pipe-posix.cpp revision c58f1213e628a545081c70e26c6b67a841cff880
/* $Id$ */
/** @file
* IPRT - Anonymous Pipes, POSIX Implementation.
*/
/*
* Copyright (C) 2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/pipe.h>
#include "internal/iprt.h"
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/mem.h>
#include <iprt/poll.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include "internal/magics.h"
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/poll.h>
#include <sys/stat.h>
#include <signal.h>
#ifdef RT_OS_LINUX
# include <sys/syscall.h>
#endif
#ifdef RT_OS_SOLARIS
# include <sys/filio.h>
#endif
#include "internal/pipe.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
typedef struct RTPIPEINTERNAL
{
/** Magic value (RTPIPE_MAGIC). */
uint32_t u32Magic;
/** The file descriptor. */
int fd;
/** Set if this is the read end, clear if it's the write end. */
bool fRead;
/** Atomically operated state variable.
*
* - Bits 0 thru 29 - Users of the new mode.
* - Bit 30 - The pipe mode, set indicates blocking.
* - Bit 31 - Set when we're switching the mode.
*/
uint32_t volatile u32State;
} RTPIPEINTERNAL;
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** @name RTPIPEINTERNAL::u32State defines
* @{ */
#define RTPIPE_POSIX_BLOCKING UINT32_C(0x40000000)
#define RTPIPE_POSIX_SWITCHING UINT32_C(0x80000000)
#define RTPIPE_POSIX_SWITCHING_BIT 31
#define RTPIPE_POSIX_USERS_MASK UINT32_C(0x3fffffff)
/** @} */
/**
* Wrapper for calling pipe2() or pipe().
*
* When using pipe2() the returned handles are marked close-on-exec and does
* not risk racing process creation calls on other threads.
*
* @returns See pipe().
* @param paFds See pipe().
* @param piNewPipeSyscall Where to cache which call we should used. -1 if
* pipe(), 1 if pipe2(), 0 if not yet decided.
*/
static int my_pipe_wrapper(int *paFds, int *piNewPipeSyscall)
{
if (*piNewPipeSyscall >= 0)
{
#if defined(RT_OS_LINUX) && defined(__NR_pipe2) && defined(O_CLOEXEC)
long rc = syscall(__NR_pipe2, paFds, O_CLOEXEC);
if (rc >= 0)
{
if (*piNewPipeSyscall == 0)
*piNewPipeSyscall = 1;
return (int)rc;
}
#endif
*piNewPipeSyscall = -1;
}
return pipe(paFds);
}
RTDECL(int) RTPipeCreate(PRTPIPE phPipeRead, PRTPIPE phPipeWrite, uint32_t fFlags)
{
AssertPtrReturn(phPipeRead, VERR_INVALID_POINTER);
AssertPtrReturn(phPipeWrite, VERR_INVALID_POINTER);
AssertReturn(!(fFlags & ~RTPIPE_C_VALID_MASK), VERR_INVALID_PARAMETER);
/*
* Create the pipe and clear/set the close-on-exec flag as required.
*/
int aFds[2] = {-1, -1};
static int s_iNewPipeSyscall = 0;
if (my_pipe_wrapper(aFds, &s_iNewPipeSyscall))
return RTErrConvertFromErrno(errno);
int rc = VINF_SUCCESS;
if (s_iNewPipeSyscall > 0)
{
/* created with close-on-exec set. */
if (fFlags & RTPIPE_C_INHERIT_READ)
{
if (fcntl(aFds[0], F_SETFD, 0))
rc = RTErrConvertFromErrno(errno);
}
if (fFlags & RTPIPE_C_INHERIT_WRITE)
{
if (fcntl(aFds[1], F_SETFD, 0))
rc = RTErrConvertFromErrno(errno);
}
}
else
{
/* created with close-on-exec cleared. */
if (!(fFlags & RTPIPE_C_INHERIT_READ))
{
if (fcntl(aFds[0], F_SETFD, FD_CLOEXEC))
rc = RTErrConvertFromErrno(errno);
}
if (!(fFlags & RTPIPE_C_INHERIT_WRITE))
{
if (fcntl(aFds[1], F_SETFD, FD_CLOEXEC))
rc = RTErrConvertFromErrno(errno);
}
}
if (RT_SUCCESS(rc))
{
/*
* Create the two handles.
*/
RTPIPEINTERNAL *pThisR = (RTPIPEINTERNAL *)RTMemAlloc(sizeof(RTPIPEINTERNAL));
if (pThisR)
{
RTPIPEINTERNAL *pThisW = (RTPIPEINTERNAL *)RTMemAlloc(sizeof(RTPIPEINTERNAL));
if (pThisW)
{
pThisR->u32Magic = RTPIPE_MAGIC;
pThisW->u32Magic = RTPIPE_MAGIC;
pThisR->fd = aFds[0];
pThisW->fd = aFds[1];
pThisR->fRead = true;
pThisW->fRead = false;
pThisR->u32State = RTPIPE_POSIX_BLOCKING;
pThisW->u32State = RTPIPE_POSIX_BLOCKING;
*phPipeRead = pThisR;
*phPipeWrite = pThisW;
/*
* Before we leave, make sure to shut up SIGPIPE.
*/
signal(SIGPIPE, SIG_IGN);
return VINF_SUCCESS;
}
RTMemFree(pThisR);
rc = VERR_NO_MEMORY;
}
else
rc = VERR_NO_MEMORY;
}
close(aFds[0]);
close(aFds[1]);
return rc;
}
RTDECL(int) RTPipeClose(RTPIPE hPipe)
{
RTPIPEINTERNAL *pThis = hPipe;
if (pThis == NIL_RTPIPE)
return VINF_SUCCESS;
AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
/*
* Do the cleanup.
*/
AssertReturn(ASMAtomicCmpXchgU32(&pThis->u32Magic, ~RTPIPE_MAGIC, RTPIPE_MAGIC), VERR_INVALID_HANDLE);
int fd = pThis->fd;
pThis->fd = -1;
close(fd);
if (ASMAtomicReadU32(&pThis->u32State) & RTPIPE_POSIX_USERS_MASK)
{
AssertFailed();
RTThreadSleep(1);
}
RTMemFree(pThis);
return VINF_SUCCESS;
}
RTDECL(int) RTPipeFromNative(PRTPIPE phPipe, RTHCINTPTR hNativePipe, uint32_t fFlags)
{
AssertPtrReturn(phPipe, VERR_INVALID_POINTER);
AssertReturn(!(fFlags & ~RTPIPE_N_VALID_MASK), VERR_INVALID_PARAMETER);
AssertReturn(!!(fFlags & RTPIPE_N_READ) != !!(fFlags & RTPIPE_N_WRITE), VERR_INVALID_PARAMETER);
/*
* Get and validate the pipe handle info.
*/
int hNative = (int)hNativePipe;
struct stat st;
AssertReturn(fstat(hNative, &st) == 0, RTErrConvertFromErrno(errno));
AssertMsgReturn(S_ISFIFO(st.st_mode) || S_ISSOCK(st.st_mode), ("%#x (%o)\n", st.st_mode, st.st_mode), VERR_INVALID_HANDLE);
int fFd = fcntl(hNative, F_GETFL, 0);
AssertReturn(fFd != -1, VERR_INVALID_HANDLE);
AssertMsgReturn( (fFd & O_ACCMODE) == (fFlags & RTPIPE_N_READ ? O_RDONLY : O_WRONLY)
|| (fFd & O_ACCMODE) == O_RDWR /* Solaris creates bi-directional pipes. */
, ("%#x\n", fFd), VERR_INVALID_HANDLE);
/*
* Create the handle.
*/
RTPIPEINTERNAL *pThis = (RTPIPEINTERNAL *)RTMemAlloc(sizeof(RTPIPEINTERNAL));
if (!pThis)
return VERR_NO_MEMORY;
pThis->u32Magic = RTPIPE_MAGIC;
pThis->fd = hNative;
pThis->fRead = !!(fFlags & RTPIPE_N_READ);
pThis->u32State = fFd & O_NONBLOCK ? 0 : RTPIPE_POSIX_BLOCKING;
/*
* Fix up inheritability and shut up SIGPIPE and we're done.
*/
if (fcntl(hNative, F_SETFD, fFlags & RTPIPE_N_INHERIT ? 0 : FD_CLOEXEC) == 0)
{
signal(SIGPIPE, SIG_IGN);
*phPipe = pThis;
return VINF_SUCCESS;
}
int rc = RTErrConvertFromErrno(errno);
RTMemFree(pThis);
return rc;
}
RTDECL(RTHCINTPTR) RTPipeToNative(RTPIPE hPipe)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, -1);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, -1);
return pThis->fd;
}
/**
* Prepare blocking mode.
*
* @returns VINF_SUCCESS
* @retval VERR_WRONG_ORDER
* @retval VERR_INTERNAL_ERROR_4
*
* @param pThis The pipe handle.
*/
static int rtPipeTryBlocking(RTPIPEINTERNAL *pThis)
{
/*
* Update the state.
*/
for (;;)
{
uint32_t u32State = ASMAtomicReadU32(&pThis->u32State);
uint32_t const u32StateOld = u32State;
uint32_t const cUsers = (u32State & RTPIPE_POSIX_USERS_MASK);
if (u32State & RTPIPE_POSIX_BLOCKING)
{
AssertReturn(cUsers < RTPIPE_POSIX_USERS_MASK / 2, VERR_INTERNAL_ERROR_4);
u32State &= ~RTPIPE_POSIX_USERS_MASK;
u32State |= cUsers + 1;
if (ASMAtomicCmpXchgU32(&pThis->u32State, u32State, u32StateOld))
{
if (u32State & RTPIPE_POSIX_SWITCHING)
break;
return VINF_SUCCESS;
}
}
else if (cUsers == 0)
{
u32State = 1 | RTPIPE_POSIX_SWITCHING | RTPIPE_POSIX_BLOCKING;
if (ASMAtomicCmpXchgU32(&pThis->u32State, u32State, u32StateOld))
break;
}
else
return VERR_WRONG_ORDER;
ASMNopPause();
}
/*
* Do the switching.
*/
int fFlags = fcntl(pThis->fd, F_GETFL, 0);
if (fFlags != -1)
{
if ( !(fFlags & O_NONBLOCK)
|| fcntl(pThis->fd, F_SETFL, fFlags & ~O_NONBLOCK) != -1)
{
ASMAtomicBitClear(&pThis->u32State, RTPIPE_POSIX_SWITCHING_BIT);
return VINF_SUCCESS;
}
}
ASMAtomicDecU32(&pThis->u32State);
return RTErrConvertFromErrno(errno);
}
/**
* Prepare non-blocking mode.
*
* @returns VINF_SUCCESS
* @retval VERR_WRONG_ORDER
* @retval VERR_INTERNAL_ERROR_4
*
* @param pThis The pipe handle.
*/
static int rtPipeTryNonBlocking(RTPIPEINTERNAL *pThis)
{
/*
* Update the state.
*/
for (;;)
{
uint32_t u32State = ASMAtomicReadU32(&pThis->u32State);
uint32_t const u32StateOld = u32State;
uint32_t const cUsers = (u32State & RTPIPE_POSIX_USERS_MASK);
if (!(u32State & RTPIPE_POSIX_BLOCKING))
{
AssertReturn(cUsers < RTPIPE_POSIX_USERS_MASK / 2, VERR_INTERNAL_ERROR_4);
u32State &= ~RTPIPE_POSIX_USERS_MASK;
u32State |= cUsers + 1;
if (ASMAtomicCmpXchgU32(&pThis->u32State, u32State, u32StateOld))
{
if (u32State & RTPIPE_POSIX_SWITCHING)
break;
return VINF_SUCCESS;
}
}
else if (cUsers == 0)
{
u32State = 1 | RTPIPE_POSIX_SWITCHING;
if (ASMAtomicCmpXchgU32(&pThis->u32State, u32State, u32StateOld))
break;
}
else
return VERR_WRONG_ORDER;
ASMNopPause();
}
/*
* Do the switching.
*/
int fFlags = fcntl(pThis->fd, F_GETFL, 0);
if (fFlags != -1)
{
if ( (fFlags & O_NONBLOCK)
|| fcntl(pThis->fd, F_SETFL, fFlags | O_NONBLOCK) != -1)
{
ASMAtomicBitClear(&pThis->u32State, RTPIPE_POSIX_SWITCHING_BIT);
return VINF_SUCCESS;
}
}
ASMAtomicDecU32(&pThis->u32State);
return RTErrConvertFromErrno(errno);
}
/**
* Checks if the read pipe has a HUP condition.
*
* @returns true if HUP, false if no.
* @param pThis The pipe handle (read).
*/
static bool rtPipePosixHasHup(RTPIPEINTERNAL *pThis)
{
Assert(pThis->fRead);
struct pollfd PollFd;
RT_ZERO(PollFd);
PollFd.fd = pThis->fd;
PollFd.events = POLLHUP;
return poll(&PollFd, 1, 0) >= 1
&& (PollFd.revents & POLLHUP);
}
RTDECL(int) RTPipeRead(RTPIPE hPipe, void *pvBuf, size_t cbToRead, size_t *pcbRead)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(pThis->fRead, VERR_ACCESS_DENIED);
AssertPtr(pcbRead);
AssertPtr(pvBuf);
int rc = rtPipeTryNonBlocking(pThis);
if (RT_SUCCESS(rc))
{
ssize_t cbRead = read(pThis->fd, pvBuf, RT_MIN(cbToRead, SSIZE_MAX));
if (cbRead >= 0)
{
if (cbRead || !cbToRead || !rtPipePosixHasHup(pThis))
*pcbRead = cbRead;
else
rc = VERR_BROKEN_PIPE;
}
else if (errno == EAGAIN)
{
*pcbRead = 0;
rc = VINF_TRY_AGAIN;
}
else
rc = RTErrConvertFromErrno(errno);
ASMAtomicDecU32(&pThis->u32State);
}
return rc;
}
RTDECL(int) RTPipeReadBlocking(RTPIPE hPipe, void *pvBuf, size_t cbToRead, size_t *pcbRead)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(pThis->fRead, VERR_ACCESS_DENIED);
AssertPtr(pvBuf);
int rc = rtPipeTryBlocking(pThis);
if (RT_SUCCESS(rc))
{
size_t cbTotalRead = 0;
while (cbToRead > 0)
{
ssize_t cbRead = read(pThis->fd, pvBuf, RT_MIN(cbToRead, SSIZE_MAX));
if (cbRead < 0)
{
rc = RTErrConvertFromErrno(errno);
break;
}
if (!cbRead && rtPipePosixHasHup(pThis))
{
rc = VERR_BROKEN_PIPE;
break;
}
/* advance */
pvBuf = (char *)pvBuf + cbRead;
cbTotalRead += cbRead;
cbToRead -= cbRead;
}
if (pcbRead)
{
*pcbRead = cbTotalRead;
if ( RT_FAILURE(rc)
&& cbTotalRead
&& rc != VERR_INVALID_POINTER)
rc = VINF_SUCCESS;
}
ASMAtomicDecU32(&pThis->u32State);
}
return rc;
}
RTDECL(int) RTPipeWrite(RTPIPE hPipe, const void *pvBuf, size_t cbToWrite, size_t *pcbWritten)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(!pThis->fRead, VERR_ACCESS_DENIED);
AssertPtr(pcbWritten);
AssertPtr(pvBuf);
int rc = rtPipeTryNonBlocking(pThis);
if (RT_SUCCESS(rc))
{
if (cbToWrite)
{
ssize_t cbWritten = write(pThis->fd, pvBuf, RT_MIN(cbToWrite, SSIZE_MAX));
if (cbWritten >= 0)
*pcbWritten = cbWritten;
else if (errno == EAGAIN)
{
*pcbWritten = 0;
rc = VINF_TRY_AGAIN;
}
else
rc = RTErrConvertFromErrno(errno);
}
else
*pcbWritten = 0;
ASMAtomicDecU32(&pThis->u32State);
}
return rc;
}
RTDECL(int) RTPipeWriteBlocking(RTPIPE hPipe, const void *pvBuf, size_t cbToWrite, size_t *pcbWritten)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(!pThis->fRead, VERR_ACCESS_DENIED);
AssertPtr(pvBuf);
AssertPtrNull(pcbWritten);
int rc = rtPipeTryBlocking(pThis);
if (RT_SUCCESS(rc))
{
size_t cbTotalWritten = 0;
while (cbToWrite > 0)
{
ssize_t cbWritten = write(pThis->fd, pvBuf, RT_MIN(cbToWrite, SSIZE_MAX));
if (cbWritten < 0)
{
rc = RTErrConvertFromErrno(errno);
break;
}
/* advance */
pvBuf = (char const *)pvBuf + cbWritten;
cbTotalWritten += cbWritten;
cbToWrite -= cbWritten;
}
if (pcbWritten)
{
*pcbWritten = cbTotalWritten;
if ( RT_FAILURE(rc)
&& cbTotalWritten
&& rc != VERR_INVALID_POINTER)
rc = VINF_SUCCESS;
}
ASMAtomicDecU32(&pThis->u32State);
}
return rc;
}
RTDECL(int) RTPipeFlush(RTPIPE hPipe)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(!pThis->fRead, VERR_ACCESS_DENIED);
if (fsync(pThis->fd))
{
if (errno == EINVAL || errno == ENOTSUP)
return VERR_NOT_SUPPORTED;
return RTErrConvertFromErrno(errno);
}
return VINF_SUCCESS;
}
RTDECL(int) RTPipeSelectOne(RTPIPE hPipe, RTMSINTERVAL cMillies)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
struct pollfd PollFd;
RT_ZERO(PollFd);
PollFd.fd = pThis->fd;
PollFd.events = POLLHUP | POLLERR;
if (pThis->fRead)
PollFd.events |= POLLIN | POLLPRI;
else
PollFd.events |= POLLOUT;
int timeout;
if ( cMillies == RT_INDEFINITE_WAIT
|| cMillies >= INT_MAX /* lazy bird */)
timeout = -1;
else
timeout = cMillies;
int rc = poll(&PollFd, 1, timeout);
if (rc == -1)
return RTErrConvertFromErrno(errno);
return rc > 0 ? VINF_SUCCESS : VERR_TIMEOUT;
}
RTDECL(int) RTPipeQueryReadable(RTPIPE hPipe, size_t *pcbReadable)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(pThis->fRead, VERR_PIPE_NOT_READ);
AssertPtrReturn(pcbReadable, VERR_INVALID_POINTER);
int cb = 0;
int rc = ioctl(pThis->fd, FIONREAD, &cb);
if (rc != -1)
{
AssertStmt(cb >= 0, cb = 0);
*pcbReadable = cb;
return VINF_SUCCESS;
}
rc = errno;
if (rc == ENOTTY)
rc = VERR_NOT_SUPPORTED;
else
rc = RTErrConvertFromErrno(rc);
return rc;
}
int rtPipePollGetHandle(RTPIPE hPipe, uint32_t fEvents, PRTHCINTPTR phNative)
{
RTPIPEINTERNAL *pThis = hPipe;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTPIPE_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(!(fEvents & RTPOLL_EVT_READ) || pThis->fRead, VERR_INVALID_PARAMETER);
AssertReturn(!(fEvents & RTPOLL_EVT_WRITE) || !pThis->fRead, VERR_INVALID_PARAMETER);
*phNative = pThis->fd;
return VINF_SUCCESS;
}