%Rrc pTimer=%p (thread already running)\n", rc, pTimer));
*ppTimer = pTimer;
return VINF_SUCCESS;
}
/*
* Create the signal handling thread. It will wait for the signal
* and execute the timer functions.
*/
rc = RTThreadCreate(&g_TimerThread, rttimerThread, NULL, 0, RTTHREADTYPE_TIMER, RTTHREADFLAGS_WAITABLE, "Timer");
if (RT_SUCCESS(rc))
{
rc = RTThreadUserWait(g_TimerThread, 45*1000); /* this better not fail... */
if (RT_SUCCESS(rc))
{
RTCritSectLeave(&g_TimerCritSect);
LogFlow(("RTTimerCreateEx: rc=%Rrc pTimer=%p (thread already running)\n", rc, pTimer));
*ppTimer = pTimer;
return VINF_SUCCESS;
}
/* darn, what do we do here? */
}
/* bail out */
ASMAtomicDecU32(&g_cTimerInstances);
Assert(!g_cTimerInstances);
RTCritSectLeave(&g_TimerCritSect);
timer_delete(pTimer->NativeTimer);
}
else
{
rc = RTErrConvertFromErrno(err);
Log(("RTTimerCreateEx: err=%d (%Rrc)\n", err, rc));
}
RTMemFree(pTimer);
}
else
rc = VERR_NO_MEMORY;
#endif /* IPRT_WITH_POSIX_TIMERS */
return rc;
}
RTR3DECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
LogFlow(("RTTimerDestroy: pTimer=%p\n", pTimer));
/*
* Validate input.
*/
/* NULL is ok. */
if (!pTimer)
return VINF_SUCCESS;
int rc = VINF_SUCCESS;
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
#ifdef IPRT_WITH_POSIX_TIMERS
AssertReturn(g_TimerThread != RTThreadSelf(), VERR_INTERNAL_ERROR);
#else
AssertReturn(pTimer->Thread != RTThreadSelf(), VERR_INTERNAL_ERROR);
#endif
/*
* Mark the semaphore as destroyed.
*/
ASMAtomicWriteU8(&pTimer->fDestroyed, true);
ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
#ifdef IPRT_WITH_POSIX_TIMERS
/*
* Suspend the timer if it's running.
*/
if (pTimer->fSuspended)
{
struct itimerspec TimerSpec;
TimerSpec.it_value.tv_sec = 0;
TimerSpec.it_value.tv_nsec = 0;
int err = timer_settime(pTimer->NativeTimer, 0, &TimerSpec, NULL); NOREF(err);
AssertMsg(!err, ("%d\n", err));
}
#endif
/*
* Poke the thread and wait for it to finish.
* This is only done for the last timer when using posix timers.
*/
#ifdef IPRT_WITH_POSIX_TIMERS
RTTHREAD Thread = NIL_RTTHREAD;
RTCritSectEnter(&g_TimerCritSect);
if (ASMAtomicDecU32(&g_cTimerInstances) == 0)
{
Thread = g_TimerThread;
g_TimerThread = NIL_RTTHREAD;
}
RTCritSectLeave(&g_TimerCritSect);
#else /* IPRT_WITH_POSIX_TIMERS */
RTTHREAD Thread = pTimer->Thread;
rc = RTSemEventSignal(pTimer->Event);
AssertRC(rc);
#endif /* IPRT_WITH_POSIX_TIMERS */
if (Thread != NIL_RTTHREAD)
{
/* Signal it so it gets out of the sigwait if it's stuck there... */
pthread_kill((pthread_t)RTThreadGetNative(Thread), RT_TIMER_SIGNAL);
/*
* Wait for the thread to complete.
*/
rc = RTThreadWait(Thread, 30 * 1000, NULL);
AssertRC(rc);
}
/*
* Free up the resources associated with the timer.
*/
#ifdef IPRT_WITH_POSIX_TIMERS
timer_delete(pTimer->NativeTimer);
#else
RTSemEventDestroy(pTimer->Event);
pTimer->Event = NIL_RTSEMEVENT;
#endif /* !IPRT_WITH_POSIX_TIMERS */
if (RT_SUCCESS(rc))
RTMemFree(pTimer);
return rc;
}
RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
/*
* Validate input.
*/
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
#ifndef IPRT_WITH_POSIX_TIMERS
AssertReturn(pTimer->Thread != RTThreadSelf(), VERR_INTERNAL_ERROR);
#endif
/*
* Already running?
*/
if (!ASMAtomicXchgU8(&pTimer->fSuspended, false))
return VERR_TIMER_ACTIVE;
LogFlow(("RTTimerStart: pTimer=%p u64First=%llu u64NanoInterval=%llu\n", pTimer, u64First, pTimer->u64NanoInterval));
#ifndef IPRT_WITH_POSIX_TIMERS
/*
* Tell the thread to start servicing the timer.
* Wait for it to ACK the request to avoid reset races.
*/
RTThreadUserReset(pTimer->Thread);
ASMAtomicUoWriteU64(&pTimer->u64NanoFirst, u64First);
ASMAtomicUoWriteU64(&pTimer->iTick, 0);
ASMAtomicWriteU8(&pTimer->fSuspended, false);
int rc = RTSemEventSignal(pTimer->Event);
if (RT_SUCCESS(rc))
{
rc = RTThreadUserWait(pTimer->Thread, 45*1000);
AssertRC(rc);
RTThreadUserReset(pTimer->Thread);
}
else
AssertRC(rc);
#else /* IPRT_WITH_POSIX_TIMERS */
/*
* Start the timer.
*/
struct itimerspec TimerSpec;
TimerSpec.it_value.tv_sec = u64First / 1000000000; /* nanosec => sec */
TimerSpec.it_value.tv_nsec = u64First ? u64First % 1000000000 : 10; /* 0 means disable, replace it with 10. */
TimerSpec.it_interval.tv_sec = pTimer->u64NanoInterval / 1000000000;
TimerSpec.it_interval.tv_nsec = pTimer->u64NanoInterval % 1000000000;
int err = timer_settime(pTimer->NativeTimer, 0, &TimerSpec, NULL);
int rc = RTErrConvertFromErrno(err);
#endif /* IPRT_WITH_POSIX_TIMERS */
if (RT_FAILURE(rc))
ASMAtomicXchgU8(&pTimer->fSuspended, false);
return rc;
}
RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
/*
* Validate input.
*/
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
/*
* Already running?
*/
if (ASMAtomicXchgU8(&pTimer->fSuspended, true))
return VERR_TIMER_SUSPENDED;
LogFlow(("RTTimerStop: pTimer=%p\n", pTimer));
#ifndef IPRT_WITH_POSIX_TIMERS
/*
* Tell the thread to stop servicing the timer.
*/
RTThreadUserReset(pTimer->Thread);
ASMAtomicXchgU8(&pTimer->fSuspended, true);
int rc = VINF_SUCCESS;
if (RTThreadSelf() != pTimer->Thread)
{
pthread_kill((pthread_t)RTThreadGetNative(pTimer->Thread), RT_TIMER_SIGNAL);
rc = RTThreadUserWait(pTimer->Thread, 45*1000);
AssertRC(rc);
RTThreadUserReset(pTimer->Thread);
}
#else /* IPRT_WITH_POSIX_TIMERS */
/*
* Stop the timer.
*/
struct itimerspec TimerSpec;
TimerSpec.it_value.tv_sec = 0;
TimerSpec.it_value.tv_nsec = 0;
int err = timer_settime(pTimer->NativeTimer, 0, &TimerSpec, NULL);
int rc = RTErrConvertFromErrno(err);
#endif /* IPRT_WITH_POSIX_TIMERS */
return rc;
}
RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
{
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
NOREF(u64NanoInterval);
return VERR_NOT_SUPPORTED;
}