timer-r0drv-nt.cpp revision 0fec00bfa0954891da94ac750d8dd9a867e74749
/* $Id$ */
/** @file
* IPRT - Timers, Ring-0 Driver, NT.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-nt-kernel.h"
#include <iprt/timer.h>
#include <iprt/mp.h>
#include <iprt/cpuset.h>
#include <iprt/err.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include "internal-r0drv-nt.h"
#include "internal/magics.h"
/** This seems to provide better accuracy. */
#define RTR0TIMER_NT_MANUAL_RE_ARM 1
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* A sub timer structure.
*
* This is used for keeping the per-cpu tick and DPC object.
*/
typedef struct RTTIMERNTSUBTIMER
{
/** The tick counter. */
uint64_t iTick;
/** Pointer to the parent timer. */
PRTTIMER pParent;
/** The NT DPC object. */
KDPC NtDpc;
} RTTIMERNTSUBTIMER;
/** Pointer to a NT sub-timer structure. */
typedef RTTIMERNTSUBTIMER *PRTTIMERNTSUBTIMER;
/**
* The internal representation of an Linux timer handle.
*/
typedef struct RTTIMER
{
/** Magic.
* This is RTTIMER_MAGIC, but changes to something else before the timer
* is destroyed to indicate clearly that thread should exit. */
uint32_t volatile u32Magic;
/** Suspend count down for single shot omnit timers. */
int32_t volatile cOmniSuspendCountDown;
/** Flag indicating the timer is suspended. */
bool volatile fSuspended;
/** Whether the timer must run on one specific CPU or not. */
bool fSpecificCpu;
/** Whether the timer must run on all CPUs or not. */
bool fOmniTimer;
/** The CPU it must run on if fSpecificCpu is set.
* The master CPU for an omni-timer. */
RTCPUID idCpu;
/** Callback. */
PFNRTTIMER pfnTimer;
/** User argument. */
void *pvUser;
/** The timer interval. 0 if one-shot. */
uint64_t u64NanoInterval;
#ifdef RTR0TIMER_NT_MANUAL_RE_ARM
/** The NT start time . */
uint64_t uNtStartTime;
#endif
/** The Nt timer object. */
KTIMER NtTimer;
/** The number of sub-timers. */
RTCPUID cSubTimers;
/** Sub-timers.
* Normally there is just one, but for RTTIMER_FLAGS_CPU_ALL this will contain
* an entry for all possible cpus. In that case the index will be the same as
* for the RTCpuSet. */
RTTIMERNTSUBTIMER aSubTimers[1];
} RTTIMER;
#ifdef RTR0TIMER_NT_MANUAL_RE_ARM
/**
* Get current NT interrupt time.
* @return NT interrupt time
*/
static uint64_t rtTimerNtQueryInterruptTime(void)
{
# ifdef RT_ARCH_AMD64
return KeQueryInterruptTime(); /* macro */
# else
if (g_pfnrtKeQueryInterruptTime)
return g_pfnrtKeQueryInterruptTime();
/* NT4 */
ULARGE_INTEGER InterruptTime;
do
{
InterruptTime.HighPart = ((KUSER_SHARED_DATA volatile *)SharedUserData)->InterruptTime.High1Time;
InterruptTime.LowPart = ((KUSER_SHARED_DATA volatile *)SharedUserData)->InterruptTime.LowPart;
} while (((KUSER_SHARED_DATA volatile *)SharedUserData)->InterruptTime.High2Time != InterruptTime.HighPart);
return InterruptTime.QuadPart;
# endif
}
#endif /* RTR0TIMER_NT_MANUAL_RE_ARM */
/**
* Manually re-arms an internval timer.
*
* Turns out NT doesn't necessarily do a very good job at re-arming timers
* accurately.
*
* @param pTimer The timer.
* @param iTick The current timer tick.
* @param pMasterDpc The master DPC.
*/
DECLINLINE(void) rtTimerNtRearmInternval(PRTTIMER pTimer, uint64_t iTick, PKDPC pMasterDpc)
{
#ifdef RTR0TIMER_NT_MANUAL_RE_ARM
Assert(pTimer->u64NanoInterval);
uint64_t uNtNext = (iTick * pTimer->u64NanoInterval) / 100 - 10; /* 1us fudge */
LARGE_INTEGER DueTime;
DueTime.QuadPart = rtTimerNtQueryInterruptTime() - pTimer->uNtStartTime;
if (DueTime.QuadPart < 0)
DueTime.QuadPart = 0;
if ((uint64_t)DueTime.QuadPart < uNtNext)
DueTime.QuadPart -= uNtNext;
else
DueTime.QuadPart = -2500; /* 0.25ms */
KeSetTimerEx(&pTimer->NtTimer, DueTime, 0, &pTimer->aSubTimers[0].NtDpc);
#endif
}
/**
* Timer callback function for the non-omni timers.
*
* @returns HRTIMER_NORESTART or HRTIMER_RESTART depending on whether it's a one-shot or interval timer.
* @param pDpc Pointer to the DPC.
* @param pvUser Pointer to our internal timer structure.
* @param SystemArgument1 Some system argument.
* @param SystemArgument2 Some system argument.
*/
static void _stdcall rtTimerNtSimpleCallback(IN PKDPC pDpc, IN PVOID pvUser, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
{
PRTTIMER pTimer = (PRTTIMER)pvUser;
AssertPtr(pTimer);
#ifdef RT_STRICT
if (KeGetCurrentIrql() < DISPATCH_LEVEL)
RTAssertMsg2Weak("rtTimerNtSimpleCallback: Irql=%d expected >=%d\n", KeGetCurrentIrql(), DISPATCH_LEVEL);
#endif
/*
* Check that we haven't been suspended before doing the callout.
*/
if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
if (!pTimer->u64NanoInterval)
ASMAtomicWriteBool(&pTimer->fSuspended, true);
uint64_t iTick = ++pTimer->aSubTimers[0].iTick;
if (pTimer->u64NanoInterval)
rtTimerNtRearmInternval(pTimer, iTick, &pTimer->aSubTimers[0].NtDpc);
pTimer->pfnTimer(pTimer, pTimer->pvUser, iTick);
}
NOREF(pDpc); NOREF(SystemArgument1); NOREF(SystemArgument2);
}
/**
* The slave DPC callback for an omni timer.
*
* @param pDpc The DPC object.
* @param pvUser Pointer to the sub-timer.
* @param SystemArgument1 Some system stuff.
* @param SystemArgument2 Some system stuff.
*/
static void _stdcall rtTimerNtOmniSlaveCallback(IN PKDPC pDpc, IN PVOID pvUser, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
{
PRTTIMERNTSUBTIMER pSubTimer = (PRTTIMERNTSUBTIMER)pvUser;
PRTTIMER pTimer = pSubTimer->pParent;
AssertPtr(pTimer);
#ifdef RT_STRICT
if (KeGetCurrentIrql() < DISPATCH_LEVEL)
RTAssertMsg2Weak("rtTimerNtOmniSlaveCallback: Irql=%d expected >=%d\n", KeGetCurrentIrql(), DISPATCH_LEVEL);
int iCpuSelf = RTMpCpuIdToSetIndex(RTMpCpuId());
if (pSubTimer - &pTimer->aSubTimers[0] != iCpuSelf)
RTAssertMsg2Weak("rtTimerNtOmniSlaveCallback: iCpuSelf=%d pSubTimer=%p / %d\n", iCpuSelf, pSubTimer, pSubTimer - &pTimer->aSubTimers[0]);
#endif
/*
* Check that we haven't been suspended before doing the callout.
*/
if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
if (!pTimer->u64NanoInterval)
if (ASMAtomicDecS32(&pTimer->cOmniSuspendCountDown) <= 0)
ASMAtomicWriteBool(&pTimer->fSuspended, true);
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
}
NOREF(pDpc); NOREF(SystemArgument1); NOREF(SystemArgument2);
}
/**
* The timer callback for an omni-timer.
*
* This is responsible for queueing the DPCs for the other CPUs and
* perform the callback on the CPU on which it is called.
*
* @param pDpc The DPC object.
* @param pvUser Pointer to the sub-timer.
* @param SystemArgument1 Some system stuff.
* @param SystemArgument2 Some system stuff.
*/
static void _stdcall rtTimerNtOmniMasterCallback(IN PKDPC pDpc, IN PVOID pvUser, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
{
PRTTIMERNTSUBTIMER pSubTimer = (PRTTIMERNTSUBTIMER)pvUser;
PRTTIMER pTimer = pSubTimer->pParent;
int iCpuSelf = RTMpCpuIdToSetIndex(RTMpCpuId());
AssertPtr(pTimer);
#ifdef RT_STRICT
if (KeGetCurrentIrql() < DISPATCH_LEVEL)
RTAssertMsg2Weak("rtTimerNtOmniMasterCallback: Irql=%d expected >=%d\n", KeGetCurrentIrql(), DISPATCH_LEVEL);
if (pSubTimer - &pTimer->aSubTimers[0] != iCpuSelf)
RTAssertMsg2Weak("rtTimerNtOmniMasterCallback: iCpuSelf=%d pSubTimer=%p / %d\n", iCpuSelf, pSubTimer, pSubTimer - &pTimer->aSubTimers[0]);
#endif
/*
* Check that we haven't been suspended before scheduling the other DPCs
* and doing the callout.
*/
if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
RTCPUSET OnlineSet;
RTMpGetOnlineSet(&OnlineSet);
if (pTimer->u64NanoInterval)
{
/*
* Recurring timer.
*/
for (int iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
if ( RTCpuSetIsMemberByIndex(&OnlineSet, iCpu)
&& iCpuSelf != iCpu)
KeInsertQueueDpc(&pTimer->aSubTimers[iCpu].NtDpc, 0, 0);
uint64_t iTick = ++pSubTimer->iTick;
rtTimerNtRearmInternval(pTimer, iTick, &pTimer->aSubTimers[RTMpCpuIdToSetIndex(pTimer->idCpu)].NtDpc);
pTimer->pfnTimer(pTimer, pTimer->pvUser, iTick);
}
else
{
/*
* Single shot timers gets complicated wrt to fSuspended maintance.
*/
uint32_t cCpus = 0;
for (int iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
if (RTCpuSetIsMemberByIndex(&OnlineSet, iCpu))
cCpus++;
ASMAtomicAddS32(&pTimer->cOmniSuspendCountDown, cCpus);
for (int iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
if ( RTCpuSetIsMemberByIndex(&OnlineSet, iCpu)
&& iCpuSelf != iCpu)
if (!KeInsertQueueDpc(&pTimer->aSubTimers[iCpu].NtDpc, 0, 0))
ASMAtomicDecS32(&pTimer->cOmniSuspendCountDown); /* already queued and counted. */
if (ASMAtomicDecS32(&pTimer->cOmniSuspendCountDown) <= 0)
ASMAtomicWriteBool(&pTimer->fSuspended, true);
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
}
}
NOREF(pDpc); NOREF(SystemArgument1); NOREF(SystemArgument2);
}
RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
/*
* Validate.
*/
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
return VERR_TIMER_ACTIVE;
if ( pTimer->fSpecificCpu
&& !RTMpIsCpuOnline(pTimer->idCpu))
return VERR_CPU_OFFLINE;
/*
* Start the timer.
*/
PKDPC pMasterDpc = pTimer->fOmniTimer
? &pTimer->aSubTimers[RTMpCpuIdToSetIndex(pTimer->idCpu)].NtDpc
: &pTimer->aSubTimers[0].NtDpc;
#ifndef RTR0TIMER_NT_MANUAL_RE_ARM
uint64_t u64Interval = pTimer->u64NanoInterval / 1000000; /* This is ms, believe it or not. */
ULONG ulInterval = (ULONG)u64Interval;
if (ulInterval != u64Interval)
ulInterval = MAXLONG;
else if (!ulInterval && pTimer->u64NanoInterval)
ulInterval = 1;
#endif
LARGE_INTEGER DueTime;
DueTime.QuadPart = -(int64_t)(u64First / 100); /* Relative, NT time. */
if (!DueTime.QuadPart)
DueTime.QuadPart = -1;
unsigned cSubTimers = pTimer->fOmniTimer ? pTimer->cSubTimers : 1;
for (unsigned iCpu = 0; iCpu < cSubTimers; iCpu++)
pTimer->aSubTimers[iCpu].iTick = 0;
ASMAtomicWriteS32(&pTimer->cOmniSuspendCountDown, 0);
ASMAtomicWriteBool(&pTimer->fSuspended, false);
#ifdef RTR0TIMER_NT_MANUAL_RE_ARM
pTimer->uNtStartTime = rtTimerNtQueryInterruptTime();
KeSetTimerEx(&pTimer->NtTimer, DueTime, 0, pMasterDpc);
#else
KeSetTimerEx(&pTimer->NtTimer, DueTime, ulInterval, pMasterDpc);
#endif
return VINF_SUCCESS;
}
/**
* Worker function that stops an active timer.
*
* Shared by RTTimerStop and RTTimerDestroy.
*
* @param pTimer The active timer.
*/
static void rtTimerNtStopWorker(PRTTIMER pTimer)
{
/*
* Just cancel the timer, dequeue the DPCs and flush them (if this is supported).
*/
ASMAtomicWriteBool(&pTimer->fSuspended, true);
KeCancelTimer(&pTimer->NtTimer);
for (RTCPUID iCpu = 0; iCpu < pTimer->cSubTimers; iCpu++)
KeRemoveQueueDpc(&pTimer->aSubTimers[iCpu].NtDpc);
/*
* I'm a bit uncertain whether this should be done during RTTimerStop
* or only in RTTimerDestroy()... Linux and Solaris will wait AFAIK,
* which is why I'm keeping this here for now.
*/
if (g_pfnrtNtKeFlushQueuedDpcs)
g_pfnrtNtKeFlushQueuedDpcs();
}
RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
/*
* Validate.
*/
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
if (ASMAtomicUoReadBool(&pTimer->fSuspended))
return VERR_TIMER_SUSPENDED;
/*
* Call the worker we share with RTTimerDestroy.
*/
rtTimerNtStopWorker(pTimer);
return VINF_SUCCESS;
}
RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
{
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
return VERR_NOT_SUPPORTED;
}
RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
/* It's ok to pass NULL pointer. */
if (pTimer == /*NIL_RTTIMER*/ NULL)
return VINF_SUCCESS;
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
/*
* Invalidate the timer, stop it if it's running and finally
* free up the memory.
*/
ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
rtTimerNtStopWorker(pTimer);
RTMemFree(pTimer);
return VINF_SUCCESS;
}
RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
*ppTimer = NULL;
/*
* Validate flags.
*/
if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
return VERR_INVALID_PARAMETER;
if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
&& (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
&& !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
return VERR_CPU_NOT_FOUND;
/*
* Allocate the timer handler.
*/
RTCPUID cSubTimers = 1;
if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
{
cSubTimers = RTMpGetMaxCpuId() + 1;
Assert(cSubTimers <= RTCPUSET_MAX_CPUS); /* On Windows we have a 1:1 relationship between cpuid and set index. */
}
PRTTIMER pTimer = (PRTTIMER)RTMemAllocZ(RT_OFFSETOF(RTTIMER, aSubTimers[cSubTimers]));
if (!pTimer)
return VERR_NO_MEMORY;
/*
* Initialize it.
*/
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->cOmniSuspendCountDown = 0;
pTimer->fSuspended = true;
pTimer->fSpecificCpu = (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL;
pTimer->fOmniTimer = (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL;
pTimer->idCpu = pTimer->fSpecificCpu ? RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK) : NIL_RTCPUID;
pTimer->cSubTimers = cSubTimers;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->u64NanoInterval = u64NanoInterval;
KeInitializeTimerEx(&pTimer->NtTimer, SynchronizationTimer);
if (pTimer->fOmniTimer)
{
/*
* Initialize the per-cpu "sub-timers", select the first online cpu
* to be the master.
* ASSUMES that no cpus will ever go offline.
*/
pTimer->idCpu = NIL_RTCPUID;
for (unsigned iCpu = 0; iCpu < cSubTimers; iCpu++)
{
pTimer->aSubTimers[iCpu].iTick = 0;
pTimer->aSubTimers[iCpu].pParent = pTimer;
if ( pTimer->idCpu == NIL_RTCPUID
&& RTMpIsCpuOnline(RTMpCpuIdFromSetIndex(iCpu)))
{
pTimer->idCpu = RTMpCpuIdFromSetIndex(iCpu);
KeInitializeDpc(&pTimer->aSubTimers[iCpu].NtDpc, rtTimerNtOmniMasterCallback, &pTimer->aSubTimers[iCpu]);
}
else
KeInitializeDpc(&pTimer->aSubTimers[iCpu].NtDpc, rtTimerNtOmniSlaveCallback, &pTimer->aSubTimers[iCpu]);
KeSetImportanceDpc(&pTimer->aSubTimers[iCpu].NtDpc, HighImportance);
KeSetTargetProcessorDpc(&pTimer->aSubTimers[iCpu].NtDpc, (int)RTMpCpuIdFromSetIndex(iCpu));
}
Assert(pTimer->idCpu != NIL_RTCPUID);
}
else
{
/*
* Initialize the first "sub-timer", target the DPC on a specific processor
* if requested to do so.
*/
pTimer->aSubTimers[0].iTick = 0;
pTimer->aSubTimers[0].pParent = pTimer;
KeInitializeDpc(&pTimer->aSubTimers[0].NtDpc, rtTimerNtSimpleCallback, pTimer);
KeSetImportanceDpc(&pTimer->aSubTimers[0].NtDpc, HighImportance);
if (pTimer->fSpecificCpu)
KeSetTargetProcessorDpc(&pTimer->aSubTimers[0].NtDpc, (int)pTimer->idCpu);
}
*ppTimer = pTimer;
return VINF_SUCCESS;
}
RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
{
if (!g_pfnrtNtExSetTimerResolution)
return VERR_NOT_SUPPORTED;
ULONG ulGranted = g_pfnrtNtExSetTimerResolution(u32Request / 100, TRUE);
if (pu32Granted)
*pu32Granted = ulGranted * 100; /* NT -> ns */
return VINF_SUCCESS;
}
RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
{
if (!g_pfnrtNtExSetTimerResolution)
return VERR_NOT_SUPPORTED;
g_pfnrtNtExSetTimerResolution(0 /* ignored */, FALSE);
NOREF(u32Granted);
return VINF_SUCCESS;
}
RTDECL(bool) RTTimerCanDoHighResolution(void)
{
return false;
}