semevent-r0drv-solaris.c revision 418b9db49fbc652ef9c3f030fdc0f1a322403d95
/* $Id$ */
/** @file
* IPRT - Single Release Event Semaphores, Ring-0 Driver, Solaris.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-solaris-kernel.h"
#include "internal/iprt.h"
#include <iprt/semaphore.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/err.h>
#include <iprt/list.h>
#include <iprt/lockvalidator.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/thread.h>
#include "internal/magics.h"
#include "semeventwait-r0drv-solaris.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Waiter entry. Lives on the stack.
*
* @remarks Unfortunately, we cannot easily use cv_signal because we cannot
* distinguish between it and the spurious wakeups we get after fork.
* So, we keep an unprioritized FIFO with the sleeping threads.
*/
typedef struct RTSEMEVENTSOLENTRY
{
/** The list node. */
RTLISTNODE Node;
/** The thread. */
kthread_t *pThread;
/** Flag set when waking up the thread by signal or destroy. */
bool volatile fWokenUp;
} RTSEMEVENTSOLENTRY;
/** Pointer to waiter entry. */
typedef RTSEMEVENTSOLENTRY *PRTSEMEVENTSOLENTRY;
/**
* Solaris event semaphore.
*/
typedef struct RTSEMEVENTINTERNAL
{
/** Magic value (RTSEMEVENT_MAGIC). */
uint32_t volatile u32Magic;
/** The number of threads referencing this object. */
uint32_t volatile cRefs;
/** Set if the object is signalled when there are no waiters. */
bool fSignaled;
/** List of waiting and woken up threads. */
RTLISTNODE WaitList;
/** The Solaris mutex protecting this structure and pairing up the with the cv. */
kmutex_t Mtx;
/** The Solaris condition variable. */
kcondvar_t Cnd;
} RTSEMEVENTINTERNAL, *PRTSEMEVENTINTERNAL;
RTDECL(int) RTSemEventCreate(PRTSEMEVENT phEventSem)
{
return RTSemEventCreateEx(phEventSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
}
RTDECL(int) RTSemEventCreateEx(PRTSEMEVENT phEventSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...)
{
AssertCompile(sizeof(RTSEMEVENTINTERNAL) > sizeof(void *));
AssertReturn(!(fFlags & ~(RTSEMEVENT_FLAGS_NO_LOCK_VAL | RTSEMEVENT_FLAGS_BOOTSTRAP_HACK)), VERR_INVALID_PARAMETER);
Assert(!(fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK) || (fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL));
AssertPtrReturn(phEventSem, VERR_INVALID_POINTER);
RT_ASSERT_PREEMPTIBLE();
PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)RTMemAlloc(sizeof(*pThis));
if (!pThis)
return VERR_NO_MEMORY;
pThis->u32Magic = RTSEMEVENT_MAGIC;
pThis->cRefs = 1;
pThis->fSignaled = false;
RTListInit(&pThis->WaitList);
mutex_init(&pThis->Mtx, "IPRT Event Semaphore", MUTEX_DRIVER, (void *)ipltospl(DISP_LEVEL));
cv_init(&pThis->Cnd, "IPRT CV", CV_DRIVER, NULL);
*phEventSem = pThis;
return VINF_SUCCESS;
}
/**
* Retain a reference to the semaphore.
*
* @param pThis The semaphore.
*/
DECLINLINE(void) rtR0SemEventSolRetain(PRTSEMEVENTINTERNAL pThis)
{
uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs);
Assert(cRefs && cRefs < 100000);
}
/**
* The destruct.
*
* @param pThis The semaphore.
*/
static void rtR0SemEventSolDtor(PRTSEMEVENTINTERNAL pThis)
{
Assert(pThis->u32Magic != RTSEMEVENT_MAGIC);
cv_destroy(&pThis->Cnd);
mutex_destroy(&pThis->Mtx);
RTMemFree(pThis);
}
/**
* Release a reference, destroy the thing if necessary.
*
* @param pThis The semaphore.
*/
DECLINLINE(void) rtR0SemEventSolRelease(PRTSEMEVENTINTERNAL pThis)
{
if (RT_UNLIKELY(ASMAtomicDecU32(&pThis->cRefs) == 0))
rtR0SemEventSolDtor(pThis);
}
RTDECL(int) RTSemEventDestroy(RTSEMEVENT hEventSem)
{
/*
* Validate input.
*/
PRTSEMEVENTINTERNAL pThis = hEventSem;
if (pThis == NIL_RTSEMEVENT)
return VINF_SUCCESS;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE);
Assert(pThis->cRefs > 0);
RT_ASSERT_INTS_ON();
mutex_enter(&pThis->Mtx);
/*
* Invalidate the semaphore.
*/
ASMAtomicWriteU32(&pThis->u32Magic, ~RTSEMEVENT_MAGIC);
ASMAtomicWriteBool(&pThis->fSignaled, false);
/*
* Abort and wake up all threads.
*/
PRTSEMEVENTSOLENTRY pWaiter;
RTListForEach(&pThis->WaitList, pWaiter, RTSEMEVENTSOLENTRY, Node)
{
pWaiter->fWokenUp = true;
}
cv_broadcast(&pThis->Cnd);
/*
* Release the reference from RTSemEventCreateEx.
*/
mutex_exit(&pThis->Mtx);
rtR0SemEventSolRelease(pThis);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventSignal(RTSEMEVENT hEventSem)
{
PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)hEventSem;
RT_ASSERT_PREEMPT_CPUID_VAR();
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE);
RT_ASSERT_INTS_ON();
rtR0SemEventSolRetain(pThis);
rtR0SemSolWaitEnterMutexWithUnpinningHack(&pThis->Mtx);
/*
* Wake up one thread.
*/
ASMAtomicWriteBool(&pThis->fSignaled, true);
PRTSEMEVENTSOLENTRY pWaiter;
RTListForEach(&pThis->WaitList, pWaiter, RTSEMEVENTSOLENTRY, Node)
{
if (!pWaiter->fWokenUp)
{
pWaiter->fWokenUp = true;
setrun(pWaiter->pThread);
ASMAtomicWriteBool(&pThis->fSignaled, false);
break;
}
}
mutex_exit(&pThis->Mtx);
rtR0SemEventSolRelease(pThis);
RT_ASSERT_PREEMPT_CPUID();
return VINF_SUCCESS;
}
/**
* Worker for RTSemEventWaitEx and RTSemEventWaitExDebug.
*
* @returns VBox status code.
* @param pThis The event semaphore.
* @param fFlags See RTSemEventWaitEx.
* @param uTimeout See RTSemEventWaitEx.
* @param pSrcPos The source code position of the wait.
*/
static int rtR0SemEventSolWait(PRTSEMEVENTINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout,
PCRTLOCKVALSRCPOS pSrcPos)
{
/*
* Validate the input.
*/
AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER);
AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER);
rtR0SemEventSolRetain(pThis);
mutex_enter(&pThis->Mtx);
/*
* In the signaled state?
*/
int rc;
if (ASMAtomicCmpXchgBool(&pThis->fSignaled, false, true))
rc = VINF_SUCCESS;
else
{
/*
* We have to wait.
*/
RTR0SEMSOLWAIT Wait;
rc = rtR0SemSolWaitInit(&Wait, fFlags, uTimeout);
if (RT_SUCCESS(rc))
{
RTSEMEVENTSOLENTRY Waiter; /* ASSUMES we won't get swapped out while waiting (TS_DONT_SWAP). */
Waiter.pThread = curthread;
Waiter.fWokenUp = false;
RTListAppend(&pThis->WaitList, &Waiter.Node);
for (;;)
{
/* The destruction test. */
if (RT_UNLIKELY(pThis->u32Magic != RTSEMEVENT_MAGIC))
rc = VERR_SEM_DESTROYED;
else
{
/* Check the exit conditions. */
if (RT_UNLIKELY(pThis->u32Magic != RTSEMEVENT_MAGIC))
rc = VERR_SEM_DESTROYED;
else if (Waiter.fWokenUp)
rc = VINF_SUCCESS;
else if (rtR0SemSolWaitHasTimedOut(&Wait))
rc = VERR_TIMEOUT;
else if (rtR0SemSolWaitWasInterrupted(&Wait))
rc = VERR_INTERRUPTED;
else
{
/* Do the wait and then recheck the conditions. */
rtR0SemSolWaitDoIt(&Wait, &pThis->Cnd, &pThis->Mtx);
continue;
}
}
break;
}
rtR0SemSolWaitDelete(&Wait);
RTListNodeRemove(&Waiter.Node);
}
}
mutex_exit(&pThis->Mtx);
rtR0SemEventSolRelease(pThis);
return rc;
}
#undef RTSemEventWaitEx
RTDECL(int) RTSemEventWaitEx(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout)
{
#ifndef RTSEMEVENT_STRICT
return rtR0SemEventSolWait(hEventSem, fFlags, uTimeout, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtR0SemEventSolWait(hEventSem, fFlags, uTimeout, &SrcPos);
#endif
}
RTDECL(int) RTSemEventWaitExDebug(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout,
RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtR0SemEventSolWait(hEventSem, fFlags, uTimeout, &SrcPos);
}
RTDECL(uint32_t) RTSemEventGetResolution(void)
{
return rtR0SemSolWaitGetResolution();
}