timer-r0drv-linux.c revision 8e2e6c9f8f2157e3ec6599f87343bdc453734c4c
/* $Id$ */
/** @file
* IPRT - Timers, Ring-0 Driver, Linux.
*/
/*
* Copyright (C) 2006-2008 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-linux-kernel.h"
#include "internal/iprt.h"
#include <iprt/timer.h>
#include <iprt/time.h>
#include <iprt/mp.h>
#include <iprt/cpuset.h>
#include <iprt/spinlock.h>
#include <iprt/err.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include "internal/magics.h"
#if !defined(RT_USE_LINUX_HRTIMER) \
&& LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23) \
&& 0 /* disabled because it somehow sucks. */
# define RT_USE_LINUX_HRTIMER
#endif
/* This check must match the ktime usage in rtTimeGetSystemNanoTS() / time-r0drv-linux.c. */
#if defined(RT_USE_LINUX_HRTIMER) \
&& LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 16)
# error "RT_USE_LINUX_HRTIMER requires 2.6.16 or later, sorry."
#endif
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* Timer state machine.
*
* This is used to try handle the issues with MP events and
* timers that runs on all CPUs. It's relatively nasty :-/
*/
typedef enum RTTIMERLNXSTATE
{
/** Stopped. */
RTTIMERLNXSTATE_STOPPED = 0,
/** Transient state; next ACTIVE. */
RTTIMERLNXSTATE_STARTING,
/** Transient state; next ACTIVE. (not really necessary) */
RTTIMERLNXSTATE_MP_STARTING,
/** Active. */
RTTIMERLNXSTATE_ACTIVE,
/** Transient state; next STOPPED. */
RTTIMERLNXSTATE_STOPPING,
/** Transient state; next STOPPED. */
RTTIMERLNXSTATE_MP_STOPPING,
/** The usual 32-bit hack. */
RTTIMERLNXSTATE_32BIT_HACK = 0x7fffffff
} RTTIMERLNXSTATE;
/**
* A Linux sub-timer.
*/
typedef struct RTTIMERLNXSUBTIMER
{
/** The linux timer structure. */
#ifdef RT_USE_LINUX_HRTIMER
struct hrtimer LnxTimer;
#else
struct timer_list LnxTimer;
#endif
/** The start of the current run (ns).
* This is used to calculate when the timer ought to fire the next time. */
uint64_t u64StartTS;
/** The start of the current run (ns).
* This is used to calculate when the timer ought to fire the next time. */
uint64_t u64NextTS;
/** The current tick number (since u64StartTS). */
uint64_t iTick;
/** Pointer to the parent timer. */
PRTTIMER pParent;
#ifndef RT_USE_LINUX_HRTIMER
/** The u64NextTS in jiffies. */
unsigned long ulNextJiffies;
#endif
/** The current sub-timer state. */
RTTIMERLNXSTATE volatile enmState;
} RTTIMERLNXSUBTIMER;
/** Pointer to a linux sub-timer. */
typedef RTTIMERLNXSUBTIMER *PRTTIMERLNXSUBTIMER;
AssertCompileMemberOffset(RTTIMERLNXSUBTIMER, LnxTimer, 0);
/**
* The internal representation of an Linux timer handle.
*/
typedef struct RTTIMER
{
/** Magic.
* This is RTTIMER_MAGIC, but changes to something else before the timer
* is destroyed to indicate clearly that thread should exit. */
uint32_t volatile u32Magic;
/** Spinlock synchronizing the fSuspended and MP event handling.
* This is NIL_RTSPINLOCK if cCpus == 1. */
RTSPINLOCK hSpinlock;
/** Flag indicating that the timer is suspended. */
bool volatile fSuspended;
/** Whether the timer must run on one specific CPU or not. */
bool fSpecificCpu;
#ifdef CONFIG_SMP
/** Whether the timer must run on all CPUs or not. */
bool fAllCpus;
#endif /* else: All -> specific on non-SMP kernels */
/** The CPU it must run on if fSpecificCpu is set. */
RTCPUID idCpu;
/** The number of CPUs this timer should run on. */
RTCPUID cCpus;
/** Callback. */
PFNRTTIMER pfnTimer;
/** User argument. */
void *pvUser;
/** The timer interval. 0 if one-shot. */
uint64_t u64NanoInterval;
#ifndef RT_USE_LINUX_HRTIMER
/** This is set to the number of jiffies between ticks if the interval is
* an exact number of jiffies. */
unsigned long cJiffies;
#endif
/** Sub-timers.
* Normally there is just one, but for RTTIMER_FLAGS_CPU_ALL this will contain
* an entry for all possible cpus. In that case the index will be the same as
* for the RTCpuSet. */
RTTIMERLNXSUBTIMER aSubTimers[1];
} RTTIMER;
/**
* A rtTimerLinuxStartOnCpu and rtTimerLinuxStartOnCpu argument package.
*/
typedef struct RTTIMERLINUXSTARTONCPUARGS
{
/** The current time (RTTimeNanoTS). */
uint64_t u64Now;
/** When to start firing (delta). */
uint64_t u64First;
} RTTIMERLINUXSTARTONCPUARGS;
/** Pointer to a rtTimerLinuxStartOnCpu argument package. */
typedef RTTIMERLINUXSTARTONCPUARGS *PRTTIMERLINUXSTARTONCPUARGS;
/**
* Sets the state.
*/
DECLINLINE(void) rtTimerLnxSetState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState)
{
ASMAtomicWriteU32((uint32_t volatile *)penmState, enmNewState);
}
/**
* Sets the state if it has a certain value.
*
* @return true if xchg was done.
* @return false if xchg wasn't done.
*/
DECLINLINE(bool) rtTimerLnxCmpXchgState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState, RTTIMERLNXSTATE enmCurState)
{
return ASMAtomicCmpXchgU32((uint32_t volatile *)penmState, enmNewState, enmCurState);
}
/**
* Gets the state.
*/
DECLINLINE(RTTIMERLNXSTATE) rtTimerLnxGetState(RTTIMERLNXSTATE volatile *penmState)
{
return (RTTIMERLNXSTATE)ASMAtomicUoReadU32((uint32_t volatile *)penmState);
}
#ifdef RT_USE_LINUX_HRTIMER
/**
* Converts a nano second time stamp to ktime_t.
*
* ASSUMES RTTimeNanoTS() is implemented using ktime_get_ts().
*
* @returns ktime_t.
* @param cNanoSecs Nanoseconds.
*/
DECLINLINE(ktime_t) rtTimerLnxNanoToKt(uint64_t cNanoSecs)
{
/* With some luck the compiler optimizes the division out of this... (Bet it doesn't.) */
return ktime_set(cNanoSecs / 1000000000, cNanoSecs % 1000000000);
}
/**
* Converts ktime_t to a nano second time stamp.
*
* ASSUMES RTTimeNanoTS() is implemented using ktime_get_ts().
*
* @returns nano second time stamp.
* @param Kt ktime_t.
*/
DECLINLINE(uint64_t) rtTimerLnxKtToNano(ktime_t Kt)
{
return ktime_to_ns(Kt);
}
#else /* ! RT_USE_LINUX_HRTIMER */
/**
* Converts a nano second interval to jiffies.
*
* @returns Jiffies.
* @param cNanoSecs Nanoseconds.
*/
DECLINLINE(unsigned long) rtTimerLnxNanoToJiffies(uint64_t cNanoSecs)
{
/* this can be made even better... */
if (cNanoSecs > (uint64_t)TICK_NSEC * MAX_JIFFY_OFFSET)
return MAX_JIFFY_OFFSET;
#if ARCH_BITS == 32
if (RT_LIKELY(cNanoSecs <= UINT32_MAX))
return ((uint32_t)cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
#endif
return (cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
}
#endif
/**
* Starts a sub-timer (RTTimerStart).
*
* @param pSubTimer The sub-timer to start.
* @param u64Now The current timestamp (RTTimeNanoTS()).
* @param u64First The interval from u64Now to the first time the timer should fire.
*/
static void rtTimerLnxStartSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, uint64_t u64Now, uint64_t u64First)
{
/*
* Calc when it should start firing.
*/
uint64_t u64NextTS = u64Now + u64First;
pSubTimer->u64StartTS = u64NextTS;
pSubTimer->u64NextTS = u64NextTS;
pSubTimer->iTick = 0;
#ifdef RT_USE_LINUX_HRTIMER
hrtimer_start(&pSubTimer->LnxTimer, rtTimerLnxNanoToKt(u64NextTS), HRTIMER_MODE_ABS);
#else
{
unsigned long cJiffies = !u64First ? 0 : rtTimerLnxNanoToJiffies(u64First);
pSubTimer->ulNextJiffies = jiffies + cJiffies;
mod_timer(&pSubTimer->LnxTimer, pSubTimer->ulNextJiffies);
}
#endif
rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE);
}
/**
* Stops a sub-timer (RTTimerStart and rtTimerLinuxMpEvent()).
*
* @param pSubTimer The sub-timer.
*/
static void rtTimerLnxStopSubTimer(PRTTIMERLNXSUBTIMER pSubTimer)
{
#ifdef RT_USE_LINUX_HRTIMER
hrtimer_cancel(&pSubTimer->LnxTimer);
#else
if (timer_pending(&pSubTimer->LnxTimer))
del_timer_sync(&pSubTimer->LnxTimer);
#endif
rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
}
#ifdef RT_USE_LINUX_HRTIMER
/**
* Timer callback function.
* @returns HRTIMER_NORESTART or HRTIMER_RESTART depending on whether it's a one-shot or interval timer.
* @param pHrTimer Pointer to the sub-timer structure.
*/
static enum hrtimer_restart rtTimerLinuxCallback(struct hrtimer *pHrTimer)
#else
/**
* Timer callback function.
* @param ulUser Address of the sub-timer structure.
*/
static void rtTimerLinuxCallback(unsigned long ulUser)
#endif
{
#ifdef RT_USE_LINUX_HRTIMER
enum hrtimer_restart rc;
PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)pHrTimer;
#else
PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)ulUser;
#endif
PRTTIMER pTimer = pSubTimer->pParent;
/*
* Don't call the handler if the timer has been suspended.
* Also, when running on all CPUS, make sure we don't call out twice
* on a CPU because of timer migration.
*
* For the specific cpu case, we're just ignoring timer migration for now... (bad)
*/
if ( ASMAtomicUoReadBool(&pTimer->fSuspended)
#ifdef CONFIG_SMP
|| ( pTimer->fAllCpus
&& (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != RTMpCpuId())
#endif
)
{
rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_ACTIVE);
# ifdef RT_USE_LINUX_HRTIMER
rc = HRTIMER_NORESTART;
# endif
}
else if (!pTimer->u64NanoInterval)
{
/*
* One shot timer, stop it before dispatching it.
*/
if (pTimer->cCpus == 1)
ASMAtomicWriteBool(&pTimer->fSuspended, true);
rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_ACTIVE);
#ifdef RT_USE_LINUX_HRTIMER
rc = HRTIMER_NORESTART;
#else
/* detached before we're called, nothing to do for this case. */
#endif
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
}
else
{
/*
* Interval timer, calculate the next timeout and re-arm it.
*
* The first time around, we'll re-adjust the u64StartTS to
* try prevent some jittering if we were started at a bad time.
* This may of course backfire with highres timers...
*/
const uint64_t u64NanoTS = RTTimeNanoTS();
const uint64_t iTick = ++pSubTimer->iTick;
if (RT_UNLIKELY(iTick == 1))
{
#ifdef RT_USE_LINUX_HRTIMER
pSubTimer->u64StartTS = pSubTimer->u64NextTS = u64NanoTS;//rtTimerLnxKtToNano(pSubTimer->LnxTimer.base->softirq_time);
#else
pSubTimer->u64StartTS = pSubTimer->u64NextTS = u64NanoTS;
pSubTimer->ulNextJiffies = jiffies;
#endif
}
pSubTimer->u64NextTS += pTimer->u64NanoInterval;
#ifdef RT_USE_LINUX_HRTIMER
while (pSubTimer->u64NextTS < u64NanoTS)
pSubTimer->u64NextTS += pTimer->u64NanoInterval;
pSubTimer->LnxTimer.expires = rtTimerLnxNanoToKt(pSubTimer->u64NextTS);
rc = HRTIMER_RESTART;
#else
if (pTimer->cJiffies)
{
pSubTimer->ulNextJiffies += pTimer->cJiffies;
/* Prevent overflows when the jiffies counter wraps around.
* Special thanks to Ken Preslan for helping debugging! */
while (time_before(pSubTimer->ulNextJiffies, jiffies))
{
pSubTimer->ulNextJiffies += pTimer->cJiffies;
pSubTimer->u64NextTS += pTimer->u64NanoInterval;
}
}
else
{
while (pSubTimer->u64NextTS < u64NanoTS)
pSubTimer->u64NextTS += pTimer->u64NanoInterval;
pSubTimer->ulNextJiffies = jiffies + rtTimerLnxNanoToJiffies(pSubTimer->u64NextTS - u64NanoTS);
}
mod_timer(&pSubTimer->LnxTimer, pSubTimer->ulNextJiffies);
#endif
/*
* Run the timer.
*/
pTimer->pfnTimer(pTimer, pTimer->pvUser, iTick);
}
#ifdef RT_USE_LINUX_HRTIMER
return rc;
#endif
}
#ifdef CONFIG_SMP
/**
* Per-cpu callback function (RTMpOnAll/RTMpOnSpecific).
*
* @param idCpu The current CPU.
* @param pvUser1 Pointer to the timer.
* @param pvUser2 Pointer to the argument structure.
*/
static DECLCALLBACK(void) rtTimerLnxStartAllOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
PRTTIMER pTimer = (PRTTIMER)pvUser1;
Assert(idCpu < pTimer->cCpus);
rtTimerLnxStartSubTimer(&pTimer->aSubTimers[idCpu], pArgs->u64Now, pArgs->u64First);
}
/**
* Worker for RTTimerStart() that takes care of the ugly bit.s
*
* @returns RTTimerStart() return value.
* @param pTimer The timer.
* @param pArgs The argument structure.
*/
static int rtTimerLnxStartAll(PRTTIMER pTimer, PRTTIMERLINUXSTARTONCPUARGS pArgs)
{
RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
RTCPUID iCpu;
RTCPUSET OnlineSet;
RTCPUSET OnlineSet2;
int rc2;
/*
* Prepare all the sub-timers for the startup and then flag the timer
* as a whole as non-suspended, make sure we get them all before
* clearing fSuspended as the MP handler will be waiting on this
* should something happen while we're looping.
*/
RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
do
{
RTMpGetOnlineSet(&OnlineSet);
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
{
Assert(pTimer->aSubTimers[iCpu].enmState != RTTIMERLNXSTATE_MP_STOPPING);
rtTimerLnxSetState(&pTimer->aSubTimers[iCpu].enmState,
RTCpuSetIsMember(&OnlineSet, iCpu)
? RTTIMERLNXSTATE_STARTING
: RTTIMERLNXSTATE_STOPPED);
}
} while (!RTCpuSetIsEqual(&OnlineSet, RTMpGetOnlineSet(&OnlineSet2)));
ASMAtomicWriteBool(&pTimer->fSuspended, false);
RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
/*
* Start them (can't find any exported function that allows me to
* do this without the cross calls).
*/
pArgs->u64Now = RTTimeNanoTS();
rc2 = RTMpOnAll(rtTimerLnxStartAllOnCpu, pTimer, pArgs);
AssertRC(rc2); /* screw this if it fails. */
/*
* Reset the sub-timers who didn't start up (ALL CPUs case).
* CPUs that comes online between the
*/
RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_STARTING))
{
/** @todo very odd case for a rainy day. Cpus that temporarily went offline while
* we were between calls needs to nudged as the MP handler will ignore events for
* them because of the STARTING state. This is an extremely unlikely case - not that
* that means anything in my experience... ;-) */
}
RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
return VINF_SUCCESS;
}
/**
* Worker for RTTimerStop() that takes care of the ugly SMP bits.
*
* @returns RTTimerStop() return value.
* @param pTimer The timer (valid).
*/
static int rtTimerLnxStopAll(PRTTIMER pTimer)
{
RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
RTCPUID iCpu;
/*
* Mark the timer as suspended and flag all timers as stopping, except
* for those being stopped by an MP event.
*/
RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
ASMAtomicWriteBool(&pTimer->fSuspended, true);
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
{
RTTIMERLNXSTATE enmState;
do
{
enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
if ( enmState == RTTIMERLNXSTATE_STOPPED
|| enmState == RTTIMERLNXSTATE_MP_STOPPING)
break;
Assert(enmState == RTTIMERLNXSTATE_ACTIVE);
} while (!rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPING, enmState));
}
RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
/*
* Do the actual stopping. Fortunately, this doesn't require any IPIs.
* Unfortunately it cannot be done synchronously from within the spinlock,
* because we might end up in an active waiting for a handler to complete.
*/
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) == RTTIMERLNXSTATE_STOPPING)
rtTimerLnxStopSubTimer(&pTimer->aSubTimers[iCpu]);
return VINF_SUCCESS;
}
/**
* Per-cpu callback function (RTMpOnSpecific) used by rtTimerLinuxMpEvent()
* to start a sub-timer on a cpu that just have come online.
*
* @param idCpu The current CPU.
* @param pvUser1 Pointer to the timer.
* @param pvUser2 Pointer to the argument structure.
*/
static DECLCALLBACK(void) rtTimerLinuxMpStartOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
PRTTIMER pTimer = (PRTTIMER)pvUser1;
RTSPINLOCK hSpinlock;
Assert(idCpu < pTimer->cCpus);
/*
* We have to be kind of careful here as we might be racing RTTimerStop
* (and/or RTTimerDestroy, thus the paranoia.
*/
hSpinlock = pTimer->hSpinlock;
if ( hSpinlock != NIL_RTSPINLOCK
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
RTSpinlockAcquire(hSpinlock, &Tmp);
if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
/* We're sane and the timer is not suspended yet. */
PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
rtTimerLnxStartSubTimer(pSubTimer, pArgs->u64Now, pArgs->u64First);
}
RTSpinlockRelease(hSpinlock, &Tmp);
}
}
/**
* MP event notification callback.
*
* @param enmEvent The event.
* @param idCpu The cpu it applies to.
* @param pvUser The timer.
*/
static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
{
PRTTIMER pTimer = (PRTTIMER)pvUser;
PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
RTSPINLOCK hSpinlock;
RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER;
Assert(idCpu < pTimer->cCpus);
/*
* Some initial paranoia.
*/
if (pTimer->u32Magic != RTTIMER_MAGIC)
return;
hSpinlock = pTimer->hSpinlock;
if (hSpinlock == NIL_RTSPINLOCK)
return;
RTSpinlockAcquire(hSpinlock, &Tmp);
/* Is it active? */
if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
switch (enmEvent)
{
/*
* Try do it without leaving the spin lock, but if we have to, retake it
* when we're on the right cpu.
*/
case RTMPEVENT_ONLINE:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
{
RTTIMERLINUXSTARTONCPUARGS Args;
Args.u64Now = RTTimeNanoTS();
Args.u64First = 0;
if (RTMpCpuId() == idCpu)
rtTimerLnxStartSubTimer(pSubTimer, Args.u64Now, Args.u64First);
else
{
rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED); /* we'll recheck it. */
RTSpinlockRelease(hSpinlock, &Tmp);
RTMpOnSpecific(idCpu, rtTimerLinuxMpStartOnCpu, pTimer, &Args);
return; /* we've left the spinlock */
}
}
break;
/*
* The CPU is (going) offline, make sure the sub-timer is stopped.
*
* Linux will migrate it to a different CPU, but we don't want this. The
* timer function is checking for this.
*/
case RTMPEVENT_OFFLINE:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STOPPING, RTTIMERLNXSTATE_ACTIVE))
{
RTSpinlockRelease(hSpinlock, &Tmp);
rtTimerLnxStopSubTimer(pSubTimer);
return; /* we've left the spinlock */
}
break;
}
}
RTSpinlockRelease(hSpinlock, &Tmp);
}
#endif /* CONFIG_SMP */
/**
* Callback function use by RTTimerStart via RTMpOnSpecific to start
* a timer running on a specific CPU.
*
* @param idCpu The current CPU.
* @param pvUser1 Pointer to the timer.
* @param pvUser2 Pointer to the argument structure.
*/
static DECLCALLBACK(void) rtTimerLnxStartOnSpecificCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
PRTTIMER pTimer = (PRTTIMER)pvUser1;
rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], pArgs->u64Now, pArgs->u64First);
}
RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
RTTIMERLINUXSTARTONCPUARGS Args;
int rc2;
/*
* Validate.
*/
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
return VERR_TIMER_ACTIVE;
Args.u64First = u64First;
#ifdef CONFIG_SMP
/*
* Omnit timer?
*/
if (pTimer->fAllCpus)
return rtTimerLnxStartAll(pTimer, &Args);
#endif
/*
* Simple timer - Pretty straight forward.
*/
Args.u64Now = RTTimeNanoTS();
rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STARTING);
ASMAtomicWriteBool(&pTimer->fSuspended, false);
if (!pTimer->fSpecificCpu)
rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], Args.u64Now, Args.u64First);
else
{
rc2 = RTMpOnSpecific(pTimer->idCpu, rtTimerLnxStartOnSpecificCpu, pTimer, &Args);
if (RT_FAILURE(rc2))
{
/* Suspend it, the cpu id is probably invalid or offline. */
ASMAtomicWriteBool(&pTimer->fSuspended, true);
rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPED);
return rc2;
}
}
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerStart);
RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
/*
* Validate.
*/
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
if (ASMAtomicUoReadBool(&pTimer->fSuspended))
return VERR_TIMER_SUSPENDED;
#ifdef CONFIG_SMP
/*
* Omni timer?
*/
if (pTimer->fAllCpus)
return rtTimerLnxStopAll(pTimer);
#endif
/*
* Simple timer.
*/
ASMAtomicWriteBool(&pTimer->fSuspended, true);
rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPING);
rtTimerLnxStopSubTimer(&pTimer->aSubTimers[0]);
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerStop);
RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
RTSPINLOCK hSpinlock;
/* It's ok to pass NULL pointer. */
if (pTimer == /*NIL_RTTIMER*/ NULL)
return VINF_SUCCESS;
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
/*
* Remove the MP notifications first because it'll reduce the risk of
* us overtaking any MP event that might theoretically be racing us here.
*/
hSpinlock = pTimer->hSpinlock;
#ifdef CONFIG_SMP
if ( pTimer->cCpus > 1
&& hSpinlock != NIL_RTSPINLOCK)
{
int rc = RTMpNotificationDeregister(rtTimerLinuxMpEvent, pTimer);
AssertRC(rc);
}
#endif /* CONFIG_SMP */
/*
* Stop the timer if it's running.
*/
if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
RTTimerStop(pTimer);
/*
* Uninitialize the structure and free the associated resources.
* The spinlock goes last.
*/
ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
RTMemFree(pTimer);
if (hSpinlock != NIL_RTSPINLOCK)
RTSpinlockDestroy(hSpinlock);
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerDestroy);
RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, unsigned fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
PRTTIMER pTimer;
RTCPUID iCpu;
unsigned cCpus;
*ppTimer = NULL;
/*
* Validate flags.
*/
if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
return VERR_INVALID_PARAMETER;
if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
&& (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
&& !RTMpIsCpuOnline(fFlags & RTTIMER_FLAGS_CPU_MASK))
return (fFlags & RTTIMER_FLAGS_CPU_MASK) > RTMpGetMaxCpuId()
? VERR_CPU_NOT_FOUND
: VERR_CPU_OFFLINE;
/*
* Allocate the timer handler.
*/
cCpus = 1;
#ifdef CONFIG_SMP
if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
{
cCpus = RTMpGetMaxCpuId() + 1;
Assert(cCpus <= RTCPUSET_MAX_CPUS); /* On linux we have a 1:1 relationship between cpuid and set index. */
AssertReturn(u64NanoInterval, VERR_NOT_IMPLEMENTED); /* We don't implement single shot on all cpus, sorry. */
}
#endif
pTimer = (PRTTIMER)RTMemAllocZ(RT_OFFSETOF(RTTIMER, aSubTimers[cCpus]));
if (!pTimer)
return VERR_NO_MEMORY;
/*
* Initialize it.
*/
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->hSpinlock = NIL_RTSPINLOCK;
pTimer->fSuspended = true;
#ifdef CONFIG_SMP
pTimer->fSpecificCpu = (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL;
pTimer->fAllCpus = (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL;
pTimer->idCpu = fFlags & RTTIMER_FLAGS_CPU_MASK;
#else
pTimer->fSpecificCpu = !!(fFlags & RTTIMER_FLAGS_CPU_SPECIFIC);
pTimer->idCpu = RTMpCpuId();
#endif
pTimer->cCpus = cCpus;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->u64NanoInterval = u64NanoInterval;
#ifndef RT_USE_LINUX_HRTIMER
pTimer->cJiffies = u64NanoInterval / RTTimerGetSystemGranularity();
if (pTimer->cJiffies * RTTimerGetSystemGranularity() != u64NanoInterval)
pTimer->cJiffies = 0;
#endif
for (iCpu = 0; iCpu < cCpus; iCpu++)
{
#ifdef RT_USE_LINUX_HRTIMER
hrtimer_init(&pTimer->aSubTimers[iCpu].LnxTimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
pTimer->aSubTimers[iCpu].LnxTimer.function = rtTimerLinuxCallback;
#else
init_timer(&pTimer->aSubTimers[iCpu].LnxTimer);
pTimer->aSubTimers[iCpu].LnxTimer.data = (unsigned long)&pTimer->aSubTimers[iCpu];
pTimer->aSubTimers[iCpu].LnxTimer.function = rtTimerLinuxCallback;
pTimer->aSubTimers[iCpu].LnxTimer.expires = jiffies;
#endif
pTimer->aSubTimers[iCpu].u64StartTS = 0;
pTimer->aSubTimers[iCpu].u64NextTS = 0;
pTimer->aSubTimers[iCpu].iTick = 0;
pTimer->aSubTimers[iCpu].pParent = pTimer;
pTimer->aSubTimers[iCpu].enmState = RTTIMERLNXSTATE_STOPPED;
}
#ifdef CONFIG_SMP
/*
* If this is running on ALL cpus, we'll have to register a callback
* for MP events (so timers can be started/stopped on cpus going
* online/offline). We also create the spinlock for syncrhonizing
* stop/start/mp-event.
*/
if (cCpus > 1)
{
int rc = RTSpinlockCreate(&pTimer->hSpinlock);
if (RT_SUCCESS(rc))
rc = RTMpNotificationRegister(rtTimerLinuxMpEvent, pTimer);
else
pTimer->hSpinlock = NIL_RTSPINLOCK;
if (RT_FAILURE(rc))
{
RTTimerDestroy(pTimer);
return rc;
}
}
#endif /* CONFIG_SMP */
*ppTimer = pTimer;
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerCreateEx);
RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
{
#ifdef RT_USE_LINUX_HRTIMER
struct timespec Ts;
int rc = hrtimer_get_res(CLOCK_MONOTONIC, &Ts);
if (!rc)
{
Assert(!Ts.tv_sec);
return Ts.tv_nsec;
}
#endif
return 1000000000 / HZ; /* ns */
}
RT_EXPORT_SYMBOL(RTTimerGetSystemGranularity);
RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
{
return VERR_NOT_SUPPORTED;
}
RT_EXPORT_SYMBOL(RTTimerRequestSystemGranularity);
RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
{
return VERR_NOT_SUPPORTED;
}
RT_EXPORT_SYMBOL(RTTimerReleaseSystemGranularity);