semeventmulti-r0drv-solaris.c revision 089c21a647af46044cad04a78cfdcfae814d2105
/* $Id$ */
/** @file
* innotek Portable Runtime - Multiple Release Event Semaphores, Ring-0 Driver, Solaris.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-solaris-kernel.h"
#include <iprt/semaphore.h>
#include <iprt/alloc.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include "internal/magics.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* FreeBSD multiple release event semaphore.
*/
typedef struct RTSEMEVENTMULTIINTERNAL
{
/** Magic value (RTSEMEVENTMULTI_MAGIC). */
uint32_t volatile u32Magic;
/** The number of waiting threads. */
uint32_t volatile cWaiters;
/** Set if the event object is signaled. */
uint8_t volatile fSignaled;
/** The number of threads in the process of waking up. */
uint32_t volatile cWaking;
/** The Solaris mutex protecting this structure and pairing up the with the cv. */
kmutex_t Mtx;
/** The Solaris condition variable. */
kcondvar_t Cnd;
} RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL;
RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI pEventMultiSem)
{
Assert(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *));
AssertPtrReturn(pEventMultiSem, VERR_INVALID_POINTER);
PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pEventMultiInt));
if (pEventMultiInt)
{
pEventMultiInt->u32Magic = RTSEMEVENTMULTI_MAGIC;
pEventMultiInt->cWaiters = 0;
pEventMultiInt->cWaking = 0;
pEventMultiInt->fSignaled = 0;
mutex_init(&pEventMultiInt->Mtx, "IPRT Multiple Release Event Semaphore", MUTEX_DRIVER, NULL);
cv_init(&pEventMultiInt->Cnd, "IPRT CV", CV_DRIVER, NULL);
*pEventMultiSem = pEventMultiInt;
return VINF_SUCCESS;
}
return VERR_NO_MEMORY;
}
RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI EventMultiSem)
{
if (EventMultiSem == NIL_RTSEMEVENTMULTI) /* don't bitch */
return VERR_INVALID_HANDLE;
PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem;
AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE);
AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC,
("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic),
VERR_INVALID_HANDLE);
mutex_enter(&pEventMultiInt->Mtx);
ASMAtomicIncU32(&pEventMultiInt->u32Magic); /* make the handle invalid */
if (pEventMultiInt->cWaiters > 0)
{
/* abort waiting thread, last man cleans up. */
ASMAtomicXchgU32(&pEventMultiInt->cWaking, pEventMultiInt->cWaking + pEventMultiInt->cWaiters);
cv_signal(&pEventMultiInt->Cnd);
mutex_exit(&pEventMultiInt->Mtx);
}
else if (pEventMultiInt->cWaking)
/* the last waking thread is gonna do the cleanup */
mutex_exit(&pEventMultiInt->Mtx);
else
{
mutex_exit(&pEventMultiInt->Mtx);
cv_destroy(&pEventMultiInt->Cnd);
mutex_destroy(&pEventMultiInt->Mtx);
RTMemFree(pEventMultiInt);
}
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI EventMultiSem)
{
PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem;
AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE);
AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC,
("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic),
VERR_INVALID_HANDLE);
mutex_enter(&pEventMultiInt->Mtx);
ASMAtomicXchgU8(&pEventMultiInt->fSignaled, true);
if (pEventMultiInt->cWaiters > 0)
{
ASMAtomicXchgU32(&pEventMultiInt->cWaking, pEventMultiInt->cWaking + pEventMultiInt->cWaiters);
ASMAtomicXchgU32(&pEventMultiInt->cWaiters, 0);
cv_signal(&pEventMultiInt->Cnd);
}
mutex_exit(&pEventMultiInt->Mtx);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI EventMultiSem)
{
PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem;
AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE);
AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC,
("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic),
VERR_INVALID_HANDLE);
mutex_enter(&pEventMultiInt->Mtx);
ASMAtomicXchgU8(&pEventMultiInt->fSignaled, false);
mutex_exit(&pEventMultiInt->Mtx);
return VINF_SUCCESS;
}
static int rtSemEventMultiWait(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies, bool fInterruptible)
{
int rc;
PRTSEMEVENTMULTIINTERNAL pEventMultiInt = (PRTSEMEVENTMULTIINTERNAL)EventMultiSem;
AssertPtrReturn(pEventMultiInt, VERR_INVALID_HANDLE);
AssertMsgReturn(pEventMultiInt->u32Magic == RTSEMEVENTMULTI_MAGIC,
("pEventMultiInt=%p u32Magic=%#x\n", pEventMultiInt, pEventMultiInt->u32Magic),
VERR_INVALID_HANDLE);
mutex_enter(&pEventMultiInt->Mtx);
if (pEventMultiInt->fSignaled)
rc = VINF_SUCCESS;
else
{
/*
* Translate milliseconds into ticks and go to sleep.
*/
int cTicks;
clock_t timeout;
if (cMillies != RT_INDEFINITE_WAIT)
cTicks = drv_usectohz((clock_t)(cMillies * 1000L));
else
cTicks = 0;
timeout = ddi_get_lbolt();
timeout += cTicks;
ASMAtomicIncU32(&pEventMultiInt->cWaiters);
/** @todo r=bird: Is this interruptible or non-interruptible? */
rc = cv_timedwait_sig(&pEventMultiInt->Cnd, &pEventMultiInt->Mtx, timeout);
if (rc > 0)
{
/* Retured due to call to cv_signal() or cv_broadcast() */
if (pEventMultiInt->u32Magic != RTSEMEVENT_MAGIC)
{
rc = VERR_SEM_DESTROYED;
if (!ASMAtomicDecU32(&pEventMultiInt->cWaking))
{
mutex_exit(&pEventMultiInt->Mtx);
cv_destroy(&pEventMultiInt->Cnd);
mutex_destroy(&pEventMultiInt->Mtx);
RTMemFree(pEventMultiInt);
return rc;
}
}
ASMAtomicDecU32(&pEventMultiInt->cWaking);
rc = VINF_SUCCESS;
}
else if (rc == -1)
{
/* Returned due to timeout being reached */
if (pEventMultiInt->cWaiters > 0)
ASMAtomicDecU32(&pEventMultiInt->cWaiters);
rc = VERR_TIMEOUT;
}
else
{
/* Returned due to pending signal */
if (pEventMultiInt->cWaiters > 0)
ASMAtomicDecU32(&pEventMultiInt->cWaiters);
rc = VERR_INTERRUPTED;
}
}
mutex_exit(&pEventMultiInt->Mtx);
return rc;
}
RTDECL(int) RTSemEventMultiWait(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies)
{
return rtSemEventMultiWait(EventMultiSem, cMillies, false /* not interruptible */);
}
RTDECL(int) RTSemEventMultiWaitNoResume(RTSEMEVENTMULTI EventMultiSem, unsigned cMillies)
{
return rtSemEventMultiWait(EventMultiSem, cMillies, true /* interruptible */);
}