timer-r0drv-solaris.c revision 8750aef1556280f62aac28c3d97598db154b1ba6
/* $Id$ */
/** @file
* IPRT - Timer, Ring-0 Driver, Solaris.
*/
/*
* Copyright (C) 2006-2007 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "../the-solaris-kernel.h"
#include "internal/iprt.h"
#include <iprt/timer.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/spinlock.h>
#include <iprt/time.h>
#include <iprt/thread.h>
#include "internal/magics.h"
#define SOL_TIMER_ANY_CPU (-1)
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Single-CPU timer handle.
*/
typedef struct RTR0SINGLETIMERSOL
{
/** Cyclic handler. */
cyc_handler_t hHandler;
/** Cyclic time and interval representation. */
cyc_time_t hFireTime;
/** Timer ticks. */
uint64_t u64Tick;
} RTR0SINGLETIMERSOL;
typedef RTR0SINGLETIMERSOL *PRTR0SINGLETIMERSOL;
/**
* Omni-CPU timer handle.
*/
typedef struct RTR0OMNITIMERSOL
{
/** Absolute timestamp of when the timer should fire next. */
uint64_t u64When;
/** Array of timer ticks per CPU. Reinitialized when a CPU is online'd. */
uint64_t *au64Ticks;
} RTR0OMNITIMERSOL;
typedef RTR0OMNITIMERSOL *PRTR0OMNITIMERSOL;
/**
* The internal representation of a Solaris timer handle.
*/
typedef struct RTTIMER
{
/** Magic.
* This is RTTIMER_MAGIC, but changes to something else before the timer
* is destroyed to indicate clearly that thread should exit. */
uint32_t volatile u32Magic;
/** Flag indicating that the timer is suspended. */
uint8_t volatile fSuspended;
/** Whether the timer must run on all CPUs or not. */
uint8_t fAllCpu;
/** Whether the timer must run on a specific CPU or not. */
uint8_t fSpecificCpu;
/** The CPU it must run on if fSpecificCpu is set. */
uint8_t iCpu;
/** The nano second interval for repeating timers. */
uint64_t interval;
/** Cyclic timer Id. */
cyclic_id_t hCyclicId;
/** @todo Make this a union unless we intend to support omni<=>single timers
* conversions. */
/** Single-CPU timer handle. */
PRTR0SINGLETIMERSOL pSingleTimer;
/** Omni-CPU timer handle. */
PRTR0OMNITIMERSOL pOmniTimer;
/** The user callback. */
PFNRTTIMER pfnTimer;
/** The argument for the user callback. */
void *pvUser;
} RTTIMER;
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** Validates that the timer is valid. */
#define RTTIMER_ASSERT_VALID_RET(pTimer) \
do \
{ \
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE); \
AssertMsgReturn((pTimer)->u32Magic == RTTIMER_MAGIC, ("pTimer=%p u32Magic=%x expected %x\n", (pTimer), (pTimer)->u32Magic, RTTIMER_MAGIC), \
VERR_INVALID_HANDLE); \
} while (0)
/**
* Callback wrapper for Omni-CPU and single-CPU timers.
*
* @param pvArg Opaque pointer to the timer.
*
* @remarks This will be executed in interrupt context but only at the specified
* level i.e. CY_LOCK_LEVEL in our case. We -CANNOT- call into the
* cyclic subsystem here, neither should pfnTimer().
*/
static void rtTimerSolCallbackWrapper(void *pvArg)
{
PRTTIMER pTimer = (PRTTIMER)pvArg;
AssertPtrReturnVoid(pTimer);
if (pTimer->pSingleTimer)
{
uint64_t u64Tick = ++pTimer->pSingleTimer->u64Tick;
pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
}
else if (pTimer->pOmniTimer)
{
uint64_t u64Tick = ++pTimer->pOmniTimer->au64Ticks[CPU->cpu_id];
pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
}
}
/**
* Omni-CPU cyclic online event. This is called before the omni cycle begins to
* fire on the specified CPU.
*
* @param pvArg Opaque pointer to the timer.
* @param pCpu Pointer to the CPU on which it will fire.
* @param pCyclicHandler Pointer to a cyclic handler to add to the CPU
* specified in @a pCpu.
* @param pCyclicTime Pointer to the cyclic time and interval object.
*
* @remarks We -CANNOT- call back into the cyclic subsystem here, we can however
* block (sleep).
*/
static void rtTimerSolOmniCpuOnline(void *pvArg, cpu_t *pCpu, cyc_handler_t *pCyclicHandler, cyc_time_t *pCyclicTime)
{
PRTTIMER pTimer = (PRTTIMER)pvArg;
AssertPtrReturnVoid(pTimer);
AssertPtrReturnVoid(pCpu);
AssertPtrReturnVoid(pCyclicHandler);
AssertPtrReturnVoid(pCyclicTime);
pTimer->pOmniTimer->au64Ticks[pCpu->cpu_id] = 0;
pCyclicHandler->cyh_func = rtTimerSolCallbackWrapper;
pCyclicHandler->cyh_arg = pTimer;
pCyclicHandler->cyh_level = CY_LOCK_LEVEL;
uint64_t u64Now = RTTimeNanoTS();
if (pTimer->pOmniTimer->u64When < u64Now)
pCyclicTime->cyt_when = u64Now + pTimer->interval / 2;
else
pCyclicTime->cyt_when = pTimer->pOmniTimer->u64When;
pCyclicTime->cyt_interval = pTimer->interval;
}
RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
RT_ASSERT_PREEMPTIBLE();
*ppTimer = NULL;
/*
* Validate flags.
*/
if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
return VERR_INVALID_PARAMETER;
if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
&& (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
&& !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
return VERR_CPU_NOT_FOUND;
if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL && u64NanoInterval == 0)
return VERR_NOT_SUPPORTED;
/*
* Allocate and initialize the timer handle.
*/
PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer));
if (!pTimer)
return VERR_NO_MEMORY;
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->fSuspended = true;
if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
{
pTimer->fAllCpu = true;
pTimer->fSpecificCpu = false;
pTimer->iCpu = 255;
}
else if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
{
pTimer->fAllCpu = false;
pTimer->fSpecificCpu = true;
pTimer->iCpu = fFlags & RTTIMER_FLAGS_CPU_MASK; /* ASSUMES: index == cpuid */
}
else
{
pTimer->fAllCpu = false;
pTimer->fSpecificCpu = false;
pTimer->iCpu = 255;
}
pTimer->interval = u64NanoInterval;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->pSingleTimer = NULL;
pTimer->pOmniTimer = NULL;
pTimer->hCyclicId = CYCLIC_NONE;
cmn_err(CE_NOTE, "Create pTimer->u32Magic=%x RTTIMER_MAGIC=%x\n", pTimer->u32Magic, RTTIMER_MAGIC);
*ppTimer = pTimer;
return VINF_SUCCESS;
}
RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
if (pTimer == NULL)
return VINF_SUCCESS;
RTTIMER_ASSERT_VALID_RET(pTimer);
RT_ASSERT_INTS_ON();
/*
* Free the associated resources.
*/
RTTimerStop(pTimer);
ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
RTMemFree(pTimer);
return VINF_SUCCESS;
}
RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
cmn_err(CE_NOTE, "Start pTimer->u32Magic=%x RTTIMER_MAGIC=%x\n", pTimer->u32Magic, RTTIMER_MAGIC);
RTTIMER_ASSERT_VALID_RET(pTimer);
RT_ASSERT_INTS_ON();
if (!pTimer->fSuspended)
return VERR_TIMER_ACTIVE;
/* One-shot timers are not supported by the cyclic system. */
if (pTimer->interval == 0)
return VERR_NOT_SUPPORTED;
pTimer->fSuspended = false;
if (pTimer->fAllCpu)
{
PRTR0OMNITIMERSOL pOmniTimer = RTMemAllocZ(sizeof(RTR0OMNITIMERSOL));
if (RT_UNLIKELY(!pOmniTimer))
return VERR_NO_MEMORY;
pOmniTimer->au64Ticks = RTMemAllocZ(RTMpGetCount() * sizeof(uint64_t));
if (RT_UNLIKELY(!pOmniTimer->au64Ticks))
{
RTMemFree(pOmniTimer);
return VERR_NO_MEMORY;
}
/*
* Setup omni (all CPU) timer. The Omni-CPU online event will fire
* and from there we setup periodic timers per CPU.
*/
pTimer->pOmniTimer = pOmniTimer;
pOmniTimer->u64When = pTimer->interval + RTTimeNanoTS();
cyc_omni_handler_t hOmni;
hOmni.cyo_online = rtTimerSolOmniCpuOnline;
hOmni.cyo_offline = NULL;
hOmni.cyo_arg = pTimer;
mutex_enter(&cpu_lock);
pTimer->hCyclicId = cyclic_add_omni(&hOmni);
mutex_exit(&cpu_lock);
}
else
{
int iCpu = SOL_TIMER_ANY_CPU;
if (pTimer->fSpecificCpu)
{
iCpu = pTimer->iCpu;
if (!RTMpIsCpuOnline(iCpu)) /* ASSUMES: index == cpuid */
return VERR_CPU_OFFLINE;
}
PRTR0SINGLETIMERSOL pSingleTimer = RTMemAllocZ(sizeof(RTR0SINGLETIMERSOL));
if (RT_UNLIKELY(!pSingleTimer))
return VERR_NO_MEMORY;
pTimer->pSingleTimer = pSingleTimer;
pSingleTimer->hHandler.cyh_func = rtTimerSolCallbackWrapper;
pSingleTimer->hHandler.cyh_arg = pTimer;
pSingleTimer->hHandler.cyh_level = CY_LOCK_LEVEL;
mutex_enter(&cpu_lock);
if (iCpu != SOL_TIMER_ANY_CPU && !cpu_is_online(cpu[iCpu]))
{
mutex_exit(&cpu_lock);
RTMemFree(pSingleTimer);
pTimer->pSingleTimer = NULL;
return VERR_CPU_OFFLINE;
}
pSingleTimer->hFireTime.cyt_when = u64First + RTTimeNanoTS();
if (pTimer->interval == 0)
{
/* @todo use gethrtime_max instead of LLONG_MAX? */
AssertCompileSize(pSingleTimer->hFireTime.cyt_interval, sizeof(long long));
pSingleTimer->hFireTime.cyt_interval = LLONG_MAX - pSingleTimer->hFireTime.cyt_when;
}
else
pSingleTimer->hFireTime.cyt_interval = pTimer->interval;
pTimer->hCyclicId = cyclic_add(&pSingleTimer->hHandler, &pSingleTimer->hFireTime);
if (iCpu != SOL_TIMER_ANY_CPU)
cyclic_bind(pTimer->hCyclicId, cpu[iCpu], NULL /* cpupart */);
mutex_exit(&cpu_lock);
}
return VINF_SUCCESS;
}
RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
RTTIMER_ASSERT_VALID_RET(pTimer);
RT_ASSERT_INTS_ON();
if (pTimer->fSuspended)
return VERR_TIMER_SUSPENDED;
pTimer->fSuspended = true;
if (pTimer->pSingleTimer)
{
mutex_enter(&cpu_lock);
cyclic_remove(pTimer->hCyclicId);
mutex_exit(&cpu_lock);
RTMemFree(pTimer->pSingleTimer);
}
else if (pTimer->pOmniTimer)
{
mutex_enter(&cpu_lock);
cyclic_remove(pTimer->hCyclicId);
mutex_exit(&cpu_lock);
RTMemFree(pTimer->pOmniTimer->au64Ticks);
RTMemFree(pTimer->pOmniTimer);
}
return VINF_SUCCESS;
}
RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
{
RTTIMER_ASSERT_VALID_RET(pTimer);
/** @todo implement me! */
return VERR_NOT_SUPPORTED;
}
RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
{
return nsec_per_tick;
}
RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
{
return VERR_NOT_SUPPORTED;
}
RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
{
return VERR_NOT_SUPPORTED;
}
RTDECL(bool) RTTimerCanDoHighResolution(void)
{
/** @todo return true; - when missing bits have been implemented and tested*/
return false;
}