fileaio-posix.cpp revision b79e4344bf4eb8033fd06d560cd864192728bd0b
/* $Id$ */
/** @file
* IPRT - File async I/O, native implementation for POSIX compliant host platforms.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP RTLOGGROUP_DIR
#include <iprt/asm.h>
#include <iprt/file.h>
#include <iprt/mem.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/thread.h>
#include <iprt/semaphore.h>
#include "internal/fileaio.h"
#if defined(RT_OS_DARWIN) || defined(RT_OS_FREEBSD)
# include <sys/types.h>
# include <sys/sysctl.h> /* for sysctlbyname */
#endif
#if defined(RT_OS_FREEBSD)
# include <fcntl.h> /* O_SYNC */
#endif
#include <aio.h>
#include <errno.h>
#include <time.h>
/*
* Linux does not define this value.
* Just define it with really big
* value.
*/
#ifndef AIO_LISTIO_MAX
# define AIO_LISTIO_MAX UINT32_MAX
#endif
#if 0 /* Only used for debugging */
# undef AIO_LISTIO_MAX
# define AIO_LISTIO_MAX 16
#endif
/** Invalid entry in the waiting array. */
#define RTFILEAIOCTX_WAIT_ENTRY_INVALID (~0U)
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Async I/O request state.
*/
typedef struct RTFILEAIOREQINTERNAL
{
/** The aio control block. FIRST ELEMENT! */
struct aiocb AioCB;
/** Next element in the chain. */
struct RTFILEAIOREQINTERNAL *pNext;
/** Previous element in the chain. */
struct RTFILEAIOREQINTERNAL *pPrev;
/** Current state the request is in. */
RTFILEAIOREQSTATE enmState;
/** Flag whether this is a flush request. */
bool fFlush;
/** Flag indicating if the request was canceled. */
volatile bool fCanceled;
/** Opaque user data. */
void *pvUser;
/** Number of bytes actually transfered. */
size_t cbTransfered;
/** Status code. */
int Rc;
/** Completion context we are assigned to. */
struct RTFILEAIOCTXINTERNAL *pCtxInt;
/** Entry in the waiting list the request is in. */
unsigned iWaitingList;
/** Magic value (RTFILEAIOREQ_MAGIC). */
uint32_t u32Magic;
} RTFILEAIOREQINTERNAL, *PRTFILEAIOREQINTERNAL;
/**
* Async I/O completion context state.
*/
typedef struct RTFILEAIOCTXINTERNAL
{
/** Current number of requests active on this context. */
volatile int32_t cRequests;
/** Maximum number of requests this context can handle. */
uint32_t cMaxRequests;
/** The ID of the thread which is currently waiting for requests. */
volatile RTTHREAD hThreadWait;
/** Flag whether the thread was woken up. */
volatile bool fWokenUp;
/** Flag whether the thread is currently waiting in the syscall. */
volatile bool fWaiting;
/** Magic value (RTFILEAIOCTX_MAGIC). */
uint32_t u32Magic;
/** Flag whether the thread was woken up due to a internal event. */
volatile bool fWokenUpInternal;
/** List of new requests which needs to be inserted into apReqs by the
* waiting thread. */
volatile PRTFILEAIOREQINTERNAL apReqsNewHead[5];
/** Special entry for requests which are canceled. Because only one
* request can be canceled at a time and the thread canceling the request
* has to wait we need only one entry. */
volatile PRTFILEAIOREQINTERNAL pReqToCancel;
/** Event semaphore the canceling thread is waiting for completion of
* the operation. */
RTSEMEVENT SemEventCancel;
/** Head of submitted elements waiting to get into the array. */
PRTFILEAIOREQINTERNAL pReqsWaitHead;
/** Tail of submitted elements waiting to get into the array. */
PRTFILEAIOREQINTERNAL pReqsWaitTail;
/** Maximum number of elements in the waiting array. */
unsigned cReqsWaitMax;
/** First free slot in the waiting list. */
unsigned iFirstFree;
/** List of requests we are currently waiting on.
* Size depends on cMaxRequests and AIO_LISTIO_MAX. */
volatile PRTFILEAIOREQINTERNAL apReqs[1];
} RTFILEAIOCTXINTERNAL, *PRTFILEAIOCTXINTERNAL;
/**
* Internal worker for waking up the waiting thread.
*/
static void rtFileAioCtxWakeup(PRTFILEAIOCTXINTERNAL pCtxInt)
{
/*
* Read the thread handle before the status flag.
* If we read the handle after the flag we might
* end up with an invalid handle because the thread
* waiting in RTFileAioCtxWakeup() might get scheduled
* before we read the flag and returns.
* We can ensure that the handle is valid if fWaiting is true
* when reading the handle before the status flag.
*/
RTTHREAD hThread;
ASMAtomicReadHandle(&pCtxInt->hThreadWait, &hThread);
bool fWaiting = ASMAtomicReadBool(&pCtxInt->fWaiting);
if (fWaiting)
{
/*
* If a thread waits the handle must be valid.
* It is possible that the thread returns from
* aio_suspend() before the signal is send.
* This is no problem because we already set fWokenUp
* to true which will let the thread return VERR_INTERRUPTED
* and the next call to RTFileAioCtxWait() will not
* return VERR_INTERRUPTED because signals are not saved
* and will simply vanish if the destination thread can't
* receive it.
*/
Assert(hThread != NIL_RTTHREAD);
RTThreadPoke(hThread);
}
}
/**
* Internal worker processing events and inserting new requests into the waiting list.
*/
static int rtFileAioCtxProcessEvents(PRTFILEAIOCTXINTERNAL pCtxInt)
{
int rc = VINF_SUCCESS;
/* Process new requests first. */
bool fWokenUp = ASMAtomicXchgBool(&pCtxInt->fWokenUpInternal, false);
if (fWokenUp)
{
for (unsigned iSlot = 0; iSlot < RT_ELEMENTS(pCtxInt->apReqsNewHead); iSlot++)
{
PRTFILEAIOREQINTERNAL pReqHead = (PRTFILEAIOREQINTERNAL)ASMAtomicXchgPtr((void* volatile*)&pCtxInt->apReqsNewHead[iSlot],
NULL);
while ( (pCtxInt->iFirstFree < pCtxInt->cReqsWaitMax)
&& pReqHead)
{
pCtxInt->apReqs[pCtxInt->iFirstFree] = pReqHead;
pReqHead->iWaitingList = pCtxInt->iFirstFree;
pReqHead = pReqHead->pNext;
/* Clear pointer to next and previous element just for safety. */
pCtxInt->apReqs[pCtxInt->iFirstFree]->pNext = NULL;
pCtxInt->apReqs[pCtxInt->iFirstFree]->pPrev = NULL;
pCtxInt->iFirstFree++;
Assert( (pCtxInt->iFirstFree <= pCtxInt->cMaxRequests)
&& (pCtxInt->iFirstFree <= pCtxInt->cReqsWaitMax));
}
/* Append the rest to the wait list. */
if (pReqHead)
{
if (!pCtxInt->pReqsWaitHead)
{
Assert(!pCtxInt->pReqsWaitTail);
pCtxInt->pReqsWaitHead = pReqHead;
pReqHead->pPrev = NULL;
}
else
{
AssertPtr(pCtxInt->pReqsWaitTail);
pCtxInt->pReqsWaitTail->pNext = pReqHead;
pReqHead->pPrev = pCtxInt->pReqsWaitTail;
}
/* Update tail. */
while (pReqHead->pNext)
pReqHead = pReqHead->pNext;
pCtxInt->pReqsWaitTail = pReqHead;
pCtxInt->pReqsWaitTail->pNext = NULL;
}
}
/* Check if a request needs to be canceled. */
PRTFILEAIOREQINTERNAL pReqToCancel = (PRTFILEAIOREQINTERNAL)ASMAtomicReadPtr((void* volatile*)&pCtxInt->pReqToCancel);
if (pReqToCancel)
{
/* The request can be in the array waiting for completion or still in the list because it is full. */
if (pReqToCancel->iWaitingList != RTFILEAIOCTX_WAIT_ENTRY_INVALID)
{
/* Put it out of the waiting list. */
pCtxInt->apReqs[pReqToCancel->iWaitingList] = pCtxInt->apReqs[--pCtxInt->iFirstFree];
pCtxInt->apReqs[pReqToCancel->iWaitingList]->iWaitingList = pReqToCancel->iWaitingList;
}
else
{
/* Unlink from the waiting list. */
PRTFILEAIOREQINTERNAL pPrev = pReqToCancel->pPrev;
PRTFILEAIOREQINTERNAL pNext = pReqToCancel->pNext;
if (pNext)
pNext->pPrev = pPrev;
else
{
/* We canceled the tail. */
pCtxInt->pReqsWaitTail = pPrev;
}
if (pPrev)
pPrev->pNext = pNext;
else
{
/* We canceled the head. */
pCtxInt->pReqsWaitHead = pNext;
}
}
ASMAtomicDecS32(&pCtxInt->cRequests);
AssertMsg(pCtxInt->cRequests >= 0, ("Canceled request not which is not in this context\n"));
RTSemEventSignal(pCtxInt->SemEventCancel);
}
}
else
{
if (ASMAtomicXchgBool(&pCtxInt->fWokenUp, false))
rc = VERR_INTERRUPTED;
}
return rc;
}
RTR3DECL(int) RTFileAioGetLimits(PRTFILEAIOLIMITS pAioLimits)
{
int rcBSD = 0;
AssertPtrReturn(pAioLimits, VERR_INVALID_POINTER);
#if defined(RT_OS_DARWIN)
int cReqsOutstandingMax = 0;
size_t cbParameter = sizeof(int);
rcBSD = sysctlbyname("kern.aioprocmax", /* name */
&cReqsOutstandingMax, /* Where to store the old value. */
&cbParameter, /* Size of the memory pointed to. */
NULL, /* Where the new value is located. */
NULL); /* Where the size of the new value is stored. */
if (rcBSD == -1)
return RTErrConvertFromErrno(errno);
pAioLimits->cReqsOutstandingMax = cReqsOutstandingMax;
pAioLimits->cbBufferAlignment = 0;
#elif defined(RT_OS_FREEBSD)
/*
* The AIO API is implemented in a kernel module which is not
* loaded by default.
* If it is loaded there are additional sysctl parameters.
*/
int cReqsOutstandingMax = 0;
size_t cbParameter = sizeof(int);
rcBSD = sysctlbyname("vfs.aio.max_aio_per_proc", /* name */
&cReqsOutstandingMax, /* Where to store the old value. */
&cbParameter, /* Size of the memory pointed to. */
NULL, /* Where the new value is located. */
NULL); /* Where the size of the new value is stored. */
if (rcBSD == -1)
{
/* ENOENT means the value is unknown thus the module is not loaded. */
if (errno == ENOENT)
return VERR_NOT_SUPPORTED;
else
return RTErrConvertFromErrno(errno);
}
pAioLimits->cReqsOutstandingMax = cReqsOutstandingMax;
pAioLimits->cbBufferAlignment = 0;
#else
pAioLimits->cReqsOutstandingMax = RTFILEAIO_UNLIMITED_REQS;
pAioLimits->cbBufferAlignment = 0;
#endif
return VINF_SUCCESS;
}
RTR3DECL(int) RTFileAioReqCreate(PRTFILEAIOREQ phReq)
{
AssertPtrReturn(phReq, VERR_INVALID_POINTER);
PRTFILEAIOREQINTERNAL pReqInt = (PRTFILEAIOREQINTERNAL)RTMemAllocZ(sizeof(RTFILEAIOREQINTERNAL));
if (RT_UNLIKELY(!pReqInt))
return VERR_NO_MEMORY;
pReqInt->pCtxInt = NULL;
pReqInt->u32Magic = RTFILEAIOREQ_MAGIC;
pReqInt->iWaitingList = RTFILEAIOCTX_WAIT_ENTRY_INVALID;
RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
*phReq = (RTFILEAIOREQ)pReqInt;
return VINF_SUCCESS;
}
RTDECL(int) RTFileAioReqDestroy(RTFILEAIOREQ hReq)
{
/*
* Validate the handle and ignore nil.
*/
if (hReq == NIL_RTFILEAIOREQ)
return VINF_SUCCESS;
PRTFILEAIOREQINTERNAL pReqInt = hReq;
RTFILEAIOREQ_VALID_RETURN(pReqInt);
RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
/*
* Trash the magic and free it.
*/
ASMAtomicUoWriteU32(&pReqInt->u32Magic, ~RTFILEAIOREQ_MAGIC);
RTMemFree(pReqInt);
return VINF_SUCCESS;
}
/**
* Worker setting up the request.
*/
DECLINLINE(int) rtFileAioReqPrepareTransfer(RTFILEAIOREQ hReq, RTFILE hFile,
unsigned uTransferDirection,
RTFOFF off, void *pvBuf, size_t cbTransfer,
void *pvUser)
{
/*
* Validate the input.
*/
PRTFILEAIOREQINTERNAL pReqInt = hReq;
RTFILEAIOREQ_VALID_RETURN(pReqInt);
RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
Assert(hFile != NIL_RTFILE);
AssertPtr(pvBuf);
Assert(off >= 0);
Assert(cbTransfer > 0);
memset(&pReqInt->AioCB, 0, sizeof(struct aiocb));
pReqInt->AioCB.aio_lio_opcode = uTransferDirection;
pReqInt->AioCB.aio_fildes = (int)hFile;
pReqInt->AioCB.aio_offset = off;
pReqInt->AioCB.aio_nbytes = cbTransfer;
pReqInt->AioCB.aio_buf = pvBuf;
pReqInt->pvUser = pvUser;
pReqInt->pCtxInt = NULL;
pReqInt->Rc = VERR_FILE_AIO_IN_PROGRESS;
RTFILEAIOREQ_SET_STATE(pReqInt, PREPARED);
return VINF_SUCCESS;
}
RTDECL(int) RTFileAioReqPrepareRead(RTFILEAIOREQ hReq, RTFILE hFile, RTFOFF off,
void *pvBuf, size_t cbRead, void *pvUser)
{
return rtFileAioReqPrepareTransfer(hReq, hFile, LIO_READ,
off, pvBuf, cbRead, pvUser);
}
RTDECL(int) RTFileAioReqPrepareWrite(RTFILEAIOREQ hReq, RTFILE hFile, RTFOFF off,
void const *pvBuf, size_t cbWrite, void *pvUser)
{
return rtFileAioReqPrepareTransfer(hReq, hFile, LIO_WRITE,
off, (void *)pvBuf, cbWrite, pvUser);
}
RTDECL(int) RTFileAioReqPrepareFlush(RTFILEAIOREQ hReq, RTFILE hFile, void *pvUser)
{
PRTFILEAIOREQINTERNAL pReqInt = (PRTFILEAIOREQINTERNAL)hReq;
RTFILEAIOREQ_VALID_RETURN(pReqInt);
RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
Assert(hFile != NIL_RTFILE);
pReqInt->fFlush = true;
pReqInt->AioCB.aio_fildes = (int)hFile;
pReqInt->pvUser = pvUser;
RTFILEAIOREQ_SET_STATE(pReqInt, PREPARED);
return VINF_SUCCESS;
}
RTDECL(void *) RTFileAioReqGetUser(RTFILEAIOREQ hReq)
{
PRTFILEAIOREQINTERNAL pReqInt = hReq;
RTFILEAIOREQ_VALID_RETURN_RC(pReqInt, NULL);
return pReqInt->pvUser;
}
RTDECL(int) RTFileAioReqCancel(RTFILEAIOREQ hReq)
{
PRTFILEAIOREQINTERNAL pReqInt = hReq;
RTFILEAIOREQ_VALID_RETURN(pReqInt);
RTFILEAIOREQ_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_NOT_SUBMITTED);
ASMAtomicXchgBool(&pReqInt->fCanceled, true);
int rcPosix = aio_cancel(pReqInt->AioCB.aio_fildes, &pReqInt->AioCB);
if (rcPosix == AIO_CANCELED)
{
PRTFILEAIOCTXINTERNAL pCtxInt = pReqInt->pCtxInt;
/*
* Notify the waiting thread that the request was canceled.
*/
AssertMsg(VALID_PTR(pCtxInt),
("Invalid state. Request was canceled but wasn't submitted\n"));
Assert(!pCtxInt->pReqToCancel);
ASMAtomicWritePtr((void* volatile*)&pCtxInt->pReqToCancel, pReqInt);
rtFileAioCtxWakeup(pCtxInt);
/* Wait for acknowledge. */
int rc = RTSemEventWait(pCtxInt->SemEventCancel, RT_INDEFINITE_WAIT);
AssertRC(rc);
ASMAtomicWritePtr((void* volatile*)&pCtxInt->pReqToCancel, NULL);
pReqInt->Rc = VERR_FILE_AIO_CANCELED;
RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
return VINF_SUCCESS;
}
else if (rcPosix == AIO_ALLDONE)
return VERR_FILE_AIO_COMPLETED;
else if (rcPosix == AIO_NOTCANCELED)
return VERR_FILE_AIO_IN_PROGRESS;
else
return RTErrConvertFromErrno(errno);
}
RTDECL(int) RTFileAioReqGetRC(RTFILEAIOREQ hReq, size_t *pcbTransfered)
{
PRTFILEAIOREQINTERNAL pReqInt = hReq;
RTFILEAIOREQ_VALID_RETURN(pReqInt);
RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, PREPARED, VERR_FILE_AIO_NOT_SUBMITTED);
AssertPtrNull(pcbTransfered);
if ( (RT_SUCCESS(pReqInt->Rc))
&& (pcbTransfered))
*pcbTransfered = pReqInt->cbTransfered;
return pReqInt->Rc;
}
RTDECL(int) RTFileAioCtxCreate(PRTFILEAIOCTX phAioCtx, uint32_t cAioReqsMax)
{
PRTFILEAIOCTXINTERNAL pCtxInt;
unsigned cReqsWaitMax;
AssertPtrReturn(phAioCtx, VERR_INVALID_POINTER);
if (cAioReqsMax == RTFILEAIO_UNLIMITED_REQS)
return VERR_OUT_OF_RANGE;
cReqsWaitMax = RT_MIN(cAioReqsMax, AIO_LISTIO_MAX);
pCtxInt = (PRTFILEAIOCTXINTERNAL)RTMemAllocZ( sizeof(RTFILEAIOCTXINTERNAL)
+ cReqsWaitMax * sizeof(PRTFILEAIOREQINTERNAL));
if (RT_UNLIKELY(!pCtxInt))
return VERR_NO_MEMORY;
/* Create event semaphore. */
int rc = RTSemEventCreate(&pCtxInt->SemEventCancel);
if (RT_FAILURE(rc))
{
RTMemFree(pCtxInt);
return rc;
}
pCtxInt->u32Magic = RTFILEAIOCTX_MAGIC;
pCtxInt->cMaxRequests = cAioReqsMax;
pCtxInt->cReqsWaitMax = cReqsWaitMax;
*phAioCtx = (RTFILEAIOCTX)pCtxInt;
return VINF_SUCCESS;
}
RTDECL(int) RTFileAioCtxDestroy(RTFILEAIOCTX hAioCtx)
{
PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
AssertPtrReturn(pCtxInt, VERR_INVALID_HANDLE);
if (RT_UNLIKELY(pCtxInt->cRequests))
return VERR_FILE_AIO_BUSY;
RTSemEventDestroy(pCtxInt->SemEventCancel);
RTMemFree(pCtxInt);
return VINF_SUCCESS;
}
RTDECL(uint32_t) RTFileAioCtxGetMaxReqCount(RTFILEAIOCTX hAioCtx)
{
PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
if (hAioCtx == NIL_RTFILEAIOCTX)
return RTFILEAIO_UNLIMITED_REQS;
else
return pCtxInt->cMaxRequests;
}
RTDECL(int) RTFileAioCtxAssociateWithFile(RTFILEAIOCTX hAioCtx, RTFILE hFile)
{
return VINF_SUCCESS;
}
RTDECL(int) RTFileAioCtxSubmit(RTFILEAIOCTX hAioCtx, PRTFILEAIOREQ pahReqs, size_t cReqs)
{
int rc = VINF_SUCCESS;
PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
/* Parameter checks */
AssertPtrReturn(pCtxInt, VERR_INVALID_HANDLE);
AssertReturn(cReqs != 0, VERR_INVALID_POINTER);
AssertPtrReturn(pahReqs, VERR_INVALID_PARAMETER);
/* Check that we don't exceed the limit */
if (ASMAtomicUoReadS32(&pCtxInt->cRequests) + cReqs > pCtxInt->cMaxRequests)
return VERR_FILE_AIO_LIMIT_EXCEEDED;
PRTFILEAIOREQINTERNAL pHead = NULL;
do
{
int rcPosix = 0;
size_t cReqsSubmit = 0;
size_t i = 0;
PRTFILEAIOREQINTERNAL pReqInt;
while ( (i < cReqs)
&& (i < AIO_LISTIO_MAX))
{
pReqInt = pahReqs[i];
if (RTFILEAIOREQ_IS_NOT_VALID(pReqInt))
{
/* Undo everything and stop submitting. */
for (size_t iUndo = 0; iUndo < i; iUndo++)
{
pReqInt = pahReqs[iUndo];
RTFILEAIOREQ_SET_STATE(pReqInt, PREPARED);
pReqInt->pCtxInt = NULL;
/* Unlink from the list again. */
PRTFILEAIOREQINTERNAL pNext, pPrev;
pNext = pReqInt->pNext;
pPrev = pReqInt->pPrev;
if (pNext)
pNext->pPrev = pPrev;
if (pPrev)
pPrev->pNext = pNext;
else
pHead = pNext;
}
rc = VERR_INVALID_HANDLE;
break;
}
pReqInt->pCtxInt = pCtxInt;
/* Link them together. */
pReqInt->pNext = pHead;
if (pHead)
pHead->pPrev = pReqInt;
pReqInt->pPrev = NULL;
pHead = pReqInt;
RTFILEAIOREQ_SET_STATE(pReqInt, SUBMITTED);
if (pReqInt->fFlush)
break;
cReqsSubmit++;
i++;
}
if (cReqsSubmit)
{
rcPosix = lio_listio(LIO_NOWAIT, (struct aiocb **)pahReqs, cReqsSubmit, NULL);
if (RT_UNLIKELY(rcPosix < 0))
{
size_t cReqsSubmitted = cReqsSubmit;
if (errno == EAGAIN)
rc = VERR_FILE_AIO_INSUFFICIENT_RESSOURCES;
else
rc = RTErrConvertFromErrno(errno);
/* Check which ones were not submitted. */
for (i = 0; i < cReqsSubmit; i++)
{
pReqInt = pahReqs[i];
rcPosix = aio_error(&pReqInt->AioCB);
if ((rcPosix != EINPROGRESS) && (rcPosix != 0))
{
cReqsSubmitted--;
#if defined(RT_OS_DARWIN) || defined(RT_OS_FREEBSD)
if (errno == EINVAL)
#else
if (rcPosix == EINVAL)
#endif
{
/* Was not submitted. */
RTFILEAIOREQ_SET_STATE(pReqInt, PREPARED);
}
else
{
/* An error occurred. */
RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
/*
* Looks like Apple and glibc interpret the standard in different ways.
* glibc returns the error code which would be in errno but Apple returns
* -1 and sets errno to the appropriate value
*/
#if defined(RT_OS_DARWIN) || defined(RT_OS_FREEBSD)
Assert(rcPosix == -1);
pReqInt->Rc = RTErrConvertFromErrno(errno);
#elif defined(RT_OS_LINUX)
pReqInt->Rc = RTErrConvertFromErrno(rcPosix);
#endif
pReqInt->cbTransfered = 0;
}
/* Unlink from the list. */
PRTFILEAIOREQINTERNAL pNext, pPrev;
pNext = pReqInt->pNext;
pPrev = pReqInt->pPrev;
if (pNext)
pNext->pPrev = pPrev;
if (pPrev)
pPrev->pNext = pNext;
else
pHead = pNext;
pReqInt->pNext = NULL;
pReqInt->pPrev = NULL;
}
}
ASMAtomicAddS32(&pCtxInt->cRequests, cReqsSubmitted);
AssertMsg(pCtxInt->cRequests > 0, ("Adding requests resulted in overflow\n"));
break;
}
ASMAtomicAddS32(&pCtxInt->cRequests, cReqsSubmit);
AssertMsg(pCtxInt->cRequests > 0, ("Adding requests resulted in overflow\n"));
cReqs -= cReqsSubmit;
pahReqs += cReqsSubmit;
}
/*
* Check if we have a flush request now.
* If not we hit the AIO_LISTIO_MAX limit
* and will continue submitting requests
* above.
*/
if (cReqs && RT_SUCCESS_NP(rc))
{
pReqInt = pahReqs[0];
RTFILEAIOREQ_VALID_RETURN(pReqInt);
if (pReqInt->fFlush)
{
/*
* lio_listio does not work with flush requests so
* we have to use aio_fsync directly.
*/
rcPosix = aio_fsync(O_SYNC, &pReqInt->AioCB);
if (RT_UNLIKELY(rcPosix < 0))
{
rc = RTErrConvertFromErrno(errno);
RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
pReqInt->Rc = rc;
pReqInt->cbTransfered = 0;
/* Unlink from the list. */
PRTFILEAIOREQINTERNAL pNext, pPrev;
pNext = pReqInt->pNext;
pPrev = pReqInt->pPrev;
if (pNext)
pNext->pPrev = pPrev;
if (pPrev)
pPrev->pNext = pNext;
else
pHead = pNext;
break;
}
ASMAtomicIncS32(&pCtxInt->cRequests);
AssertMsg(pCtxInt->cRequests > 0, ("Adding requests resulted in overflow\n"));
cReqs--;
pahReqs++;
}
}
} while ( cReqs
&& RT_SUCCESS_NP(rc));
if (pHead)
{
/*
* Forward successfully submitted requests to the thread waiting for requests.
* We search for a free slot first and if we don't find one
* we will grab the first one and append our list to the existing entries.
*/
unsigned iSlot = 0;
while ( (iSlot < RT_ELEMENTS(pCtxInt->apReqsNewHead))
&& !ASMAtomicCmpXchgPtr((void * volatile *)&pCtxInt->apReqsNewHead[iSlot], pHead, NULL))
iSlot++;
if (iSlot == RT_ELEMENTS(pCtxInt->apReqsNewHead))
{
/* Nothing found. */
PRTFILEAIOREQINTERNAL pOldHead = (PRTFILEAIOREQINTERNAL)ASMAtomicXchgPtr((void * volatile *)&pCtxInt->apReqsNewHead[0],
NULL);
/* Find the end of the current head and link the old list to the current. */
PRTFILEAIOREQINTERNAL pTail = pHead;
while (pTail->pNext)
pTail = pTail->pNext;
pTail->pNext = pOldHead;
ASMAtomicXchgPtr((void * volatile *)&pCtxInt->apReqsNewHead[0], pHead);
}
/* Set the internal wakeup flag and wakeup the thread if possible. */
bool fWokenUp = ASMAtomicXchgBool(&pCtxInt->fWokenUpInternal, true);
if (!fWokenUp)
rtFileAioCtxWakeup(pCtxInt);
}
return rc;
}
RTDECL(int) RTFileAioCtxWait(RTFILEAIOCTX hAioCtx, size_t cMinReqs, RTMSINTERVAL cMillies,
PRTFILEAIOREQ pahReqs, size_t cReqs, uint32_t *pcReqs)
{
int rc = VINF_SUCCESS;
int cRequestsCompleted = 0;
PRTFILEAIOCTXINTERNAL pCtxInt = (PRTFILEAIOCTXINTERNAL)hAioCtx;
struct timespec Timeout;
struct timespec *pTimeout = NULL;
uint64_t StartNanoTS = 0;
/* Check parameters. */
AssertPtrReturn(pCtxInt, VERR_INVALID_HANDLE);
AssertPtrReturn(pcReqs, VERR_INVALID_POINTER);
AssertPtrReturn(pahReqs, VERR_INVALID_POINTER);
AssertReturn(cReqs != 0, VERR_INVALID_PARAMETER);
AssertReturn(cReqs >= cMinReqs, VERR_OUT_OF_RANGE);
int32_t cRequestsWaiting = ASMAtomicReadS32(&pCtxInt->cRequests);
if (RT_UNLIKELY(cRequestsWaiting <= 0))
return VERR_FILE_AIO_NO_REQUEST;
if (RT_UNLIKELY(cMinReqs > (uint32_t)cRequestsWaiting))
return VERR_INVALID_PARAMETER;
if (cMillies != RT_INDEFINITE_WAIT)
{
Timeout.tv_sec = cMillies / 1000;
Timeout.tv_nsec = (cMillies % 1000) * 1000000;
pTimeout = &Timeout;
StartNanoTS = RTTimeNanoTS();
}
/* Wait for at least one. */
if (!cMinReqs)
cMinReqs = 1;
/* For the wakeup call. */
Assert(pCtxInt->hThreadWait == NIL_RTTHREAD);
ASMAtomicWriteHandle(&pCtxInt->hThreadWait, RTThreadSelf());
/* Update the waiting list once before we enter the loop. */
rc = rtFileAioCtxProcessEvents(pCtxInt);
while ( cMinReqs
&& RT_SUCCESS_NP(rc))
{
#ifdef RT_STRICT
if (RT_UNLIKELY(!pCtxInt->iFirstFree))
{
for (unsigned i = 0; i < pCtxInt->cReqsWaitMax; i++)
RTAssertMsg2Weak("wait[%d] = %#p\n", i, pCtxInt->apReqs[i]);
AssertMsgFailed(("No request to wait for. pReqsWaitHead=%#p pReqsWaitTail=%#p\n",
pCtxInt->pReqsWaitHead, pCtxInt->pReqsWaitTail));
}
#endif
ASMAtomicXchgBool(&pCtxInt->fWaiting, true);
int rcPosix = aio_suspend((const struct aiocb * const *)pCtxInt->apReqs,
pCtxInt->iFirstFree, pTimeout);
ASMAtomicXchgBool(&pCtxInt->fWaiting, false);
if (rcPosix < 0)
{
/* Check that this is an external wakeup event. */
if (errno == EINTR)
rc = rtFileAioCtxProcessEvents(pCtxInt);
else
rc = RTErrConvertFromErrno(errno);
}
else
{
/* Requests finished. */
unsigned iReqCurr = 0;
unsigned cDone = 0;
/* Remove completed requests from the waiting list. */
while ( (iReqCurr < pCtxInt->iFirstFree)
&& (cDone < cReqs))
{
PRTFILEAIOREQINTERNAL pReq = pCtxInt->apReqs[iReqCurr];
int rcReq = aio_error(&pReq->AioCB);
if (rcReq != EINPROGRESS)
{
/* Completed store the return code. */
if (rcReq == 0)
{
pReq->Rc = VINF_SUCCESS;
/* Call aio_return() to free ressources. */
pReq->cbTransfered = aio_return(&pReq->AioCB);
}
else
{
#if defined(RT_OS_DARWIN) || defined(RT_OS_FREEBSD)
pReq->Rc = RTErrConvertFromErrno(errno);
#else
pReq->Rc = RTErrConvertFromErrno(rcReq);
#endif
}
/* Mark the request as finished. */
RTFILEAIOREQ_SET_STATE(pReq, COMPLETED);
cDone++;
/* If there are other entries waiting put the head into the now free entry. */
if (pCtxInt->pReqsWaitHead)
{
PRTFILEAIOREQINTERNAL pReqInsert = pCtxInt->pReqsWaitHead;
pCtxInt->pReqsWaitHead = pReqInsert->pNext;
if (!pCtxInt->pReqsWaitHead)
{
/* List is empty now. Clear tail too. */
pCtxInt->pReqsWaitTail = NULL;
}
pReqInsert->iWaitingList = pReq->iWaitingList;
pCtxInt->apReqs[pReqInsert->iWaitingList] = pReqInsert;
iReqCurr++;
}
else
{
/*
* Move the last entry into the current position to avoid holes
* but only if it is not the last element already.
*/
if (pReq->iWaitingList < pCtxInt->iFirstFree - 1)
{
pCtxInt->apReqs[pReq->iWaitingList] = pCtxInt->apReqs[--pCtxInt->iFirstFree];
pCtxInt->apReqs[pReq->iWaitingList]->iWaitingList = pReq->iWaitingList;
}
else
pCtxInt->iFirstFree--;
pCtxInt->apReqs[pCtxInt->iFirstFree] = NULL;
}
/* Put the request into the completed list. */
pahReqs[cRequestsCompleted++] = pReq;
pReq->iWaitingList = RTFILEAIOCTX_WAIT_ENTRY_INVALID;
}
else
iReqCurr++;
}
AssertMsg((cDone <= cReqs), ("Overflow cReqs=%u cMinReqs=%u cDone=%u\n",
cReqs, cDone));
cReqs -= cDone;
cMinReqs = RT_MAX(cMinReqs, cDone) - cDone;
ASMAtomicSubS32(&pCtxInt->cRequests, cDone);
AssertMsg(pCtxInt->cRequests >= 0, ("Finished more requests than currently active\n"));
if (!cMinReqs)
break;
if (cMillies != RT_INDEFINITE_WAIT)
{
uint64_t TimeDiff;
/* Recalculate the timeout. */
TimeDiff = RTTimeSystemNanoTS() - StartNanoTS;
Timeout.tv_sec = Timeout.tv_sec - (TimeDiff / 1000000);
Timeout.tv_nsec = Timeout.tv_nsec - (TimeDiff % 1000000);
}
/* Check for new elements. */
rc = rtFileAioCtxProcessEvents(pCtxInt);
}
}
*pcReqs = cRequestsCompleted;
Assert(pCtxInt->hThreadWait == RTThreadSelf());
ASMAtomicWriteHandle(&pCtxInt->hThreadWait, NIL_RTTHREAD);
return rc;
}
RTDECL(int) RTFileAioCtxWakeup(RTFILEAIOCTX hAioCtx)
{
PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
RTFILEAIOCTX_VALID_RETURN(pCtxInt);
/** @todo r=bird: Define the protocol for how to resume work after calling
* this function. */
bool fWokenUp = ASMAtomicXchgBool(&pCtxInt->fWokenUp, true);
if (!fWokenUp)
rtFileAioCtxWakeup(pCtxInt);
return VINF_SUCCESS;
}