semeventmulti-r0drv-nt.cpp revision 67c26773eca4a576449ffa8f289fa344fc7b8176
/* $Id$ */
/** @file
* innotek Portable Runtime - Semaphores, Ring-0 Driver, NT.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-nt-kernel.h"
#include <iprt/semaphore.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/err.h>
#include "internal/magics.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* NT event semaphore.
*/
typedef struct RTSEMEVENTINTERNAL
{
/** Magic value (RTSEMEVENT_MAGIC). */
uint32_t volatile u32Magic;
/** The NT Event object. */
KEVENT Event;
} RTSEMEVENTINTERNAL, *PRTSEMEVENTINTERNAL;
/**
* NT mutex semaphore.
*/
typedef struct RTSEMMUTEXINTERNAL
{
/** Magic value (RTSEMMUTEX_MAGIC). */
uint32_t volatile u32Magic;
#ifdef RT_USE_FAST_MUTEX
/** The fast mutex object. */
FAST_MUTEX Mutex;
#else
/** The NT Mutex object. */
KMUTEX Mutex;
#endif
} RTSEMMUTEXINTERNAL, *PRTSEMMUTEXINTERNAL;
/**
* Wrapper for the linux semaphore structure.
*/
typedef struct RTSEMFASTMUTEXINTERNAL
{
/** Magic value (RTSEMFASTMUTEX_MAGIC). */
uint32_t u32Magic;
/** the NT fast mutex. */
FAST_MUTEX Mutex;
} RTSEMFASTMUTEXINTERNAL, *PRTSEMFASTMUTEXINTERNAL;
RTDECL(int) RTSemEventCreate(PRTSEMEVENT pEventSem)
{
Assert(sizeof(RTSEMEVENTINTERNAL) > sizeof(void *));
PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)RTMemAlloc(sizeof(*pEventInt));
if (pEventInt)
{
pEventInt->u32Magic = RTSEMEVENT_MAGIC;
KeInitializeEvent(&pEventInt->Event, SynchronizationEvent, FALSE);
*pEventSem = pEventInt;
return VINF_SUCCESS;
}
return VERR_NO_MEMORY;
}
RTDECL(int) RTSemEventDestroy(RTSEMEVENT EventSem)
{
/*
* Validate input.
*/
PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)EventSem;
if (!pEventInt)
return VERR_INVALID_PARAMETER;
if (pEventInt->u32Magic != RTSEMEVENT_MAGIC)
{
AssertMsgFailed(("pEventInt->u32Magic=%RX32 pEventInt=%p\n", pEventInt->u32Magic, pEventInt));
return VERR_INVALID_PARAMETER;
}
/*
* Invalidate it and signal the object just in case.
*/
ASMAtomicIncU32(&pEventInt->u32Magic);
KeSetEvent(&pEventInt->Event, 0xfff, FALSE);
RTMemFree(pEventInt);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventSignal(RTSEMEVENT EventSem)
{
/*
* Validate input.
*/
PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)EventSem;
if (!pEventInt)
return VERR_INVALID_PARAMETER;
if ( !pEventInt
|| pEventInt->u32Magic != RTSEMEVENT_MAGIC)
{
AssertMsgFailed(("pEventInt->u32Magic=%RX32 pEventInt=%p\n", pEventInt ? pEventInt->u32Magic : 0, pEventInt));
return VERR_INVALID_PARAMETER;
}
/*
* Signal the event object.
*/
KeSetEvent(&pEventInt->Event, 1, FALSE);
return VINF_SUCCESS;
}
static int rtSemEventWait(RTSEMEVENT EventSem, unsigned cMillies, bool fInterruptible)
{
/*
* Validate input.
*/
PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)EventSem;
if (!pEventInt)
return VERR_INVALID_PARAMETER;
if ( !pEventInt
|| pEventInt->u32Magic != RTSEMEVENT_MAGIC)
{
AssertMsgFailed(("pEventInt->u32Magic=%RX32 pEventInt=%p\n", pEventInt ? pEventInt->u32Magic : 0, pEventInt));
return VERR_INVALID_PARAMETER;
}
/*
* Wait for it.
*/
NTSTATUS rcNt;
if (cMillies == RT_INDEFINITE_WAIT)
rcNt = KeWaitForSingleObject(&pEventInt->Event, Executive, KernelMode, fInterruptible, NULL);
else
{
LARGE_INTEGER Timeout;
Timeout.QuadPart = -(int64_t)cMillies * 10000;
rcNt = KeWaitForSingleObject(&pEventInt->Event, Executive, KernelMode, fInterruptible, &Timeout);
}
switch (rcNt)
{
case STATUS_SUCCESS:
if (pEventInt->u32Magic == RTSEMEVENT_MAGIC)
return VINF_SUCCESS;
return VERR_SEM_DESTROYED;
case STATUS_ALERTED:
return VERR_INTERRUPTED;
case STATUS_USER_APC:
return VERR_INTERRUPTED;
case STATUS_TIMEOUT:
return VERR_TIMEOUT;
default:
AssertMsgFailed(("pEventInt->u32Magic=%RX32 pEventInt=%p: wait returned %lx!\n",
pEventInt->u32Magic, pEventInt, (long)rcNt));
return VERR_INTERNAL_ERROR;
}
}
RTDECL(int) RTSemEventWait(RTSEMEVENT EventSem, unsigned cMillies)
{
return rtSemEventWait(EventSem, cMillies, false /* fInterruptible */);
}
RTDECL(int) RTSemEventWaitNoResume(RTSEMEVENT EventSem, unsigned cMillies)
{
return rtSemEventWait(EventSem, cMillies, true /* fInterruptible */);
}
RTDECL(int) RTSemMutexCreate(PRTSEMMUTEX pMutexSem)
{
Assert(sizeof(RTSEMMUTEXINTERNAL) > sizeof(void *));
PRTSEMMUTEXINTERNAL pMutexInt = (PRTSEMMUTEXINTERNAL)RTMemAlloc(sizeof(*pMutexInt));
if (pMutexInt)
{
pMutexInt->u32Magic = RTSEMMUTEX_MAGIC;
#ifdef RT_USE_FAST_MUTEX
ExInitializeFastMutex(&pMutexInt->Mutex);
#else
KeInitializeMutex(&pMutexInt->Mutex, 0);
#endif
*pMutexSem = pMutexInt;
return VINF_SUCCESS;
}
return VERR_NO_MEMORY;
}
RTDECL(int) RTSemMutexDestroy(RTSEMMUTEX MutexSem)
{
/*
* Validate input.
*/
PRTSEMMUTEXINTERNAL pMutexInt = (PRTSEMMUTEXINTERNAL)MutexSem;
if (!pMutexInt)
return VERR_INVALID_PARAMETER;
if (pMutexInt->u32Magic != RTSEMMUTEX_MAGIC)
{
AssertMsgFailed(("pMutexInt->u32Magic=%RX32 pMutexInt=%p\n", pMutexInt->u32Magic, pMutexInt));
return VERR_INVALID_PARAMETER;
}
/*
* Invalidate it and signal the object just in case.
*/
ASMAtomicIncU32(&pMutexInt->u32Magic);
RTMemFree(pMutexInt);
return VINF_SUCCESS;
}
RTDECL(int) RTSemMutexRequest(RTSEMMUTEX MutexSem, unsigned cMillies)
{
/*
* Validate input.
*/
PRTSEMMUTEXINTERNAL pMutexInt = (PRTSEMMUTEXINTERNAL)MutexSem;
if (!pMutexInt)
return VERR_INVALID_PARAMETER;
if ( !pMutexInt
|| pMutexInt->u32Magic != RTSEMMUTEX_MAGIC)
{
AssertMsgFailed(("pMutexInt->u32Magic=%RX32 pMutexInt=%p\n", pMutexInt ? pMutexInt->u32Magic : 0, pMutexInt));
return VERR_INVALID_PARAMETER;
}
/*
* Get the mutex.
*/
#ifdef RT_USE_FAST_MUTEX
AssertMsg(cMillies == RT_INDEFINITE_WAIT, ("timeouts are not supported when using fast mutexes!\n"));
ExAcquireFastMutex(&pMutexInt->Mutex);
#else
NTSTATUS rcNt;
if (cMillies == RT_INDEFINITE_WAIT)
rcNt = KeWaitForSingleObject(&pMutexInt->Mutex, Executive, KernelMode, TRUE, NULL);
else
{
LARGE_INTEGER Timeout;
Timeout.QuadPart = -(int64_t)cMillies * 10000;
rcNt = KeWaitForSingleObject(&pMutexInt->Mutex, Executive, KernelMode, TRUE, &Timeout);
}
switch (rcNt)
{
case STATUS_SUCCESS:
if (pMutexInt->u32Magic == RTSEMMUTEX_MAGIC)
return VINF_SUCCESS;
return VERR_SEM_DESTROYED;
case STATUS_ALERTED:
return VERR_INTERRUPTED; /** @todo VERR_INTERRUPTED isn't correct anylonger. please fix r0drv stuff! */
case STATUS_USER_APC:
return VERR_INTERRUPTED; /** @todo VERR_INTERRUPTED isn't correct anylonger. please fix r0drv stuff! */
case STATUS_TIMEOUT:
return VERR_TIMEOUT;
default:
AssertMsgFailed(("pMutexInt->u32Magic=%RX32 pMutexInt=%p: wait returned %lx!\n",
pMutexInt->u32Magic, pMutexInt, (long)rcNt));
return VERR_INTERNAL_ERROR;
}
#endif
return VINF_SUCCESS;
}
RTDECL(int) RTSemMutexRelease(RTSEMMUTEX MutexSem)
{
/*
* Validate input.
*/
PRTSEMMUTEXINTERNAL pMutexInt = (PRTSEMMUTEXINTERNAL)MutexSem;
if (!pMutexInt)
return VERR_INVALID_PARAMETER;
if ( !pMutexInt
|| pMutexInt->u32Magic != RTSEMMUTEX_MAGIC)
{
AssertMsgFailed(("pMutexInt->u32Magic=%RX32 pMutexInt=%p\n", pMutexInt ? pMutexInt->u32Magic : 0, pMutexInt));
return VERR_INVALID_PARAMETER;
}
/*
* Release the mutex.
*/
#ifdef RT_USE_FAST_MUTEX
ExReleaseFastMutex(&pMutexInt->Mutex);
#else
KeReleaseMutex(&pMutexInt->Mutex, FALSE);
#endif
return VINF_SUCCESS;
}
RTDECL(int) RTSemFastMutexCreate(PRTSEMFASTMUTEX pMutexSem)
{
/*
* Allocate.
*/
PRTSEMFASTMUTEXINTERNAL pFastInt;
Assert(sizeof(*pFastInt) > sizeof(void *));
pFastInt = (PRTSEMFASTMUTEXINTERNAL)RTMemAlloc(sizeof(*pFastInt));
if (!pFastInt)
return VERR_NO_MEMORY;
/*
* Initialize.
*/
pFastInt->u32Magic = RTSEMFASTMUTEX_MAGIC;
ExInitializeFastMutex(&pFastInt->Mutex);
*pMutexSem = pFastInt;
return VINF_SUCCESS;
}
RTDECL(int) RTSemFastMutexDestroy(RTSEMFASTMUTEX MutexSem)
{
/*
* Validate.
*/
PRTSEMFASTMUTEXINTERNAL pFastInt = (PRTSEMFASTMUTEXINTERNAL)MutexSem;
if (!pFastInt)
return VERR_INVALID_PARAMETER;
if (pFastInt->u32Magic != RTSEMFASTMUTEX_MAGIC)
{
AssertMsgFailed(("pFastInt->u32Magic=%RX32 pMutexInt=%p\n", pFastInt->u32Magic, pFastInt));
return VERR_INVALID_PARAMETER;
}
ASMAtomicIncU32(&pFastInt->u32Magic);
RTMemFree(pFastInt);
return VINF_SUCCESS;
}
RTDECL(int) RTSemFastMutexRequest(RTSEMFASTMUTEX MutexSem)
{
/*
* Validate.
*/
PRTSEMFASTMUTEXINTERNAL pFastInt = (PRTSEMFASTMUTEXINTERNAL)MutexSem;
if ( !pFastInt
|| pFastInt->u32Magic != RTSEMFASTMUTEX_MAGIC)
{
AssertMsgFailed(("pFastInt->u32Magic=%RX32 pMutexInt=%p\n", pFastInt ? pFastInt->u32Magic : 0, pFastInt));
return VERR_INVALID_PARAMETER;
}
ExAcquireFastMutex(&pFastInt->Mutex);
return VINF_SUCCESS;
}
RTDECL(int) RTSemFastMutexRelease(RTSEMFASTMUTEX MutexSem)
{
/*
* Validate.
*/
PRTSEMFASTMUTEXINTERNAL pFastInt = (PRTSEMFASTMUTEXINTERNAL)MutexSem;
if ( !pFastInt
|| pFastInt->u32Magic != RTSEMFASTMUTEX_MAGIC)
{
AssertMsgFailed(("pFastInt->u32Magic=%RX32 pMutexInt=%p\n", pFastInt ? pFastInt->u32Magic : 0, pFastInt));
return VERR_INVALID_PARAMETER;
}
ExReleaseFastMutex(&pFastInt->Mutex);
return VINF_SUCCESS;
}