memobj-r0drv-linux.c revision c58f1213e628a545081c70e26c6b67a841cff880
/* $Revision$ */
/** @file
* IPRT - Ring-0 Memory Objects, Linux.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-linux-kernel.h"
#include <iprt/memobj.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/process.h>
#include <iprt/string.h>
#include "internal/memobj.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/* early 2.6 kernels */
#ifndef PAGE_SHARED_EXEC
# define PAGE_SHARED_EXEC PAGE_SHARED
#endif
#ifndef PAGE_READONLY_EXEC
# define PAGE_READONLY_EXEC PAGE_READONLY
#endif
/*
* 2.6.29+ kernels don't work with remap_pfn_range() anymore because
* track_pfn_vma_new() is apparently not defined for non-RAM pages.
* It should be safe to use vm_insert_page() older kernels as well.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
# define VBOX_USE_INSERT_PAGE
#endif
#if defined(CONFIG_X86_PAE) \
&& ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
|| ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
&& LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
# define VBOX_USE_PAE_HACK
#endif
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The Darwin version of the memory object structure.
*/
typedef struct RTR0MEMOBJLNX
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Set if the allocation is contiguous.
* This means it has to be given back as one chunk. */
bool fContiguous;
/** Set if we've vmap'ed the memory into ring-0. */
bool fMappedToRing0;
/** The pages in the apPages array. */
size_t cPages;
/** Array of struct page pointers. (variable size) */
struct page *apPages[1];
} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
/**
* Helper that converts from a RTR0PROCESS handle to a linux task.
*
* @returns The corresponding Linux task.
* @param R0Process IPRT ring-0 process handle.
*/
static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
{
/** @todo fix rtR0ProcessToLinuxTask!! */
/** @todo many (all?) callers currently assume that we return 'current'! */
return R0Process == RTR0ProcHandleSelf() ? current : NULL;
}
/**
* Compute order. Some functions allocate 2^order pages.
*
* @returns order.
* @param cPages Number of pages.
*/
static int rtR0MemObjLinuxOrder(size_t cPages)
{
int iOrder;
size_t cTmp;
for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
;
if (cPages & ~((size_t)1 << iOrder))
++iOrder;
return iOrder;
}
/**
* Converts from RTMEM_PROT_* to Linux PAGE_*.
*
* @returns Linux page protection constant.
* @param fProt The IPRT protection mask.
* @param fKernel Whether it applies to kernel or user space.
*/
static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
{
switch (fProt)
{
default:
AssertMsgFailed(("%#x %d\n", fProt, fKernel));
case RTMEM_PROT_NONE:
return PAGE_NONE;
case RTMEM_PROT_READ:
return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
case RTMEM_PROT_WRITE:
case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
return fKernel ? PAGE_KERNEL : PAGE_SHARED;
case RTMEM_PROT_EXEC:
case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
if (fKernel)
{
pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
pgprot_val(fPg) &= ~_PAGE_RW;
return fPg;
}
return PAGE_READONLY_EXEC;
#else
return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
#endif
case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
}
}
/**
* Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
* an empty user space mapping.
*
* We acquire the mmap_sem of the task!
*
* @returns Pointer to the mapping.
* (void *)-1 on failure.
* @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
* @param cb The size of the mapping.
* @param uAlignment The alignment of the mapping.
* @param pTask The Linux task to create this mapping in.
* @param fProt The RTMEM_PROT_* mask.
*/
static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
{
unsigned fLnxProt;
unsigned long ulAddr;
Assert((pTask == current)); /* do_mmap */
/*
* Convert from IPRT protection to mman.h PROT_ and call do_mmap.
*/
fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
if (fProt == RTMEM_PROT_NONE)
fLnxProt = PROT_NONE;
else
{
fLnxProt = 0;
if (fProt & RTMEM_PROT_READ)
fLnxProt |= PROT_READ;
if (fProt & RTMEM_PROT_WRITE)
fLnxProt |= PROT_WRITE;
if (fProt & RTMEM_PROT_EXEC)
fLnxProt |= PROT_EXEC;
}
if (R3PtrFixed != (RTR3PTR)-1)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
#else
down_write(&pTask->mm->mmap_sem);
ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
up_write(&pTask->mm->mmap_sem);
#endif
}
else
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
#else
down_write(&pTask->mm->mmap_sem);
ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
up_write(&pTask->mm->mmap_sem);
#endif
if ( !(ulAddr & ~PAGE_MASK)
&& (ulAddr & (uAlignment - 1)))
{
/** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
* up alignment gaps. This is of course complicated by fragmentation (which we might have cause
* ourselves) and further by there begin two mmap strategies (top / bottom). */
/* For now, just ignore uAlignment requirements... */
}
}
if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
return (void *)-1;
return (void *)ulAddr;
}
/**
* Worker that destroys a user space mapping.
* Undoes what rtR0MemObjLinuxDoMmap did.
*
* We acquire the mmap_sem of the task!
*
* @param pv The ring-3 mapping.
* @param cb The size of the mapping.
* @param pTask The Linux task to destroy this mapping in.
*/
static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
Assert(pTask == current);
vm_munmap((unsigned long)pv, cb);
#elif defined(USE_RHEL4_MUNMAP)
down_write(&pTask->mm->mmap_sem);
do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
up_write(&pTask->mm->mmap_sem);
#else
down_write(&pTask->mm->mmap_sem);
do_munmap(pTask->mm, (unsigned long)pv, cb);
up_write(&pTask->mm->mmap_sem);
#endif
}
/**
* Internal worker that allocates physical pages and creates the memory object for them.
*
* @returns IPRT status code.
* @param ppMemLnx Where to store the memory object pointer.
* @param enmType The object type.
* @param cb The number of bytes to allocate.
* @param uAlignment The alignment of the physical memory.
* Only valid if fContiguous == true, ignored otherwise.
* @param fFlagsLnx The page allocation flags (GPFs).
* @param fContiguous Whether the allocation must be contiguous.
* @param rcNoMem What to return when we're out of pages.
*/
static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
size_t uAlignment, unsigned fFlagsLnx, bool fContiguous, int rcNoMem)
{
size_t iPage;
size_t const cPages = cb >> PAGE_SHIFT;
struct page *paPages;
/*
* Allocate a memory object structure that's large enough to contain
* the page pointer array.
*/
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
pMemLnx->cPages = cPages;
if (cPages > 255)
{
# ifdef __GFP_REPEAT
/* Try hard to allocate the memory, but the allocation attempt might fail. */
fFlagsLnx |= __GFP_REPEAT;
# endif
# ifdef __GFP_NOMEMALLOC
/* Introduced with Linux 2.6.12: Don't use emergency reserves */
fFlagsLnx |= __GFP_NOMEMALLOC;
# endif
}
/*
* Allocate the pages.
* For small allocations we'll try contiguous first and then fall back on page by page.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if ( fContiguous
|| cb <= PAGE_SIZE * 2)
{
# ifdef VBOX_USE_INSERT_PAGE
paPages = alloc_pages(fFlagsLnx | __GFP_COMP, rtR0MemObjLinuxOrder(cPages));
# else
paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
# endif
if (paPages)
{
fContiguous = true;
for (iPage = 0; iPage < cPages; iPage++)
pMemLnx->apPages[iPage] = &paPages[iPage];
}
else if (fContiguous)
{
rtR0MemObjDelete(&pMemLnx->Core);
return rcNoMem;
}
}
if (!fContiguous)
{
for (iPage = 0; iPage < cPages; iPage++)
{
pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx);
if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
{
while (iPage-- > 0)
__free_page(pMemLnx->apPages[iPage]);
rtR0MemObjDelete(&pMemLnx->Core);
return rcNoMem;
}
}
}
#else /* < 2.4.22 */
/** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
if (!paPages)
{
rtR0MemObjDelete(&pMemLnx->Core);
return rcNoMem;
}
for (iPage = 0; iPage < cPages; iPage++)
{
pMemLnx->apPages[iPage] = &paPages[iPage];
MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
if (PageHighMem(pMemLnx->apPages[iPage]))
BUG();
}
fContiguous = true;
#endif /* < 2.4.22 */
pMemLnx->fContiguous = fContiguous;
/*
* Reserve the pages.
*/
for (iPage = 0; iPage < cPages; iPage++)
SetPageReserved(pMemLnx->apPages[iPage]);
/*
* Note that the physical address of memory allocated with alloc_pages(flags, order)
* is always 2^(PAGE_SHIFT+order)-aligned.
*/
if ( fContiguous
&& uAlignment > PAGE_SIZE)
{
/*
* Check for alignment constraints. The physical address of memory allocated with
* alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
*/
if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
{
/*
* This should never happen!
*/
printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
(unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
rtR0MemObjLinuxFreePages(pMemLnx);
return rcNoMem;
}
}
*ppMemLnx = pMemLnx;
return VINF_SUCCESS;
}
/**
* Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
*
* This method does NOT free the object.
*
* @param pMemLnx The object which physical pages should be freed.
*/
static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
{
size_t iPage = pMemLnx->cPages;
if (iPage > 0)
{
/*
* Restore the page flags.
*/
while (iPage-- > 0)
{
ClearPageReserved(pMemLnx->apPages[iPage]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
#else
MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
#endif
}
/*
* Free the pages.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if (!pMemLnx->fContiguous)
{
iPage = pMemLnx->cPages;
while (iPage-- > 0)
__free_page(pMemLnx->apPages[iPage]);
}
else
#endif
__free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
pMemLnx->cPages = 0;
}
}
/**
* Maps the allocation into ring-0.
*
* This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
*
* Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
* space, so we'll use that mapping if possible. If execute access is required, we'll
* play safe and do our own mapping.
*
* @returns IPRT status code.
* @param pMemLnx The linux memory object to map.
* @param fExecutable Whether execute access is required.
*/
static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
{
int rc = VINF_SUCCESS;
/*
* Choose mapping strategy.
*/
bool fMustMap = fExecutable
|| !pMemLnx->fContiguous;
if (!fMustMap)
{
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
if (PageHighMem(pMemLnx->apPages[iPage]))
{
fMustMap = true;
break;
}
}
Assert(!pMemLnx->Core.pv);
Assert(!pMemLnx->fMappedToRing0);
if (fMustMap)
{
/*
* Use vmap - 2.4.22 and later.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
pgprot_t fPg;
pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
# ifdef _PAGE_NX
if (!fExecutable)
pgprot_val(fPg) |= _PAGE_NX;
# endif
# ifdef VM_MAP
pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
# else
pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
# endif
if (pMemLnx->Core.pv)
pMemLnx->fMappedToRing0 = true;
else
rc = VERR_MAP_FAILED;
#else /* < 2.4.22 */
rc = VERR_NOT_SUPPORTED;
#endif
}
else
{
/*
* Use the kernel RAM mapping.
*/
pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
Assert(pMemLnx->Core.pv);
}
return rc;
}
/**
* Undoes what rtR0MemObjLinuxVMap() did.
*
* @param pMemLnx The linux memory object.
*/
static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if (pMemLnx->fMappedToRing0)
{
Assert(pMemLnx->Core.pv);
vunmap(pMemLnx->Core.pv);
pMemLnx->fMappedToRing0 = false;
}
#else /* < 2.4.22 */
Assert(!pMemLnx->fMappedToRing0);
#endif
pMemLnx->Core.pv = NULL;
}
DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
/*
* Release any memory that we've allocated or locked.
*/
switch (pMemLnx->Core.enmType)
{
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_CONT:
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_PHYS_NC:
rtR0MemObjLinuxVUnmap(pMemLnx);
rtR0MemObjLinuxFreePages(pMemLnx);
break;
case RTR0MEMOBJTYPE_LOCK:
if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
size_t iPage;
Assert(pTask);
if (pTask && pTask->mm)
down_read(&pTask->mm->mmap_sem);
iPage = pMemLnx->cPages;
while (iPage-- > 0)
{
if (!PageReserved(pMemLnx->apPages[iPage]))
SetPageDirty(pMemLnx->apPages[iPage]);
page_cache_release(pMemLnx->apPages[iPage]);
}
if (pTask && pTask->mm)
up_read(&pTask->mm->mmap_sem);
}
/* else: kernel memory - nothing to do here. */
break;
case RTR0MEMOBJTYPE_RES_VIRT:
Assert(pMemLnx->Core.pv);
if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
Assert(pTask);
if (pTask && pTask->mm)
rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
}
else
{
vunmap(pMemLnx->Core.pv);
Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
__free_page(pMemLnx->apPages[0]);
pMemLnx->apPages[0] = NULL;
pMemLnx->cPages = 0;
}
pMemLnx->Core.pv = NULL;
break;
case RTR0MEMOBJTYPE_MAPPING:
Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
Assert(pTask);
if (pTask && pTask->mm)
rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
}
else
vunmap(pMemLnx->Core.pv);
pMemLnx->Core.pv = NULL;
break;
default:
AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
return VERR_INTERNAL_ERROR;
}
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
false /* non-contiguous */, VERR_NO_MEMORY);
#else
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
false /* non-contiguous */, VERR_NO_MEMORY);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
*ppMem = &pMemLnx->Core;
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
/* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
/* ZONE_DMA32: 0-4GB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
false /* non-contiguous */, VERR_NO_LOW_MEMORY);
if (RT_FAILURE(rc))
#endif
#ifdef RT_ARCH_AMD64
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
false /* non-contiguous */, VERR_NO_LOW_MEMORY);
#else
# ifdef CONFIG_X86_PAE
# endif
/* ZONE_NORMAL: 0-896MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
false /* non-contiguous */, VERR_NO_LOW_MEMORY);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
*ppMem = &pMemLnx->Core;
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
/* ZONE_DMA32: 0-4GB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
true /* contiguous */, VERR_NO_CONT_MEMORY);
if (RT_FAILURE(rc))
#endif
#ifdef RT_ARCH_AMD64
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
true /* contiguous */, VERR_NO_CONT_MEMORY);
#else
/* ZONE_NORMAL (32-bit hosts): 0-896MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
true /* contiguous */, VERR_NO_CONT_MEMORY);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
#endif
pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
*ppMem = &pMemLnx->Core;
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
/**
* Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
*
* @returns IPRT status.
* @param ppMemLnx Where to
* @param enmType The object type.
* @param cb The size of the allocation.
* @param uAlignment The alignment of the physical memory.
* Only valid for fContiguous == true, ignored otherwise.
* @param PhysHighest See rtR0MemObjNativeAllocPhys.
* @param fGfp The Linux GFP flags to use for the allocation.
*/
static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
VERR_NO_PHYS_MEMORY);
if (RT_FAILURE(rc))
return rc;
/*
* Check the addresses if necessary. (Can be optimized a bit for PHYS.)
*/
if (PhysHighest != NIL_RTHCPHYS)
{
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
{
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
return VERR_NO_MEMORY;
}
}
/*
* Complete the object.
*/
if (enmType == RTR0MEMOBJTYPE_PHYS)
{
pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
pMemLnx->Core.u.Phys.fAllocated = true;
}
*ppMem = &pMemLnx->Core;
return rc;
}
/**
* Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
*
* @returns IPRT status.
* @param ppMem Where to store the memory object pointer on success.
* @param enmType The object type.
* @param cb The size of the allocation.
* @param uAlignment The alignment of the physical memory.
* Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
* @param PhysHighest See rtR0MemObjNativeAllocPhys.
*/
static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
{
int rc;
/*
* There are two clear cases and that's the <=16MB and anything-goes ones.
* When the physical address limit is somewhere in-between those two we'll
* just have to try, starting with HIGHUSER and working our way thru the
* different types, hoping we'll get lucky.
*
* We should probably move this physical address restriction logic up to
* the page alloc function as it would be more efficient there. But since
* we don't expect this to be a performance issue just yet it can wait.
*/
if (PhysHighest == NIL_RTHCPHYS)
/* ZONE_HIGHMEM: the whole physical memory */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
else if (PhysHighest <= _1M * 16)
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
else
{
rc = VERR_NO_MEMORY;
if (RT_FAILURE(rc))
/* ZONE_HIGHMEM: the whole physical memory */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
if (RT_FAILURE(rc))
/* ZONE_NORMAL: 0-896MB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
#ifdef GFP_DMA32
if (RT_FAILURE(rc))
/* ZONE_DMA32: 0-4GB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
#endif
if (RT_FAILURE(rc))
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
}
return rc;
}
/**
* Translates a kernel virtual address to a linux page structure by walking the
* page tables.
*
* @note We do assume that the page tables will not change as we are walking
* them. This assumption is rather forced by the fact that I could not
* immediately see any way of preventing this from happening. So, we
* take some extra care when accessing them.
*
* Because of this, we don't want to use this function on memory where
* attribute changes to nearby pages is likely to cause large pages to
* be used or split up. So, don't use this for the linear mapping of
* physical memory.
*
* @returns Pointer to the page structur or NULL if it could not be found.
* @param pv The kernel virtual address.
*/
static struct page *rtR0MemObjLinuxVirtToPage(void *pv)
{
unsigned long ulAddr = (unsigned long)pv;
unsigned long pfn;
struct page *pPage;
pte_t *pEntry;
union
{
pgd_t Global;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
pud_t Upper;
#endif
pmd_t Middle;
pte_t Entry;
} u;
/* Should this happen in a situation this code will be called in? And if
* so, can it change under our feet? See also
* "Documentation/vm/active_mm.txt" in the kernel sources. */
if (RT_UNLIKELY(!current->active_mm))
return NULL;
u.Global = *pgd_offset(current->active_mm, ulAddr);
if (RT_UNLIKELY(pgd_none(u.Global)))
return NULL;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
u.Upper = *pud_offset(&u.Global, ulAddr);
if (RT_UNLIKELY(pud_none(u.Upper)))
return NULL;
# if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
if (pud_large(u.Upper))
{
pPage = pud_page(u.Upper);
AssertReturn(pPage, NULL);
pfn = page_to_pfn(pPage); /* doing the safe way... */
pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
return pfn_to_page(pfn);
}
# endif
u.Middle = *pmd_offset(&u.Upper, ulAddr);
#else /* < 2.6.11 */
u.Middle = *pmd_offset(&u.Global, ulAddr);
#endif /* < 2.6.11 */
if (RT_UNLIKELY(pmd_none(u.Middle)))
return NULL;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
if (pmd_large(u.Middle))
{
pPage = pmd_page(u.Middle);
AssertReturn(pPage, NULL);
pfn = page_to_pfn(pPage); /* doing the safe way... */
pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
return pfn_to_page(pfn);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
pEntry = pte_offset_map(&u.Middle, ulAddr);
#else
pEntry = pte_offset(&u.Middle, ulAddr);
#endif
if (RT_UNLIKELY(!pEntry))
return NULL;
u.Entry = *pEntry;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map)
pte_unmap(pEntry);
#endif
if (RT_UNLIKELY(!pte_present(u.Entry)))
return NULL;
return pte_page(u.Entry);
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
}
DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
{
/*
* All we need to do here is to validate that we can use
* ioremap on the specified address (32/64-bit dma_addr_t).
*/
PRTR0MEMOBJLNX pMemLnx;
dma_addr_t PhysAddr = Phys;
AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
pMemLnx->Core.u.Phys.fAllocated = false;
pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
Assert(!pMemLnx->cPages);
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
{
const int cPages = cb >> PAGE_SHIFT;
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
struct vm_area_struct **papVMAs;
PRTR0MEMOBJLNX pMemLnx;
int rc = VERR_NO_MEMORY;
int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
/*
* Check for valid task and size overflows.
*/
if (!pTask)
return VERR_NOT_SUPPORTED;
if (((size_t)cPages << PAGE_SHIFT) != cb)
return VERR_OUT_OF_RANGE;
/*
* Allocate the memory object and a temporary buffer for the VMAs.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
if (papVMAs)
{
down_read(&pTask->mm->mmap_sem);
/*
* Get user pages.
*/
rc = get_user_pages(pTask, /* Task for fault accounting. */
pTask->mm, /* Whose pages. */
R3Ptr, /* Where from. */
cPages, /* How many pages. */
fWrite, /* Write to memory. */
fWrite, /* force write access. */
&pMemLnx->apPages[0], /* Page array. */
papVMAs); /* vmas */
if (rc == cPages)
{
/*
* Flush dcache (required?), protect against fork and _really_ pin the page
* table entries. get_user_pages() will protect against swapping out the
* pages but it will NOT protect against removing page table entries. This
* can be achieved with
* - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
* an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
* Usual Linux distributions support only a limited size of locked pages
* (e.g. 32KB).
* - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
* or by
* - setting the VM_LOCKED flag. This is the same as doing mlock() without
* a range check.
*/
/** @todo The Linux fork() protection will require more work if this API
* is to be used for anything but locking VM pages. */
while (rc-- > 0)
{
flush_dcache_page(pMemLnx->apPages[rc]);
papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
}
up_read(&pTask->mm->mmap_sem);
RTMemFree(papVMAs);
pMemLnx->Core.u.Lock.R0Process = R0Process;
pMemLnx->cPages = cPages;
Assert(!pMemLnx->fMappedToRing0);
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
/*
* Failed - we need to unlock any pages that we succeeded to lock.
*/
while (rc-- > 0)
{
if (!PageReserved(pMemLnx->apPages[rc]))
SetPageDirty(pMemLnx->apPages[rc]);
page_cache_release(pMemLnx->apPages[rc]);
}
up_read(&pTask->mm->mmap_sem);
RTMemFree(papVMAs);
rc = VERR_LOCK_FAILED;
}
rtR0MemObjDelete(&pMemLnx->Core);
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
void *pvLast = (uint8_t *)pv + cb - 1;
size_t const cPages = cb >> PAGE_SHIFT;
PRTR0MEMOBJLNX pMemLnx;
bool fLinearMapping;
int rc;
uint8_t *pbPage;
size_t iPage;
NOREF(fAccess);
if ( !RTR0MemKernelIsValidAddr(pv)
|| !RTR0MemKernelIsValidAddr(pv + cb))
return VERR_INVALID_PARAMETER;
/*
* The lower part of the kernel memory has a linear mapping between
* physical and virtual addresses. So we take a short cut here. This is
* assumed to be the cleanest way to handle those addresses (and the code
* is well tested, though the test for determining it is not very nice).
* If we ever decide it isn't we can still remove it.
*/
#if 0
fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
#else
fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
&& (unsigned long)pvLast < (unsigned long)high_memory;
#endif
/*
* Allocate the memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
/*
* Gather the pages.
* We ASSUME all kernel pages are non-swappable and non-movable.
*/
rc = VINF_SUCCESS;
pbPage = (uint8_t *)pvLast;
iPage = cPages;
if (!fLinearMapping)
{
while (iPage-- > 0)
{
struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
if (RT_UNLIKELY(!pPage))
{
rc = VERR_LOCK_FAILED;
break;
}
pMemLnx->apPages[iPage] = pPage;
pbPage -= PAGE_SIZE;
}
}
else
{
while (iPage-- > 0)
{
pMemLnx->apPages[iPage] = virt_to_page(pbPage);
pbPage -= PAGE_SIZE;
}
}
if (RT_SUCCESS(rc))
{
/*
* Complete the memory object and return.
*/
pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
pMemLnx->cPages = cPages;
Assert(!pMemLnx->fMappedToRing0);
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemLnx->Core);
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
const size_t cPages = cb >> PAGE_SHIFT;
struct page *pDummyPage;
struct page **papPages;
/* check for unsupported stuff. */
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/*
* Allocate a dummy page and create a page pointer array for vmap such that
* the dummy page is mapped all over the reserved area.
*/
pDummyPage = alloc_page(GFP_HIGHUSER);
if (!pDummyPage)
return VERR_NO_MEMORY;
papPages = RTMemAlloc(sizeof(*papPages) * cPages);
if (papPages)
{
void *pv;
size_t iPage = cPages;
while (iPage-- > 0)
papPages[iPage] = pDummyPage;
# ifdef VM_MAP
pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
# else
pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
# endif
RTMemFree(papPages);
if (pv)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
if (pMemLnx)
{
pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
pMemLnx->cPages = 1;
pMemLnx->apPages[0] = pDummyPage;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
vunmap(pv);
}
}
__free_page(pDummyPage);
return VERR_NO_MEMORY;
#else /* < 2.4.22 */
/*
* Could probably use ioremap here, but the caller is in a better position than us
* to select some safe physical memory.
*/
return VERR_NOT_SUPPORTED;
#endif
}
DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
PRTR0MEMOBJLNX pMemLnx;
void *pv;
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
if (!pTask)
return VERR_NOT_SUPPORTED;
/*
* Check that the specified alignment is supported.
*/
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/*
* Let rtR0MemObjLinuxDoMmap do the difficult bits.
*/
pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
if (pv == (void *)-1)
return VERR_NO_MEMORY;
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
if (!pMemLnx)
{
rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
return VERR_NO_MEMORY;
}
pMemLnx->Core.u.ResVirt.R0Process = R0Process;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub)
{
int rc = VERR_NO_MEMORY;
PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
PRTR0MEMOBJLNX pMemLnx;
/* Fail if requested to do something we can't. */
AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/*
* Create the IPRT memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
if (pMemLnx)
{
if (pMemLnxToMap->cPages)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
/*
* Use vmap - 2.4.22 and later.
*/
pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
# ifdef VM_MAP
pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
# else
pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
# endif
if (pMemLnx->Core.pv)
{
pMemLnx->fMappedToRing0 = true;
rc = VINF_SUCCESS;
}
else
rc = VERR_MAP_FAILED;
#else /* < 2.4.22 */
/*
* Only option here is to share mappings if possible and forget about fProt.
*/
if (rtR0MemObjIsRing3(pMemToMap))
rc = VERR_NOT_SUPPORTED;
else
{
rc = VINF_SUCCESS;
if (!pMemLnxToMap->Core.pv)
rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
if (RT_SUCCESS(rc))
{
Assert(pMemLnxToMap->Core.pv);
pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
}
}
#endif
}
else
{
/*
* MMIO / physical memory.
*/
Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
: ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
if (pMemLnx->Core.pv)
{
/** @todo fix protection. */
rc = VINF_SUCCESS;
}
}
if (RT_SUCCESS(rc))
{
pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
#ifdef VBOX_USE_PAE_HACK
/**
* Replace the PFN of a PTE with the address of the actual page.
*
* The caller maps a reserved dummy page at the address with the desired access
* and flags.
*
* This hack is required for older Linux kernels which don't provide
* remap_pfn_range().
*
* @returns 0 on success, -ENOMEM on failure.
* @param mm The memory context.
* @param ulAddr The mapping address.
* @param Phys The physical address of the page to map.
*/
static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
{
int rc = -ENOMEM;
pgd_t *pgd;
spin_lock(&mm->page_table_lock);
pgd = pgd_offset(mm, ulAddr);
if (!pgd_none(*pgd) && !pgd_bad(*pgd))
{
pmd_t *pmd = pmd_offset(pgd, ulAddr);
if (!pmd_none(*pmd))
{
pte_t *ptep = pte_offset_map(pmd, ulAddr);
if (ptep)
{
pte_t pte = *ptep;
pte.pte_high &= 0xfff00000;
pte.pte_high |= ((Phys >> 32) & 0x000fffff);
pte.pte_low &= 0x00000fff;
pte.pte_low |= (Phys & 0xfffff000);
set_pte(ptep, pte);
pte_unmap(ptep);
rc = 0;
}
}
}
spin_unlock(&mm->page_table_lock);
return rc;
}
#endif /* VBOX_USE_PAE_HACK */
DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed,
size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
int rc = VERR_NO_MEMORY;
PRTR0MEMOBJLNX pMemLnx;
#ifdef VBOX_USE_PAE_HACK
struct page *pDummyPage;
RTHCPHYS DummyPhys;
#endif
/*
* Check for restrictions.
*/
if (!pTask)
return VERR_NOT_SUPPORTED;
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
#ifdef VBOX_USE_PAE_HACK
/*
* Allocate a dummy page for use when mapping the memory.
*/
pDummyPage = alloc_page(GFP_USER);
if (!pDummyPage)
return VERR_NO_MEMORY;
SetPageReserved(pDummyPage);
DummyPhys = page_to_phys(pDummyPage);
#endif
/*
* Create the IPRT memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
if (pMemLnx)
{
/*
* Allocate user space mapping.
*/
void *pv;
pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
if (pv != (void *)-1)
{
/*
* Map page by page into the mmap area.
* This is generic, paranoid and not very efficient.
*/
pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
unsigned long ulAddrCur = (unsigned long)pv;
const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
size_t iPage;
down_write(&pTask->mm->mmap_sem);
rc = VINF_SUCCESS;
if (pMemLnxToMap->cPages)
{
for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
/* remap_page_range() limitation on x86 */
AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
#endif
#if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
/* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
* See remap_pfn_range() in mm/memory.c */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
#else
vma->vm_flags |= VM_RESERVED;
#endif
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
#elif defined(VBOX_USE_PAE_HACK)
rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
if (!rc)
rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#else /* 2.4 */
rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
#endif
if (rc)
{
rc = VERR_NO_MEMORY;
break;
}
}
}
else
{
RTHCPHYS Phys;
if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
Phys = pMemLnxToMap->Core.u.Cont.Phys;
else
{
AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
Phys = NIL_RTHCPHYS;
}
if (Phys != NIL_RTHCPHYS)
{
for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
/* remap_page_range() limitation on x86 */
AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#elif defined(VBOX_USE_PAE_HACK)
rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
if (!rc)
rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#else /* 2.4 */
rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
#endif
if (rc)
{
rc = VERR_NO_MEMORY;
break;
}
}
}
}
up_write(&pTask->mm->mmap_sem);
if (RT_SUCCESS(rc))
{
#ifdef VBOX_USE_PAE_HACK
__free_page(pDummyPage);
#endif
pMemLnx->Core.pv = pv;
pMemLnx->Core.u.Mapping.R0Process = R0Process;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
/*
* Bail out.
*/
rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask);
}
rtR0MemObjDelete(&pMemLnx->Core);
}
#ifdef VBOX_USE_PAE_HACK
__free_page(pDummyPage);
#endif
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
NOREF(pMem);
NOREF(offSub);
NOREF(cbSub);
NOREF(fProt);
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
if (pMemLnx->cPages)
return page_to_phys(pMemLnx->apPages[iPage]);
switch (pMemLnx->Core.enmType)
{
case RTR0MEMOBJTYPE_CONT:
return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS:
return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
/* the parent knows */
case RTR0MEMOBJTYPE_MAPPING:
return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
/* cPages > 0 */
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_LOCK:
case RTR0MEMOBJTYPE_PHYS_NC:
case RTR0MEMOBJTYPE_PAGE:
default:
AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
/* fall thru */
case RTR0MEMOBJTYPE_RES_VIRT:
return NIL_RTHCPHYS;
}
}