memobj-r0drv-solaris.c revision 509dce0b9418759159cf63212faf8c2c8b6980fe
/* $Id$ */
/** @file
* IPRT - Ring-0 Memory Objects, Solaris.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-solaris-kernel.h"
#include <iprt/memobj.h>
#include <iprt/mem.h>
#include <iprt/err.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include "internal/memobj.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The Solaris version of the memory object structure.
*/
typedef struct RTR0MEMOBJSOLARIS
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Pointer to kernel memory cookie. */
ddi_umem_cookie_t Cookie;
/** Shadow locked pages. */
page_t **ppShadowPages;
} RTR0MEMOBJSOLARIS, *PRTR0MEMOBJSOLARIS;
/**
* Used for supplying the solaris kernel info. about memory limits
* during contiguous allocations (i_ddi_mem_alloc)
*/
struct ddi_dma_attr g_SolarisX86PhysMemLimits =
{
DMA_ATTR_V0, /* Version Number */
(uint64_t)0, /* lower limit */
(uint64_t)0xffffffff, /* high limit (32-bit PA, 4G) */
(uint64_t)0xffffffff, /* counter limit */
(uint64_t)PAGE_SIZE, /* alignment */
(uint64_t)PAGE_SIZE, /* burst size */
(uint64_t)PAGE_SIZE, /* effective DMA size */
(uint64_t)0xffffffff, /* max DMA xfer size */
(uint64_t)0xffffffff, /* segment boundary */
1, /* scatter-gather list length (1 for contiguous) */
1, /* device granularity */
0 /* bus-specific flags */
};
static uint64_t rtR0MemObjSolarisVirtToPhys(struct hat* hatSpace, caddr_t virtAddr)
{
/* We could use paddr_t (more solaris-like) rather than uint64_t but paddr_t isn't defined for 64-bit */
pfn_t pfn = hat_getpfnum(hatSpace, virtAddr);
if (pfn == PFN_INVALID)
{
AssertMsgFailed(("rtR0MemObjSolarisVirtToPhys: hat_getpfnum for %p failed.\n", virtAddr));
return PFN_INVALID;
}
/* Both works, but second will work for non-page aligned virtAddr */
#if 0
uint64_t physAddr = PAGE_SIZE * pfn;
#else
uint64_t physAddr = ((uint64_t)pfn << MMU_PAGESHIFT) | ((uintptr_t)virtAddr & MMU_PAGEOFFSET);
#endif
return physAddr;
}
int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)pMem;
switch (pMemSolaris->Core.enmType)
{
case RTR0MEMOBJTYPE_CONT:
i_ddi_mem_free(pMemSolaris->Core.pv, NULL);
break;
case RTR0MEMOBJTYPE_PAGE:
ddi_umem_free(pMemSolaris->Cookie);
break;
case RTR0MEMOBJTYPE_LOCK:
{
struct as *addrSpace;
if (pMemSolaris->Core.u.Lock.R0Process == NIL_RTR0PROCESS)
addrSpace = &kas;
else
addrSpace = ((proc_t *)pMemSolaris->Core.u.Lock.R0Process)->p_as;
as_pageunlock(addrSpace, pMemSolaris->ppShadowPages, pMemSolaris->Core.pv, pMemSolaris->Core.cb, S_WRITE);
break;
}
case RTR0MEMOBJTYPE_MAPPING:
{
struct hat *hatSpace;
struct as *addrSpace;
if (pMemSolaris->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
{
/* Kernel process*/
hatSpace = kas.a_hat;
addrSpace = &kas;
}
else
{
/* User process */
proc_t *userProc = (proc_t *)pMemSolaris->Core.u.Mapping.R0Process;
hatSpace = userProc->p_as->a_hat;
addrSpace = userProc->p_as;
}
rw_enter(&addrSpace->a_lock, RW_READER);
hat_unload(hatSpace, pMemSolaris->Core.pv, pMemSolaris->Core.cb, HAT_UNLOAD_UNLOCK);
rw_exit(&addrSpace->a_lock);
as_unmap(addrSpace, pMemSolaris->Core.pv, pMemSolaris->Core.cb);
break;
}
/* unused */
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_RES_VIRT:
default:
AssertMsgFailed(("enmType=%d\n", pMemSolaris->Core.enmType));
return VERR_INTERNAL_ERROR;
}
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PAGE, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
void *virtAddr = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie);
if (!virtAddr)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_PAGE_MEMORY;
}
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->ppShadowPages = NULL;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
/* Try page alloc first */
int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
if (RT_SUCCESS(rc))
{
size_t iPage = cb >> PAGE_SHIFT;
while (iPage-- > 0)
if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) > (_4G - PAGE_SIZE))
{
/* Failed! Fall back to physical contiguous alloc */
RTR0MemObjFree(*ppMem, false);
rc = rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
break;
}
}
return rc;
}
int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
NOREF(fExecutable);
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_CONT, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
/* Allocate physically contiguous page-aligned memory. */
caddr_t virtAddr;
int rc = i_ddi_mem_alloc(NULL, &g_SolarisX86PhysMemLimits, cb, 1, 0, NULL, &virtAddr, NULL, NULL);
if (rc != DDI_SUCCESS)
{
rtR0MemObjDelete(&pMemSolaris->Core);
return VERR_NO_CONT_MEMORY;
}
pMemSolaris->Core.pv = virtAddr;
pMemSolaris->Core.u.Cont.Phys = rtR0MemObjSolarisVirtToPhys(kas.a_hat, virtAddr);
pMemSolaris->ppShadowPages = NULL;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
/** @todo rtR0MemObjNativeAllocPhysNC / solaris */
return VERR_NOT_SUPPORTED; /* see the RTR0MemObjAllocPhysNC specs */
}
int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%VHp\n", PhysHighest), VERR_NOT_IMPLEMENTED);
return rtR0MemObjNativeAllocCont(ppMem, cb, false);
}
int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
{
/* Create the object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
/* There is no allocation here, it needs to be mapped somewhere first */
pMemSolaris->Core.u.Phys.fAllocated = false;
pMemSolaris->Core.u.Phys.PhysBase = Phys;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
{
AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_INVALID_PARAMETER);
/* Create the locking object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
proc_t *userproc = (proc_t *)R0Process;
struct as *useras = userproc->p_as;
page_t **ppl;
/* Lock down user pages */
int rc = as_pagelock(useras, &ppl, (caddr_t)R3Ptr, cb, S_WRITE);
if (rc != 0)
{
cmn_err(CE_NOTE,"rtR0MemObjNativeLockUser: as_pagelock failed rc=%d\n", rc);
return VERR_LOCK_FAILED;
}
if (!ppl)
{
as_pageunlock(useras, ppl, (caddr_t)R3Ptr, cb, S_WRITE);
cmn_err(CE_NOTE, "rtR0MemObjNativeLockUser: as_pagelock failed to get shadow pages\n");
return VERR_LOCK_FAILED;
}
pMemSolaris->Core.u.Lock.R0Process = (RTR0PROCESS)userproc;
pMemSolaris->ppShadowPages = ppl;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
{
/* Create the locking object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (!pMemSolaris)
return VERR_NO_MEMORY;
caddr_t virtAddr = (caddr_t)((uintptr_t)pv & (uintptr_t)PAGEMASK);
page_t **ppl;
/* Lock down kernel pages */
int rc = as_pagelock(&kas, &ppl, virtAddr, cb, S_WRITE);
if (rc != 0)
{
cmn_err(CE_NOTE,"rtR0MemObjNativeLockKernel: as_pagelock failed rc=%d\n", rc);
return VERR_LOCK_FAILED;
}
if (!ppl)
{
as_pageunlock(&kas, ppl, virtAddr, cb, S_WRITE);
cmn_err(CE_NOTE, "rtR0MemObjNativeLockKernel: failed to get shadow pages\n");
return VERR_LOCK_FAILED;
}
pMemSolaris->Core.u.Lock.R0Process = NIL_RTR0PROCESS; /* means kernel, see rtR0MemObjNativeFree() */
pMemSolaris->ppShadowPages = ppl;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
return VERR_NOT_IMPLEMENTED;
}
int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
return VERR_NOT_IMPLEMENTED;
}
int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt)
{
PRTR0MEMOBJSOLARIS pMemToMapSolaris = (PRTR0MEMOBJSOLARIS)pMemToMap;
size_t size = pMemToMapSolaris->Core.cb;
void *pv = pMemToMapSolaris->Core.pv;
pgcnt_t cPages = btop(size);
pgcnt_t iPage;
caddr_t addr;
int rc;
/* Create the mapping object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, size);
if (!pMemSolaris)
return VERR_NO_MEMORY;
as_rangelock(&kas);
if (pvFixed != (void *)-1)
{
/* Use user specified address */
addr = (caddr_t)pvFixed;
/* Blow away any previous mapping */
as_unmap(&kas, addr, size);
}
else
{
/* Let the system choose an address */
map_addr(&addr, size, 0, 1, MAP_SHARED | MAP_ANONYMOUS);
if (addr == NULL)
{
as_rangeunlock(&kas);
cmn_err(CE_NOTE, "rtR0MemObjNativeMapKernel: map_addr failed\n");
return VERR_NO_MEMORY;
}
/* Check address against alignment, fail if it doesn't match */
if ((uintptr_t)addr & (uAlignment - 1))
{
as_rangeunlock(&kas);
cmn_err(CE_NOTE, "rtR0MemObjNativeMapKernel: map_addr alignment(%ld) failed.\n", uAlignment);
return VERR_MAP_FAILED;
}
}
/* Our protection masks are identical to <sys/mman.h> but we
* need to add PROT_USER for the pages to be accessible by user
*/
struct segvn_crargs crArgs = SEGVN_ZFOD_ARGS(fProt | PROT_USER, PROT_ALL);
rc = as_map(&kas, addr, size, segvn_create, &crArgs);
as_rangeunlock(&kas);
if (rc != 0)
{
cmn_err(CE_NOTE, "rtR0MemObjNativeMapKernel: as_map failure.\n");
return VERR_NO_MEMORY;
}
/* Map each page into kernel space */
rw_enter(&kas.a_lock, RW_READER);
caddr_t kernAddr = pv;
caddr_t pageAddr = addr;
for (iPage = 0; iPage < cPages; iPage++)
{
page_t *pp = page_numtopp_nolock(hat_getpfnum(kas.a_hat, kernAddr));
hat_memload(kas.a_hat, pageAddr, pp, (fProt | PROT_USER), HAT_LOAD_LOCK);
pageAddr += ptob(1);
kernAddr += ptob(1);
}
rw_exit(&kas.a_lock);
pMemSolaris->Core.u.Mapping.R0Process = NIL_RTR0PROCESS; /* means kernel */
pMemSolaris->Core.pv = addr;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, PRTR0MEMOBJINTERNAL pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
PRTR0MEMOBJSOLARIS pMemToMapSolaris = (PRTR0MEMOBJSOLARIS)pMemToMap;
size_t size = pMemToMapSolaris->Core.cb;
proc_t *userproc = (proc_t *)R0Process;
struct as *useras = userproc->p_as;
void *pv = pMemToMapSolaris->Core.pv;
pgcnt_t cPages = btop(size);
pgcnt_t iPage;
caddr_t addr;
int rc;
/* Create the mapping object */
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, size);
if (!pMemSolaris)
return VERR_NO_MEMORY;
as_rangelock(useras);
if (R3PtrFixed != (RTR3PTR)-1)
{
/* Use user specified address */
addr = (caddr_t)R3PtrFixed;
/* Verify user address (a bit paranoid) */
rc = valid_usr_range(addr, size, fProt, useras, (caddr_t)USERLIMIT32);
if (rc != RANGE_OKAY)
{
as_rangeunlock(useras);
cmn_err(CE_NOTE, "rtR0MemObjNativeMapUser: valid_usr_range failed, returned %d\n", rc);
return VERR_INVALID_POINTER;
}
/* Blow away any previous mapping */
as_unmap(useras, addr, size);
}
else
{
/* Let the system choose an address */
map_addr(&addr, size, 0, 1, MAP_SHARED | MAP_ANONYMOUS);
if (addr == NULL)
{
as_rangeunlock(useras);
cmn_err(CE_NOTE, "rtR0MemObjNativeMapUser: map_addr failed\n");
return VERR_MAP_FAILED;
}
/* Check address against alignment, fail if it doesn't match */
if ((uintptr_t)addr & (uAlignment - 1))
{
as_rangeunlock(useras);
cmn_err(CE_NOTE, "rtR0MemObjNativeMapUser: map_addr alignment(%ld) failed.\n", uAlignment);
return VERR_MAP_FAILED;
}
}
/* Our protection masks are identical to <sys/mman.h> but we
* need to add PROT_USER for the pages to be accessible by user
*/
struct segvn_crargs crArgs = SEGVN_ZFOD_ARGS(fProt | PROT_USER, PROT_ALL);
rc = as_map(useras, addr, size, segvn_create, &crArgs);
as_rangeunlock(useras);
if (rc != 0)
{
cmn_err(CE_NOTE, "rtR0MemObjNativeMapUser: as_map failure.\n");
return VERR_MAP_FAILED;
}
#if 0
/* Lock down the pages and get the shadow page list
* In this case we must as_pageunlock if(ppShadowPages) exists while freeing CONT, PAGE
*/
rc = as_pagelock(&kas, &pMemToMapSolaris->ppShadowPages, pv, size, S_WRITE);
if (rc != 0 || pMemToMapSolaris->ppShadowPages == NULL)
{
cmn_err(CE_NOTE, "rtR0MemObjNativeMapUser: as_pagelock failed\n");
as_unmap(useras, addr, size);
return VERR_NO_MEMORY;
}
/* Map each page into user space */
rw_enter(&useras->a_lock, RW_READER);
caddr_t pageAddr = addr;
for (iPage = 0; iPage < cPages; iPage++)
{
hat_memload(useras->a_hat, pageAddr, pMemToMapSolaris->ppShadowPages[iPage], fProt | PROT_USER,
HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_LOAD_LOCK);
pageAddr += ptob(1);
}
rw_exit(&useras->a_lock, RW_READER);
#else
/* Map each page into user space */
rw_enter(&useras->a_lock, RW_READER);
caddr_t kernAddr = pv;
caddr_t pageAddr = addr;
for (iPage = 0; iPage < cPages; iPage++)
{
page_t *pp = page_numtopp_nolock(hat_getpfnum(kas.a_hat, kernAddr));
hat_memload(useras->a_hat, pageAddr, pp, (fProt | PROT_USER), HAT_LOAD_LOCK);
pageAddr += ptob(1);
kernAddr += ptob(1);
}
rw_exit(&useras->a_lock);
#endif
pMemSolaris->Core.u.Mapping.R0Process = (RTR0PROCESS)userproc;
pMemSolaris->Core.pv = addr;
*ppMem = &pMemSolaris->Core;
return VINF_SUCCESS;
}
RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
PRTR0MEMOBJSOLARIS pMemSolaris = (PRTR0MEMOBJSOLARIS)pMem;
switch (pMemSolaris->Core.enmType)
{
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_MAPPING:
{
uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
return rtR0MemObjSolarisVirtToPhys(kas.a_hat, pb);
}
case RTR0MEMOBJTYPE_LOCK:
{
struct hat *hatSpace;
if (pMemSolaris->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
{
/* User */
proc_t *userProc = (proc_t *)pMemSolaris->Core.u.Lock.R0Process;
hatSpace = userProc->p_as->a_hat;
}
else /* Kernel */
hatSpace = kas.a_hat;
uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
return rtR0MemObjSolarisVirtToPhys(hatSpace, pb);
}
case RTR0MEMOBJTYPE_CONT:
return pMemSolaris->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS:
return pMemSolaris->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS_NC:
AssertFailed(/* not implemented */);
case RTR0MEMOBJTYPE_RES_VIRT:
default:
return NIL_RTHCPHYS;
}
}