memobj-r0drv-solaris.c revision e64031e20c39650a7bc902a3e1aba613b9415dee
/* $Id$ */
/** @file
* IPRT - Ring-0 Memory Objects, Solaris.
*/
/*
* Copyright (C) 2006-2007 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "../the-solaris-kernel.h"
#include "internal/iprt.h"
#include <iprt/memobj.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/mem.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include "internal/memobj.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The Solaris version of the memory object structure.
*/
typedef struct RTR0MEMOBJSOLARIS
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Pointer to kernel memory cookie. */
ddi_umem_cookie_t Cookie;
/** Shadow locked pages. */
void *pvHandle;
/** Access during locking. */
int fAccess;
} RTR0MEMOBJSOLARIS, *PRTR0MEMOBJSOLARIS;
int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)pMem;
switch (pMemSolaris->Core.enmType)
{
case RTR0MEMOBJTYPE_LOW:
vbi_lowmem_free(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
break;
case RTR0MEMOBJTYPE_CONT:
case RTR0MEMOBJTYPE_PHYS:
vbi_phys_free(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
break;
case RTR0MEMOBJTYPE_PHYS_NC:
#if 0
vbi_phys_free(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
#else
if (pMemSolaris->Core.u.Phys.fAllocated == true)
ddi_umem_free(pMemSolaris->Cookie);
else
vbi_pages_free(pMemSolaris->pvHandle, pMemSolaris->Core.cb);
#endif
break;
case RTR0MEMOBJTYPE_PAGE:
ddi_umem_free(pMemSolaris->Cookie);
break;
case RTR0MEMOBJTYPE_LOCK:
vbi_unlock_va(pMemSolaris->Core.pv, pMemSolaris->Core.cb, pMemSolaris->fAccess, pMemSolaris->pvHandle);
break;
case RTR0MEMOBJTYPE_MAPPING:
vbi_unmap(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
break;
case RTR0MEMOBJTYPE_RES_VIRT:
{
if (pMemSolaris->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
vmem_xfree(heap_arena, pMemSolaris->Core.pv, pMemSolaris->Core.cb);
else
AssertFailed();
break;
}
default:
AssertMsgFailed(("enmType=%d\n", pMemSolaris->Core.enmType));
return VERR_INTERNAL_ERROR;
}
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
/* Create the object. */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PAGE, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
void *virtAddr = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie);
if (!virtAddr)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_PAGE_MEMORY;
}
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->pvHandle = NULL;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
NOREF(fExecutable);
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOW, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
/* Allocate physically low page-aligned memory. */
uint64_t physAddr = _4G - 1;
caddr_t virtAddr = vbi_lowmem_alloc(physAddr, cb);
if (virtAddr == NULL)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_LOW_MEMORY;
}
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->pvHandle = NULL;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
NOREF(fExecutable);
return rtR0MemObjNativeAllocPhys(ppMem, cb, _4G - 1, PAGE_SIZE /* alignment */);
}
int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
#if HC_ARCH_BITS == 64
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
/* Allocate physically non-contiguous page-aligned memory. */
uint64_t physAddr = PhysHighest;
#if 0
/*
* The contig_alloc() way of allocating NC pages is broken or does not match our semantics. Refer #4716 for details.
*/
/* caddr_t virtAddr = vbi_phys_alloc(&physAddr, cb, PAGE_SIZE, 0 /* non-contiguous */); */
caddr_t virtAddr = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie);
if (RT_UNLIKELY(virtAddr == NULL))
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_MEMORY;
}
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->Core.u.Phys.PhysBase = physAddr;
pMemSolaris->Core.u.Phys.fAllocated = true;
pMemSolaris->pvHandle = NULL;
#else
void *pvPages = vbi_pages_alloc(&physAddr, cb);
if (!pvPages)
{
LogRel(("rtR0MemObjNativeAllocPhysNC: vbi_pages_alloc failed.\n"));
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_MEMORY;
}
pMemSolaris->Core.pv = NULL;
pMemSolaris->Core.u.Phys.PhysBase = physAddr;
pMemSolaris->Core.u.Phys.fAllocated = false;
pMemSolaris->pvHandle = pvPages;
#endif
Assert(!(physAddr & PAGE_OFFSET_MASK));
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
#else
/** @todo rtR0MemObjNativeAllocPhysNC / solaris */
return VERR_NOT_SUPPORTED; /* see the RTR0MemObjAllocPhysNC specs */
#endif
}
int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_IMPLEMENTED);
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
AssertCompile(NIL_RTHCPHYS == UINT64_MAX);
/* Allocate physically contiguous memory aligned as specified. */
uint64_t physAddr = PhysHighest;
caddr_t virtAddr = vbi_phys_alloc(&physAddr, cb, uAlignment, 1 /* contiguous */);
if (RT_UNLIKELY(virtAddr == NULL))
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_CONT_MEMORY;
}
Assert(!(physAddr & PAGE_OFFSET_MASK));
Assert(physAddr < PhysHighest);
Assert(physAddr + cb <= PhysHighest);
#if 0
if (uAlignment != PAGE_SIZE)
{
/* uAlignment is always a multiple of PAGE_SIZE */
pgcnt_t cPages = (cb + uAlignment - 1) >> PAGE_SHIFT;
void *pvPage = virtAddr;
while (cPages-- > 0)
{
uint64_t u64Page = vbi_va_to_pa(pvPage);
if (u64Page & (uAlignment - 1))
{
LogRel(("rtR0MemObjNativeAllocPhys: alignment mismatch! cb=%u uAlignment=%u physAddr=%#x\n", cb, uAlignment, u64Page));
vbi_phys_free(virtAddr, cb);
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_MEMORY;
}
pvPage = (void *)((uintptr_t)pvPage + PAGE_SIZE);
}
}
#endif
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->Core.u.Cont.Phys = physAddr;
pMemSolaris->pvHandle = NULL;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, unsigned CachePolicy)
{
AssertReturn(CachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_IMPLEMENTED);
/* Create the object. */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
/* There is no allocation here, it needs to be mapped somewhere first. */
pMemSolaris->Core.u.Phys.fAllocated = false;
pMemSolaris->Core.u.Phys.PhysBase = Phys;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
{
AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_INVALID_PARAMETER);
NOREF(fAccess);
/* Create the locking object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
int fPageAccess = S_READ;
if (fAccess & RTMEM_PROT_WRITE)
fPageAccess = S_WRITE;
if (fAccess & RTMEM_PROT_EXEC)
fPageAccess = S_EXEC;
void *pvPageList = NULL;
/* Lock down user pages */
int rc = vbi_lock_va((caddr_t)R3Ptr, cb, fPageAccess, &pvPageList);
if (rc != 0)
{
LogRel(("rtR0MemObjNativeLockUser: vbi_lock_va failed rc=%d\n", rc));
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_LOCK_FAILED;
}
pMemSolaris->Core.u.Lock.R0Process = (RTR0PROCESS)vbi_proc();
pMemSolaris->pvHandle = pvPageList;
pMemSolaris->fAccess = fPageAccess;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
NOREF(fAccess);
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
int fPageAccess = S_READ;
if (fAccess & RTMEM_PROT_WRITE)
fPageAccess = S_WRITE;
if (fAccess & RTMEM_PROT_EXEC)
fPageAccess = S_EXEC;
void *pvPageList = NULL;
int rc = vbi_lock_va((caddr_t)pv, cb, fPageAccess, &pvPageList);
if (rc != 0)
{
LogRel(("rtR0MemObjNativeLockKernel: vbi_lock_va failed rc=%d\n", rc));
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_LOCK_FAILED;
}
pMemSolaris->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
pMemSolaris->pvHandle = pvPageList;
pMemSolaris->fAccess = fPageAccess;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
PRTR0MEMOBJSOLARIS pMemSolaris;
/*
* Use xalloc.
*/
void *pv = vmem_xalloc(heap_arena, cb, uAlignment, 0 /*phase*/, 0 /*nocross*/,
NULL /*minaddr*/, NULL /*maxaddr*/, VM_SLEEP);
if (RT_UNLIKELY(!pv))
return VERR_NO_MEMORY;
/* Create the object. */
pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
if (!pMemSolaris)
{
LogRel(("rtR0MemObjNativeReserveKernel failed to alloc memory object.\n"));
vmem_xfree(heap_arena, pv, cb);
return VERR_NO_MEMORY;
}
pMemSolaris->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
return VERR_NOT_IMPLEMENTED;
}
int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub)
{
/** @todo rtR0MemObjNativeMapKernel / Solaris - Should be fairly simple alloc kernel memory and memload it. */
return VERR_NOT_IMPLEMENTED;
}
int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, PRTR0MEMOBJINTERNAL pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
if (uAlignment != PAGE_SIZE)
return VERR_NOT_SUPPORTED;
PRTR0MEMOBJSOLARIS pMemToMapSolaris = (PRTR0MEMOBJSOLARIS)pMemToMap;
size_t cb = pMemToMapSolaris->Core.cb;
void *pv = pMemToMapSolaris->Core.pv;
pgcnt_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Create the mapping object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cb);
if (RT_UNLIKELY(!pMemSolaris))
return VERR_NO_MEMORY;
uint64_t *paPhysAddrs = kmem_zalloc(sizeof(uint64_t) * cPages, KM_SLEEP);
if (RT_UNLIKELY(!paPhysAddrs))
return VERR_NO_MEMORY;
if ( pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS_NC
&& pMemSolaris->Core.u.Phys.fAllocated == false)
{
/*
* The PhysNC object has no kernel mapping backing it. The call to vbi_pages_premap()
* prepares the physical pages to be mapped into user or kernel space.
*/
int rc = vbi_pages_premap(pMemToMapSolaris->pvHandle, cb, paPhysAddrs);
if (rc)
{
LogRel(("rtR0MemObjNativeMapUser: vbi_pages_premap failed. rc=%d\n", rc));
kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_MAP_FAILED;
}
}
else
{
/*
* All other memory object types have allocated memory with kernel mappings.
*/
for (pgcnt_t iPage = 0; iPage < cPages; iPage++)
{
paPhysAddrs[iPage] = vbi_va_to_pa(pv);
if (RT_UNLIKELY(paPhysAddrs[iPage] == -(uint64_t)1))
{
LogRel(("rtR0MemObjNativeMapUser: no page to map.\n"));
kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_MAP_FAILED;
}
pv = (void *)((uintptr_t)pv + PAGE_SIZE);
}
}
caddr_t virtAddr = NULL;
int rc = vbi_user_map(&virtAddr, fProt, paPhysAddrs, cb);
if (rc != 0)
{
LogRel(("rtR0MemObjNativeMapUser: vbi mapping failure.\n"));
kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_MAP_FAILED;
}
else
rc = VINF_SUCCESS;
pMemSolaris->Core.u.Mapping.R0Process = (RTR0PROCESS)vbi_proc();
pMemSolaris->Core.pv = virtAddr;
*ppMem = &pMemSolaris->Core;
kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
return rc;
}
int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
NOREF(pMem);
NOREF(offSub);
NOREF(cbSub);
NOREF(fProt);
return VERR_NOT_SUPPORTED;
}
RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)pMem;
switch (pMemSolaris->Core.enmType)
{
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_LOCK:
{
uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
return vbi_va_to_pa(pb);
}
/*
* Although mapping can be handled by vbi_va_to_pa(offset) like the above case,
* request it from the parent so that we have a clear distinction between CONT/PHYS_NC.
*/
case RTR0MEMOBJTYPE_MAPPING:
return rtR0MemObjNativeGetPagePhysAddr(pMemSolaris->Core.uRel.Child.pParent, iPage);
case RTR0MEMOBJTYPE_CONT:
case RTR0MEMOBJTYPE_PHYS:
return pMemSolaris->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS_NC:
if (pMemSolaris->Core.u.Phys.fAllocated == true)
{
uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
return vbi_va_to_pa(pb);
}
return vbi_page_to_pa(pMemSolaris->pvHandle, iPage);
case RTR0MEMOBJTYPE_RES_VIRT:
default:
return NIL_RTHCPHYS;
}
}