semeventmulti-r0drv-solaris.c revision 0b7d24ee33cf513ef5a83fc9d6b9ba0a0427b39c
/* $Id$ */
/** @file
* IPRT - Multiple Release Event Semaphores, Ring-0 Driver, Solaris.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-solaris-kernel.h"
#include "internal/iprt.h"
#include <iprt/semaphore.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/err.h>
#include <iprt/lockvalidator.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#include "internal/magics.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** @name fStateAndGen values
* @{ */
/** The state bit number. */
#define RTSEMEVENTMULTISOL_STATE_BIT 0
/** The state mask. */
#define RTSEMEVENTMULTISOL_STATE_MASK RT_BIT_32(RTSEMEVENTMULTISOL_STATE_BIT)
/** The generation mask. */
#define RTSEMEVENTMULTISOL_GEN_MASK ~RTSEMEVENTMULTISOL_STATE_MASK
/** The generation shift. */
#define RTSEMEVENTMULTISOL_GEN_SHIFT 1
/** The initial variable value. */
#define RTSEMEVENTMULTISOL_STATE_GEN_INIT UINT32_C(0xfffffffc)
/** @} */
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Solaris multiple release event semaphore.
*/
typedef struct RTSEMEVENTMULTIINTERNAL
{
/** Magic value (RTSEMEVENTMULTI_MAGIC). */
uint32_t volatile u32Magic;
/** The number of references. */
uint32_t volatile cRefs;
/** The object state bit and generation counter.
* The generation counter is incremented every time the object is
* signalled. */
uint32_t volatile fStateAndGen;
/** The Solaris mutex protecting this structure and pairing up the with the cv. */
kmutex_t Mtx;
/** The Solaris condition variable. */
kcondvar_t Cnd;
} RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL;
RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI phEventMultiSem)
{
return RTSemEventMultiCreateEx(phEventMultiSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
}
RTDECL(int) RTSemEventMultiCreateEx(PRTSEMEVENTMULTI phEventMultiSem, uint32_t fFlags, RTLOCKVALCLASS hClass,
const char *pszNameFmt, ...)
{
AssertReturn(!(fFlags & ~RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER);
AssertPtrReturn(phEventMultiSem, VERR_INVALID_POINTER);
RT_ASSERT_PREEMPTIBLE();
AssertCompile(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *));
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pThis));
if (pThis)
{
pThis->u32Magic = RTSEMEVENTMULTI_MAGIC;
pThis->cRefs = 1;
pThis->fStateAndGen = RTSEMEVENTMULTISOL_STATE_GEN_INIT;
mutex_init(&pThis->Mtx, "IPRT Multiple Release Event Semaphore", MUTEX_DRIVER, (void *)ipltospl(DISP_LEVEL));
cv_init(&pThis->Cnd, "IPRT CV", CV_DRIVER, NULL);
*phEventMultiSem = pThis;
return VINF_SUCCESS;
}
return VERR_NO_MEMORY;
}
/**
* Retain a reference to the semaphore.
*
* @param pThis The semaphore.
*/
DECLINLINE(void) rtR0SemEventMultiSolRetain(PRTSEMEVENTMULTIINTERNAL pThis)
{
uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs);
Assert(cRefs && cRefs < 100000);
}
/**
* Destructor that is called when cRefs == 0.
*
* @param pThis The instance to destroy.
*/
static void rtSemEventMultiDtor(PRTSEMEVENTMULTIINTERNAL pThis)
{
Assert(pThis->u32Magic != RTSEMEVENTMULTI_MAGIC);
cv_destroy(&pThis->Cnd);
mutex_destroy(&pThis->Mtx);
RTMemFree(pThis);
}
/**
* Release a reference, destroy the thing if necessary.
*
* @param pThis The semaphore.
*/
DECLINLINE(void) rtR0SemEventMultiSolRelease(PRTSEMEVENTMULTIINTERNAL pThis)
{
if (RT_UNLIKELY(ASMAtomicDecU32(&pThis->cRefs) == 0))
rtSemEventMultiDtor(pThis);
}
RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI hEventMultiSem)
{
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
if (pThis == NIL_RTSEMEVENTMULTI)
return VINF_SUCCESS;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE);
AssertMsgReturn(pThis->cRefs > 0, ("pThis=%p cRefs=%d\n", pThis, pThis->cRefs), VERR_INVALID_HANDLE);
RT_ASSERT_INTS_ON();
mutex_enter(&pThis->Mtx);
/* Invalidate the handle and wake up all threads that might be waiting on the semaphore. */
Assert(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC);
ASMAtomicWriteU32(&pThis->u32Magic, RTSEMEVENTMULTI_MAGIC_DEAD);
ASMAtomicAndU32(&pThis->fStateAndGen, RTSEMEVENTMULTISOL_GEN_MASK);
cv_broadcast(&pThis->Cnd);
/* Drop the reference from RTSemEventMultiCreateEx. */
mutex_exit(&pThis->Mtx);
rtR0SemEventMultiSolRelease(pThis);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI hEventMultiSem)
{
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
RT_ASSERT_PREEMPT_CPUID_VAR();
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC,
("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic),
VERR_INVALID_HANDLE);
RT_ASSERT_INTS_ON();
rtR0SemEventMultiSolRetain(pThis);
/*
* If we're in interrupt context we need to unpin the underlying current
* thread as this could lead to a deadlock (see #4259 for the full explanation)
*
* Note! See remarks about preemption in RTSemEventSignal.
*/
int fAcquired = mutex_tryenter(&pThis->Mtx);
if (!fAcquired)
{
if (curthread->t_intr && getpil() < DISP_LEVEL)
{
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&PreemptState);
preempt();
RTThreadPreemptRestore(&PreemptState);
}
mutex_enter(&pThis->Mtx);
}
Assert(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC);
/*
* Do the job.
*/
uint32_t fNew = ASMAtomicUoReadU32(&pThis->fStateAndGen);
fNew += 1 << RTSEMEVENTMULTISOL_GEN_SHIFT;
fNew |= RTSEMEVENTMULTISOL_STATE_MASK;
ASMAtomicWriteU32(&pThis->fStateAndGen, fNew);
cv_broadcast(&pThis->Cnd);
mutex_exit(&pThis->Mtx);
rtR0SemEventMultiSolRelease(pThis);
RT_ASSERT_PREEMPT_CPUID();
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI hEventMultiSem)
{
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
RT_ASSERT_PREEMPT_CPUID_VAR();
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC,
("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic),
VERR_INVALID_HANDLE);
RT_ASSERT_INTS_ON();
rtR0SemEventMultiSolRetain(pThis);
/*
* If we're in interrupt context we need to unpin the underlying current
* thread as this could lead to a deadlock (see #4259 for the full explanation)
*
* Note! See remarks about preemption in RTSemEventSignal.
*/
int fAcquired = mutex_tryenter(&pThis->Mtx);
if (!fAcquired)
{
if (curthread->t_intr && getpil() < DISP_LEVEL)
{
RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&PreemptState);
preempt();
RTThreadPreemptRestore(&PreemptState);
}
mutex_enter(&pThis->Mtx);
}
Assert(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC);
/*
* Do the job (could be done without the lock, but play safe).
*/
ASMAtomicAndU32(&pThis->fStateAndGen, ~RTSEMEVENTMULTISOL_STATE_MASK);
mutex_exit(&pThis->Mtx);
rtR0SemEventMultiSolRelease(pThis);
RT_ASSERT_PREEMPT_CPUID();
return VINF_SUCCESS;
}
/* -------- Move to header ---------- */
typedef struct RTR0SEMSOLWAIT
{
/** The absolute timeout given as nano seconds since the start of the
* monotonic clock. */
uint64_t uNsAbsTimeout;
/** The timeout in nano seconds relative to the start of the wait. */
uint64_t cNsRelTimeout;
/** The native timeout value. */
union
{
/** The timeout (abs lbolt) when fHighRes is false. */
clock_t lTimeout;
} u;
/** Set if we use high resolution timeouts. */
bool fHighRes;
/** Set if it's an indefinite wait. */
bool fIndefinite;
/** Set if we've already timed out.
* Set by rtR0SemSolWaitDoIt or rtR0SemSolWaitHighResTimeout, read by
* rtR0SemSolWaitHasTimedOut. */
bool volatile fTimedOut;
/** Whether the wait was interrupted. */
bool fInterrupted;
/** Interruptible or uninterruptible wait. */
bool fInterruptible;
/** The thread to wake up. */
kthread_t *pThread;
/** Cylic timer ID (used by the timeout callback). */
cyclic_id_t idCy;
} RTR0SEMSOLWAIT;
/** Pointer to a solaris semaphore wait structure. */
typedef RTR0SEMSOLWAIT *PRTR0SEMSOLWAIT;
/**
* Initializes a wait.
*
* The caller MUST check the wait condition BEFORE calling this function or the
* timeout logic will be flawed.
*
* @returns VINF_SUCCESS or VERR_TIMEOUT.
* @param pWait The wait structure.
* @param fFlags The wait flags.
* @param uTimeout The timeout.
* @param pWaitQueue The wait queue head.
*/
DECLINLINE(int) rtR0SemSolWaitInit(PRTR0SEMSOLWAIT pWait, uint32_t fFlags, uint64_t uTimeout)
{
/*
* Process the flags and timeout.
*/
if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE))
{
if (fFlags & RTSEMWAIT_FLAGS_MILLISECS)
uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000)
? uTimeout * UINT32_C(1000000)
: UINT64_MAX;
if (uTimeout == UINT64_MAX)
fFlags |= RTSEMWAIT_FLAGS_INDEFINITE;
else
{
uint64_t u64Now;
if (fFlags & RTSEMWAIT_FLAGS_RELATIVE)
{
if (uTimeout == 0)
return VERR_TIMEOUT;
u64Now = RTTimeSystemNanoTS();
pWait->cNsRelTimeout = uTimeout;
pWait->uNsAbsTimeout = u64Now + uTimeout;
if (pWait->uNsAbsTimeout < u64Now) /* overflow */
fFlags |= RTSEMWAIT_FLAGS_INDEFINITE;
}
else
{
u64Now = RTTimeSystemNanoTS();
if (u64Now >= uTimeout)
return VERR_TIMEOUT;
pWait->cNsRelTimeout = uTimeout - u64Now;
pWait->uNsAbsTimeout = uTimeout;
}
}
}
if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE))
{
pWait->fIndefinite = false;
if ( (fFlags & (RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE))
|| pWait->cNsRelTimeout < UINT32_C(1000000000) / 100 /*Hz*/ * 4)
pWait->fHighRes = true;
else
{
#if 1
uint64_t cTicks = NSEC_TO_TICK_ROUNDUP(uTimeout);
#else
uint64_t cTicks = drv_usectohz((clock_t)(uTimeout / 1000));
#endif
if (cTicks >= LONG_MAX)
fFlags |= RTSEMWAIT_FLAGS_INDEFINITE;
else
{
pWait->u.lTimeout = ddi_get_lbolt() + cTicks;
pWait->fHighRes = false;
}
}
}
if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE)
{
pWait->fIndefinite = true;
pWait->fHighRes = false;
pWait->uNsAbsTimeout = UINT64_MAX;
pWait->cNsRelTimeout = UINT64_MAX;
pWait->u.lTimeout = LONG_MAX;
}
pWait->fTimedOut = false;
pWait->fInterrupted = false;
pWait->fInterruptible = !!(fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE);
pWait->pThread = curthread;
pWait->idCy = CYCLIC_NONE;
return VINF_SUCCESS;
}
/**
* Cyclic timeout callback that sets the timeout indicator and wakes up the
* waiting thread.
*
* @param pvUser The wait structure.
*/
static void rtR0SemSolWaitHighResTimeout(void *pvUser)
{
PRTR0SEMSOLWAIT pWait = (PRTR0SEMSOLWAIT)pvUser;
kthread_t *pThread = pWait->pThread;
if (VALID_PTR(pThread)) /* paranoia */
{
/* Note: Trying to take the cpu_lock here doesn't work. */
if (mutex_owner(&cpu_lock) == curthread)
{
cyclic_remove(pWait->idCy);
pWait->idCy = CYCLIC_NONE;
}
ASMAtomicWriteBool(&pWait->fTimedOut, true);
setrun(pThread);
}
}
/**
* Do the actual wait.
*
* @param pWait The wait structure.
* @param pCnd The condition variable to wait on.
* @param pMtx The mutex related to the condition variable.
* The caller has entered this.
*/
DECLINLINE(void) rtR0SemSolWaitDoIt(PRTR0SEMSOLWAIT pWait, kcondvar_t *pCnd, kmutex_t *pMtx)
{
int rc = 1;
if (pWait->fIndefinite)
{
/*
* No timeout - easy.
*/
if (pWait->fInterruptible)
rc = cv_wait_sig(pCnd, pMtx);
else
cv_wait(pCnd, pMtx);
}
else if (pWait->fHighRes)
{
/*
* High resolution timeout - arm a one-shot cyclic for waking up
* the thread at the desired time.
*/
cyc_handler_t Cyh;
Cyh.cyh_arg = pWait;
Cyh.cyh_func = rtR0SemSolWaitHighResTimeout;
Cyh.cyh_level = CY_LOW_LEVEL; /// @todo try CY_LOCK_LEVEL and CY_HIGH_LEVEL?
cyc_time_t Cyt;
Cyt.cyt_when = pWait->uNsAbsTimeout;
Cyt.cyt_interval = UINT64_C(1000000000) * 60;
mutex_enter(&cpu_lock);
pWait->idCy = cyclic_add(&Cyh, &Cyt);
mutex_exit(&cpu_lock);
if (pWait->fInterruptible)
rc = cv_wait_sig(pCnd, pMtx);
else
cv_wait(pCnd, pMtx);
mutex_enter(&cpu_lock);
if (pWait->idCy != CYCLIC_NONE)
{
cyclic_remove(pWait->idCy);
pWait->idCy = CYCLIC_NONE;
}
mutex_exit(&cpu_lock);
}
else
{
/*
* Normal timeout.
*/
if (pWait->fInterruptible)
rc = cv_timedwait_sig(pCnd, pMtx, pWait->u.lTimeout);
else
rc = cv_timedwait(pCnd, pMtx, pWait->u.lTimeout);
}
/* Above zero means normal wake-up. */
if (rc > 0)
return;
/* Timeout is signalled by -1. */
if (rc == -1)
pWait->fTimedOut = true;
/* Interruption is signalled by 0. */
else
{
AssertMsg(rc == 0, ("rc=%d\n", rc));
pWait->fInterrupted = true;
}
}
/**
* Checks if a solaris wait was interrupted.
*
* @returns true / false
* @param pWait The wait structure.
* @remarks This shall be called before the first rtR0SemSolWaitDoIt().
*/
DECLINLINE(bool) rtR0SemSolWaitWasInterrupted(PRTR0SEMSOLWAIT pWait)
{
return pWait->fInterrupted;
}
/**
* Checks if a solaris wait has timed out.
*
* @returns true / false
* @param pWait The wait structure.
*/
DECLINLINE(bool) rtR0SemSolWaitHasTimedOut(PRTR0SEMSOLWAIT pWait)
{
return pWait->fTimedOut;
}
/**
* Deletes a solaris wait.
*
* @param pWait The wait structure.
*/
DECLINLINE(void) rtR0SemSolWaitDelete(PRTR0SEMSOLWAIT pWait)
{
pWait->pThread = NULL;
}
/* -------- End ---------- */
/**
* Worker for RTSemEventMultiWaitEx and RTSemEventMultiWaitExDebug.
*
* @returns VBox status code.
* @param pThis The event semaphore.
* @param fFlags See RTSemEventMultiWaitEx.
* @param uTimeout See RTSemEventMultiWaitEx.
* @param pSrcPos The source code position of the wait.
*/
static int rtR0SemEventMultiSolWait(PRTSEMEVENTMULTIINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout,
PCRTLOCKVALSRCPOS pSrcPos)
{
uint32_t fOrgStateAndGen;
int rc;
/*
* Validate the input.
*/
AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER);
AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER);
rtR0SemEventMultiSolRetain(pThis);
mutex_enter(&pThis->Mtx); /* this could be moved down to the else, but play safe for now. */
/*
* Is the event already signalled or do we have to wait?
*/
fOrgStateAndGen = ASMAtomicUoReadU32(&pThis->fStateAndGen);
if (fOrgStateAndGen & RTSEMEVENTMULTISOL_STATE_MASK)
rc = VINF_SUCCESS;
else
{
/*
* We have to wait.
*/
RTR0SEMSOLWAIT Wait;
rc = rtR0SemSolWaitInit(&Wait, fFlags, uTimeout);
if (RT_SUCCESS(rc))
{
for (;;)
{
/* The destruction test. */
if (RT_UNLIKELY(pThis->u32Magic != RTSEMEVENTMULTI_MAGIC))
rc = VERR_SEM_DESTROYED;
else
{
/* Check the exit conditions. */
if (RT_UNLIKELY(pThis->u32Magic != RTSEMEVENTMULTI_MAGIC))
rc = VERR_SEM_DESTROYED;
else if (ASMAtomicUoReadU32(&pThis->fStateAndGen) != fOrgStateAndGen)
rc = VINF_SUCCESS;
else if (rtR0SemSolWaitHasTimedOut(&Wait))
rc = VERR_TIMEOUT;
else if (rtR0SemSolWaitWasInterrupted(&Wait))
rc = VERR_INTERRUPTED;
else
{
/* Do the wait and then recheck the conditions. */
rtR0SemSolWaitDoIt(&Wait, &pThis->Cnd, &pThis->Mtx);
continue;
}
}
break;
}
rtR0SemSolWaitDelete(&Wait);
}
}
mutex_exit(&pThis->Mtx);
rtR0SemEventMultiSolRelease(pThis);
return rc;
}
#undef RTSemEventMultiWaitEx
RTDECL(int) RTSemEventMultiWaitEx(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout)
{
#ifndef RTSEMEVENT_STRICT
return rtR0SemEventMultiSolWait(hEventMultiSem, fFlags, uTimeout, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtR0SemEventMultiSolWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
#endif
}
RTDECL(int) RTSemEventMultiWaitExDebug(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout,
RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtR0SemEventMultiSolWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
}