/* $Id$ */
/** @file
* IPRT - Multiple Release Event Semaphores, Ring-0 Driver, NT.
*/
/*
* Copyright (C) 2006-2011 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define RTSEMEVENTMULTI_WITHOUT_REMAPPING
#include "the-nt-kernel.h"
#include <iprt/semaphore.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/lockvalidator.h>
#include <iprt/mem.h>
#include <iprt/time.h>
#include <iprt/timer.h>
#include "internal/magics.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* NT event semaphore.
*/
typedef struct RTSEMEVENTMULTIINTERNAL
{
/** Magic value (RTSEMEVENTMULTI_MAGIC). */
uint32_t volatile u32Magic;
/** Reference counter. */
uint32_t volatile cRefs;
/** The NT Event object. */
KEVENT Event;
} RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL;
RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI phEventMultiSem)
{
return RTSemEventMultiCreateEx(phEventMultiSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
}
RTDECL(int) RTSemEventMultiCreateEx(PRTSEMEVENTMULTI phEventMultiSem, uint32_t fFlags, RTLOCKVALCLASS hClass,
const char *pszNameFmt, ...)
{
AssertReturn(!(fFlags & ~RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER);
AssertCompile(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *));
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pThis));
if (pThis)
{
pThis->u32Magic = RTSEMEVENTMULTI_MAGIC;
pThis->cRefs = 1;
KeInitializeEvent(&pThis->Event, NotificationEvent, FALSE /* not signalled */);
*phEventMultiSem = pThis;
return VINF_SUCCESS;
}
return VERR_NO_MEMORY;
}
/**
* Retains a reference to the semaphore.
*
* @param pThis The semaphore to retain.
*/
DECLINLINE(void) rtR0SemEventMultiNtRetain(PRTSEMEVENTMULTIINTERNAL pThis)
{
uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs);
Assert(cRefs < 100000); NOREF(cRefs);
}
/**
* Releases a reference to the semaphore.
*
* @param pThis The semaphore to release
*/
DECLINLINE(void) rtR0SemEventMultiNtRelease(PRTSEMEVENTMULTIINTERNAL pThis)
{
if (ASMAtomicDecU32(&pThis->cRefs) == 0)
RTMemFree(pThis);
}
RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI hEventMultiSem)
{
/*
* Validate input.
*/
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
if (pThis == NIL_RTSEMEVENTMULTI)
return VINF_SUCCESS;
AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER);
/*
* Invalidate it and signal the object just in case.
*/
ASMAtomicIncU32(&pThis->u32Magic);
KeSetEvent(&pThis->Event, 0xfff, FALSE);
rtR0SemEventMultiNtRelease(pThis);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI hEventMultiSem)
{
/*
* Validate input.
*/
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
if (!pThis)
return VERR_INVALID_PARAMETER;
AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER);
rtR0SemEventMultiNtRetain(pThis);
/*
* Signal the event object.
*/
KeSetEvent(&pThis->Event, 1, FALSE);
rtR0SemEventMultiNtRelease(pThis);
return VINF_SUCCESS;
}
RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI hEventMultiSem)
{
/*
* Validate input.
*/
PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem;
if (!pThis)
return VERR_INVALID_PARAMETER;
AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER);
rtR0SemEventMultiNtRetain(pThis);
/*
* Reset the event object.
*/
KeResetEvent(&pThis->Event);
rtR0SemEventMultiNtRelease(pThis);
return VINF_SUCCESS;
}
/**
* Worker for RTSemEventMultiWaitEx and RTSemEventMultiWaitExDebug.
*
* @returns VBox status code.
* @param pThis The event semaphore.
* @param fFlags See RTSemEventMultiWaitEx.
* @param uTimeout See RTSemEventMultiWaitEx.
* @param pSrcPos The source code position of the wait.
*/
DECLINLINE(int) rtR0SemEventMultiNtWait(PRTSEMEVENTMULTIINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout,
PCRTLOCKVALSRCPOS pSrcPos)
{
/*
* Validate input.
*/
if (!pThis)
return VERR_INVALID_PARAMETER;
AssertPtrReturn(pThis, VERR_INVALID_PARAMETER);
AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER);
AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER);
rtR0SemEventMultiNtRetain(pThis);
/*
* Convert the timeout to a relative one because KeWaitForSingleObject
* takes system time instead of interrupt time as input for absolute
* timeout specifications. So, we're best of by giving it relative time.
*
* Lazy bird converts uTimeout to relative nanoseconds and then to Nt time.
*/
if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE))
{
if (fFlags & RTSEMWAIT_FLAGS_MILLISECS)
uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000)
? uTimeout * UINT32_C(1000000)
: UINT64_MAX;
if (uTimeout == UINT64_MAX)
fFlags |= RTSEMWAIT_FLAGS_INDEFINITE;
else
{
if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE)
{
uint64_t u64Now = RTTimeSystemNanoTS();
uTimeout = u64Now < uTimeout
? uTimeout - u64Now
: 0;
}
}
}
/*
* Wait for it.
* We're assuming interruptible waits should happen at UserMode level.
*/
NTSTATUS rcNt;
BOOLEAN fInterruptible = !!(fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE);
KPROCESSOR_MODE WaitMode = fInterruptible ? UserMode : KernelMode;
if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE)
rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, NULL);
else
{
LARGE_INTEGER Timeout;
Timeout.QuadPart = -(int64_t)(uTimeout / 100);
rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, &Timeout);
}
int rc;
if (pThis->u32Magic == RTSEMEVENTMULTI_MAGIC)
{
switch (rcNt)
{
case STATUS_SUCCESS:
rc = VINF_SUCCESS;
break;
case STATUS_ALERTED:
rc = VERR_INTERRUPTED;
break;
case STATUS_USER_APC:
rc = VERR_INTERRUPTED;
break;
case STATUS_TIMEOUT:
rc = VERR_TIMEOUT;
break;
default:
AssertMsgFailed(("pThis->u32Magic=%RX32 pThis=%p: wait returned %lx!\n",
pThis->u32Magic, pThis, (long)rcNt));
rc = VERR_INTERNAL_ERROR_4;
break;
}
}
else
rc = VERR_SEM_DESTROYED;
rtR0SemEventMultiNtRelease(pThis);
return rc;
}
RTDECL(int) RTSemEventMultiWaitEx(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout)
{
#ifndef RTSEMEVENT_STRICT
return rtR0SemEventMultiNtWait(hEventMultiSem, fFlags, uTimeout, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtR0SemEventMultiNtWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
#endif
}
RTDECL(int) RTSemEventMultiWaitExDebug(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout,
RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtR0SemEventMultiNtWait(hEventMultiSem, fFlags, uTimeout, &SrcPos);
}
RTDECL(uint32_t) RTSemEventMultiGetResolution(void)
{
return RTTimerGetSystemGranularity();
}