memobj-r0drv-solaris.c revision e7e8a6cb1597db3e0a1a83733e1d90e7a1688647
/* $Id$ */
/** @file
* innotek Portable Runtime - Ring-0 Memory Objects, Solaris.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-solaris-kernel.h"
#include <iprt/memobj.h>
#include <iprt/mem.h>
#include <iprt/err.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include "internal/memobj.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The Solaris version of the memory object structure.
*/
typedef struct RTR0MEMOBJSOLARIS
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Pointer to kernel memory cookie. */
ddi_umem_cookie_t Cookie;
/** Shadow locked pages. */
page_t **ppShadowPages;
} RTR0MEMOBJSOLARIS, *PRTR0MEMOBJSOLARIS;
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)pMem;
switch (pMemSolaris->Core.enmType)
{
case RTR0MEMOBJTYPE_CONT:
ddi_mem_free(pMemSolaris->Core.pv);
break;
case RTR0MEMOBJTYPE_PAGE:
#if 0
ddi_umem_free(pMemSolaris->Cookie);
#endif
ddi_mem_free(pMemSolaris->Core.pv);
break;
case RTR0MEMOBJTYPE_LOCK:
{
struct as* addrSpace;
if (pMemSolaris->Core.u.Lock.R0Process == NIL_RTR0PROCESS)
addrSpace = &kas;
else
addrSpace = ((proc_t *)pMemSolaris->Core.u.Lock.R0Process)->p_as;
as_pageunlock(addrSpace, pMemSolaris->ppShadowPages, pMemSolaris->Core.pv, pMemSolaris->Core.cb, S_WRITE);
break;
}
case RTR0MEMOBJTYPE_MAPPING:
{
if (pMemSolaris->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
{
/* Kernel process*/
hat_unload(kas.a_hat, (caddr_t)pMemSolaris->Core.pv, pMemSolaris->Core.cb, HAT_UNLOAD_UNLOCK);
vmem_xfree(heap32_arena, (caddr_t)pMemSolaris->Core.pv, pMemSolaris->Core.cb);
}
else
{
/* User process */
proc_t *p = (proc_t *)pMemSolaris->Core.u.Mapping.R0Process;
struct as *useras = p->p_as;
hat_unload(useras->a_hat, (caddr_t)pMemSolaris->Core.pv, pMemSolaris->Core.cb, HAT_UNLOAD_UNLOCK);
}
break;
}
/* unused */
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_RES_VIRT:
default:
AssertMsgFailed(("enmType=%d\n", pMemSolaris->Core.enmType));
return VERR_INTERNAL_ERROR;
}
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PAGE, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
#if 1
/* Allocate physically contiguous page-aligned memory. */
caddr_t virtAddr;
int rc = i_ddi_mem_alloc(NULL, &g_SolarisX86PhysMemLimits, cb, 1, 0, NULL, &virtAddr, NULL, NULL);
if (rc != DDI_SUCCESS)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_MEMORY;
}
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->Core.u.Cont.Phys = PAGE_SIZE * hat_getpfnum(kas.a_hat, virtAddr);
*ppMem = &pMemSolaris->Core;
cmn_err(CE_NOTE, "xAllocPage success physAddr=%p virt=%p\n", PAGE_SIZE * hat_getpfnum(kas.a_hat, virtAddr), virtAddr);
#endif
#if 0
/* Allocate page-aligned kernel memory */
void *pv = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie);
if (pv == NULL)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_MEMORY;
}
pMemSolaris->Core.pv = pv;
*ppMem = &pMemSolaris->Core;
cmn_err(CE_NOTE, "ddi_umem_alloc, success\n");
#endif
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
/* Try page alloc first */
int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
if (RT_SUCCESS(rc))
{
size_t iPage = cb >> PAGE_SHIFT;
while (iPage-- > 0)
if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) > (_4G - PAGE_SIZE))
{
/* Failed! Fall back to physical contiguous alloc */
cmn_err(CE_NOTE, "4G boundary exceeded\n");
RTR0MemObjFree(*ppMem, false);
rc = rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
break;
}
}
return rc;
}
int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
NOREF(fExecutable);
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_CONT, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
/* Allocate physically contiguous page-aligned memory. */
caddr_t virtAddr;
int rc = i_ddi_mem_alloc(NULL, &g_SolarisX86PhysMemLimits, cb, 1, 0, NULL, &virtAddr, NULL, NULL);
if (rc != DDI_SUCCESS)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_MEMORY;
}
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->Core.u.Cont.Phys = PAGE_SIZE * hat_getpfnum(kas.a_hat, virtAddr);
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
/** @todo rtR0MemObjNativeAllocPhys / solaris */
return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest);
}
int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%VHp\n", PhysHighest), VERR_NOT_IMPLEMENTED);
return rtR0MemObjNativeAllocCont(ppMem, cb, false);
}
int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
{
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
/* @todo validate Phys as a proper physical address */
/* There is no allocation here, it needs to be mapped somewhere first */
pMemSolaris->Core.u.Phys.fAllocated = false;
pMemSolaris->Core.u.Phys.PhysBase = Phys;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
{
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, (void*)R3Ptr, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
proc_t *userProcess = curproc;
if (R0Process != NIL_RTR0PROCESS)
userProcess = (proc_t *)R0Process;
struct as* userAddrSpace = userProcess->p_as;
caddr_t userAddr = (caddr_t)((uintptr_t)R3Ptr & (uintptr_t)PAGEMASK);
page_t **ppl;
int rc = as_pagelock(userAddrSpace, &ppl, userAddr, cb, S_WRITE);
if (rc != 0)
return VERR_NO_MEMORY;
pMemSolaris->Core.u.Lock.R0Process = (RTR0PROCESS)userProcess;
pMemSolaris->ppShadowPages = ppl;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
#if 0
/* Lock down the physical pages of current process' virtual address space */
int rc = ddi_umem_lock(pv, cb, DDI_UMEMLOCK_WRITE, &pMemSolaris->Cookie);
if (rc != 0)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_MEMORY; /** @todo fix mach -> vbox error conversion for Solaris. */
}
pMemSolaris->Core.u.Lock.R0Process = R0Process;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
#endif
}
int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
{
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
caddr_t userAddr = (caddr_t)((uintptr_t)pv & (uintptr_t)PAGEMASK);
page_t **ppl;
int rc = as_pagelock(&kas, &ppl, userAddr, cb, S_WRITE);
if (rc != 0)
return VERR_NO_MEMORY;
pMemSolaris->Core.u.Lock.R0Process = NIL_RTR0PROCESS; /* means kernel, see rtR0MemObjNativeFree() */
pMemSolaris->ppShadowPages = ppl;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
return VERR_NOT_IMPLEMENTED;
}
int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
return VERR_NOT_IMPLEMENTED;
}
int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt)
{
PRTR0MEMOBJSOLARIS pMemToMapSolaris = (PRTR0MEMOBJSOLARIS)pMemToMap;
size_t size = P2ROUNDUP(pMemToMapSolaris->Core.cb, PAGE_SIZE);
void* pv = pMemToMapSolaris->Core.pv;
void* kernVirtAddr = vmem_xalloc(heap32_arena, size, PAGE_SIZE, 0, PAGE_SIZE, NULL, 0, VM_SLEEP);
if (kernVirtAddr == NULL)
return VERR_NO_MEMORY;
hat_devload(kas.a_hat, (caddr_t)kernVirtAddr, size, hat_getpfnum(kas.a_hat, pv), PROT_READ | PROT_WRITE | PROT_EXEC,
HAT_STRICTORDER | HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
/* Create the mapping object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING,
kernVirtAddr, pMemToMapSolaris->Core.cb);
if (pMemSolaris == NULL)
{
hat_unload(kas.a_hat, (caddr_t)kernVirtAddr, size, HAT_UNLOAD_UNLOCK);
vmem_xfree(heap32_arena, kernVirtAddr, size);
return VERR_NO_MEMORY;
}
pMemSolaris->Core.u.Mapping.R0Process = NIL_RTR0PROCESS; /* NIL_RTR0PROCESS means kernel process */
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, PRTR0MEMOBJINTERNAL pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
PRTR0MEMOBJSOLARIS pMemToMapSolaris = (PRTR0MEMOBJSOLARIS)pMemToMap;
size_t size = P2ROUNDUP(pMemToMapSolaris->Core.cb, PAGE_SIZE);
proc_t *userproc = (proc_t *)R0Process;
struct as *useras = userproc->p_as;
void *pv = pMemToMapSolaris->Core.pv;
pfn_t pfnum = hat_getpfnum(kas.a_hat, pv);
int rc;
void* kernVirtAddr = vmem_xalloc(heap32_arena, size, PAGE_SIZE, 0, PAGE_SIZE, NULL, 0, VM_SLEEP);
if (kernVirtAddr == NULL)
return VERR_NO_MEMORY;
cmn_err(CE_NOTE, "vmem_xalloc successful.\n");
/* Wrong ones to use: as_map() */
hat_devload(kas.a_hat, (caddr_t)kernVirtAddr, size, pfnum, PROT_READ | PROT_WRITE | PROT_EXEC,
HAT_STRICTORDER | HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
cmn_err(CE_NOTE, "hat_devload successful.\n");
/* Create the mapping object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING,
pv, pMemToMapSolaris->Core.cb);
if (pMemSolaris == NULL)
{
/* @todo cleanup */
return VERR_NO_MEMORY;
}
pMemSolaris->Core.u.Mapping.R0Process = R0Process;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, unsigned iPage)
{
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)pMem;
switch (pMemSolaris->Core.enmType)
{
case RTR0MEMOBJTYPE_LOCK:
{
/* @todo figure this one out */
return NIL_RTHCPHYS;
}
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
{
uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
return PAGE_SIZE * hat_getpfnum(kas.a_hat, pb);
}
case RTR0MEMOBJTYPE_CONT:
return pMemSolaris->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS:
return pMemSolaris->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_RES_VIRT:
case RTR0MEMOBJTYPE_MAPPING:
default:
return NIL_RTHCPHYS;
}
}