memobj-r0drv-os2.cpp revision a2d29442b07952c0d2b4d2b703bf4c2d1eb072ea
/* $Id$ */
/** @file
* IPRT - Ring-0 Memory Objects, OS/2.
*/
/*
* Copyright (c) 2007 knut st. osmundsen <bird-src-spam@anduin.net>
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-os2-kernel.h"
#include <iprt/memobj.h>
#include <iprt/mem.h>
#include <iprt/err.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include "internal/memobj.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The OS/2 version of the memory object structure.
*/
typedef struct RTR0MEMOBJDARWIN
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Lock for the ring-3 / ring-0 pinned objectes.
* This member might not be allocated for some object types. */
KernVMLock_t Lock;
/** Array of physical pages.
* This array can be 0 in length for some object types. */
KernPageList_t aPages[1];
} RTR0MEMOBJOS2, *PRTR0MEMOBJOS2;
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet);
DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
int rc;
switch (pMemOs2->Core.enmType)
{
case RTR0MEMOBJTYPE_PHYS_NC:
AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
return VERR_INTERNAL_ERROR;
break;
case RTR0MEMOBJTYPE_PHYS:
if (!pMemOs2->Core.pv)
break;
case RTR0MEMOBJTYPE_MAPPING:
if (pMemOs2->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
break;
/* fall thru */
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_CONT:
rc = KernVMFree(pMemOs2->Core.pv);
AssertMsg(!rc, ("rc=%d type=%d pv=%p cb=%#zx\n", rc, pMemOs2->Core.enmType, pMemOs2->Core.pv, pMemOs2->Core.cb));
break;
case RTR0MEMOBJTYPE_LOCK:
rc = KernVMUnlock(&pMemOs2->Lock);
AssertMsg(!rc, ("rc=%d\n", rc));
break;
case RTR0MEMOBJTYPE_RES_VIRT:
default:
AssertMsgFailed(("enmType=%d\n", pMemOs2->Core.enmType));
return VERR_INTERNAL_ERROR;
}
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
NOREF(fExecutable);
/* create the object. */
const ULONG cPages = cb >> PAGE_SHIFT;
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb);
if (!pMemOs2)
return VERR_NO_MEMORY;
/* do the allocation. */
int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
if (!rc)
{
ULONG cPagesRet = cPages;
rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
if (!rc)
{
rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
KernVMFree(pMemOs2->Core.pv);
}
rtR0MemObjDelete(&pMemOs2->Core);
return RTErrConvertFromOS2(rc);
}
DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
NOREF(fExecutable);
/* create the object. */
const ULONG cPages = cb >> PAGE_SHIFT;
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOW, NULL, cb);
if (!pMemOs2)
return VERR_NO_MEMORY;
/* do the allocation. */
int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
if (!rc)
{
ULONG cPagesRet = cPages;
rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
if (!rc)
{
rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
KernVMFree(pMemOs2->Core.pv);
}
rtR0MemObjDelete(&pMemOs2->Core);
rc = RTErrConvertFromOS2(rc);
return rc == VERR_NO_MEMORY ? VERR_NO_LOW_MEMORY : rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
NOREF(fExecutable);
/* create the object. */
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_CONT, NULL, cb);
if (!pMemOs2)
return VERR_NO_MEMORY;
/* do the allocation. */
ULONG ulPhys = ~0UL;
int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG, &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
if (!rc)
{
Assert(ulPhys != ~0UL);
pMemOs2->Core.u.Cont.Phys = ulPhys;
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemOs2->Core);
return RTErrConvertFromOS2(rc);
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_SUPPORTED);
/** @todo alignment */
if (uAlignment != PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/* create the object. */
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemOs2)
return VERR_NO_MEMORY;
/* do the allocation. */
ULONG ulPhys = ~0UL;
int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG | (PhysHighest < _4G ? VMDHA_16M : 0), &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
if (!rc)
{
Assert(ulPhys != ~0UL);
pMemOs2->Core.u.Phys.fAllocated = true;
pMemOs2->Core.u.Phys.PhysBase = ulPhys;
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemOs2->Core);
return RTErrConvertFromOS2(rc);
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
/** @todo rtR0MemObjNativeAllocPhys / darwin. */
return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE);
}
DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
{
AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
/* create the object. */
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemOs2)
return VERR_NO_MEMORY;
/* there is no allocation here, right? it needs to be mapped somewhere first. */
pMemOs2->Core.u.Phys.fAllocated = false;
pMemOs2->Core.u.Phys.PhysBase = Phys;
pMemOs2->Core.u.Phys.uCachePolicy = uCachePolicy;
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
RTR0PROCESS R0Process)
{
AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
/* create the object. */
const ULONG cPages = cb >> PAGE_SHIFT;
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
if (!pMemOs2)
return VERR_NO_MEMORY;
/* lock it. */
ULONG cPagesRet = cPages;
int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
(void *)R3Ptr, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
if (!rc)
{
rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
Assert(cb == pMemOs2->Core.cb);
Assert(R3Ptr == (RTR3PTR)pMemOs2->Core.pv);
pMemOs2->Core.u.Lock.R0Process = R0Process;
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemOs2->Core);
return RTErrConvertFromOS2(rc);
}
DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
/* create the object. */
const ULONG cPages = cb >> PAGE_SHIFT;
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (!pMemOs2)
return VERR_NO_MEMORY;
/* lock it. */
ULONG cPagesRet = cPages;
int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
pv, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
if (!rc)
{
rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
pMemOs2->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemOs2->Core);
return RTErrConvertFromOS2(rc);
}
DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
RTR0PROCESS R0Process)
{
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub)
{
AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
/*
* Check that the specified alignment is supported.
*/
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/** @todo finish the implementation. */
int rc;
void *pvR0 = NULL;
PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
switch (pMemToMapOs2->Core.enmType)
{
/*
* These has kernel mappings.
*/
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_CONT:
pvR0 = pMemToMapOs2->Core.pv;
break;
case RTR0MEMOBJTYPE_PHYS:
pvR0 = pMemToMapOs2->Core.pv;
if (!pvR0)
{
/* no ring-0 mapping, so allocate a mapping in the process. */
AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS, &pvR0, (PPVOID)&ulPhys, NULL);
if (rc)
return RTErrConvertFromOS2(rc);
pMemToMapOs2->Core.pv = pvR0;
}
break;
case RTR0MEMOBJTYPE_PHYS_NC:
AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
return VERR_INTERNAL_ERROR_3;
break;
case RTR0MEMOBJTYPE_LOCK:
if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
return VERR_NOT_SUPPORTED; /** @todo implement this... */
pvR0 = pMemToMapOs2->Core.pv;
break;
case RTR0MEMOBJTYPE_RES_VIRT:
case RTR0MEMOBJTYPE_MAPPING:
default:
AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
return VERR_INTERNAL_ERROR;
}
/*
* Create a dummy mapping object for it.
*
* All mappings are read/write/execute in OS/2 and there isn't
* any cache options, so sharing is ok. And the main memory object
* isn't actually freed until all the mappings have been freed up
* (reference counting).
*/
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR0, pMemToMapOs2->Core.cb);
if (pMemOs2)
{
pMemOs2->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
return VERR_NO_MEMORY;
}
DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
int rc;
void *pvR0;
void *pvR3 = NULL;
PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
switch (pMemToMapOs2->Core.enmType)
{
/*
* These has kernel mappings.
*/
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_CONT:
pvR0 = pMemToMapOs2->Core.pv;
break;
case RTR0MEMOBJTYPE_PHYS:
pvR0 = pMemToMapOs2->Core.pv;
#if 0/* this is wrong. */
if (!pvR0)
{
/* no ring-0 mapping, so allocate a mapping in the process. */
AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS | VMDHA_PROCESS, &pvR3, (PPVOID)&ulPhys, NULL);
if (rc)
return RTErrConvertFromOS2(rc);
}
break;
#endif
return VERR_NOT_SUPPORTED;
case RTR0MEMOBJTYPE_PHYS_NC:
AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
return VERR_INTERNAL_ERROR_5;
break;
case RTR0MEMOBJTYPE_LOCK:
if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
return VERR_NOT_SUPPORTED; /** @todo implement this... */
pvR0 = pMemToMapOs2->Core.pv;
break;
case RTR0MEMOBJTYPE_RES_VIRT:
case RTR0MEMOBJTYPE_MAPPING:
default:
AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
return VERR_INTERNAL_ERROR;
}
/*
* Map the ring-0 memory into the current process.
*/
if (!pvR3)
{
Assert(pvR0);
ULONG flFlags = 0;
if (uAlignment == PAGE_SIZE)
flFlags |= VMDHGP_4MB;
if (fProt & RTMEM_PROT_WRITE)
flFlags |= VMDHGP_WRITE;
rc = RTR0Os2DHVMGlobalToProcess(flFlags, pvR0, pMemToMapOs2->Core.cb, &pvR3);
if (rc)
return RTErrConvertFromOS2(rc);
}
Assert(pvR3);
/*
* Create a mapping object for it.
*/
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR3, pMemToMapOs2->Core.cb);
if (pMemOs2)
{
Assert(pMemOs2->Core.pv == pvR3);
pMemOs2->Core.u.Mapping.R0Process = R0Process;
*ppMem = &pMemOs2->Core;
return VINF_SUCCESS;
}
KernVMFree(pvR3);
return VERR_NO_MEMORY;
}
DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
NOREF(pMem);
NOREF(offSub);
NOREF(cbSub);
NOREF(fProt);
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
switch (pMemOs2->Core.enmType)
{
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_LOCK:
case RTR0MEMOBJTYPE_PHYS_NC:
return pMemOs2->aPages[iPage].Addr;
case RTR0MEMOBJTYPE_CONT:
return pMemOs2->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS:
return pMemOs2->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_RES_VIRT:
case RTR0MEMOBJTYPE_MAPPING:
default:
return NIL_RTHCPHYS;
}
}
/**
* Expands the page list so we can index pages directly.
*
* @param paPages The page list array to fix.
* @param cPages The number of pages that's supposed to go into the list.
* @param cPagesRet The actual number of pages in the list.
*/
static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet)
{
Assert(cPages >= cPagesRet);
if (cPages != cPagesRet)
{
ULONG iIn = cPagesRet;
ULONG iOut = cPages;
do
{
iIn--;
iOut--;
Assert(iIn <= iOut);
KernPageList_t Page = paPages[iIn];
Assert(!(Page.Addr & PAGE_OFFSET_MASK));
Assert(Page.Size == RT_ALIGN_Z(Page.Size, PAGE_SIZE));
if (Page.Size > PAGE_SIZE)
{
do
{
Page.Size -= PAGE_SIZE;
paPages[iOut].Addr = Page.Addr + Page.Size;
paPages[iOut].Size = PAGE_SIZE;
iOut--;
} while (Page.Size > PAGE_SIZE);
}
paPages[iOut].Addr = Page.Addr;
paPages[iOut].Size = PAGE_SIZE;
} while ( iIn != iOut
&& iIn > 0);
}
}