alloc-r0drv-linux.c revision 437a23933c78f7ba06f4a746543db53d15fba9fe
/* $Id$ */
/** @file
* IPRT - Memory Allocation, Ring-0 Driver, Linux.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-linux-kernel.h"
#include "internal/iprt.h"
#include <iprt/mem.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include "r0drv/alloc-r0drv.h"
#if (defined(RT_ARCH_AMD64) || defined(DOXYGEN_RUNNING)) && !defined(RTMEMALLOC_EXEC_HEAP)
# if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
/**
* Starting with 2.6.23 we can use __get_vm_area and map_vm_area to allocate
* memory in the moduel range. This is preferrable to the exec heap below.
*/
# define RTMEMALLOC_EXEC_VM_AREA
# else
/**
* We need memory in the module range (~2GB to ~0) this can only be obtained
* thru APIs that are not exported (see module_alloc()).
*
* So, we'll have to create a quick and dirty heap here using BSS memory.
* Very annoying and it's going to restrict us!
*/
# define RTMEMALLOC_EXEC_HEAP
# endif
#endif
#ifdef RTMEMALLOC_EXEC_HEAP
# include <iprt/heap.h>
# include <iprt/spinlock.h>
# include <iprt/err.h>
#endif
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
#ifdef RTMEMALLOC_EXEC_VM_AREA
/**
* Extended header used for headers marked with RTMEMHDR_FLAG_EXEC_VM_AREA.
*
* This is used with allocating executable memory, for things like generated
* code and loaded modules.
*/
typedef struct RTMEMLNXHDREX
{
/** The VM area for this allocation. */
struct vm_struct *pVmArea;
void *pvDummy;
/** The header we present to the generic API. */
RTMEMHDR Hdr;
} RTMEMLNXHDREX;
AssertCompileSize(RTMEMLNXHDREX, 32);
/** Pointer to an extended memory header. */
typedef RTMEMLNXHDREX *PRTMEMLNXHDREX;
#endif
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef RTMEMALLOC_EXEC_HEAP
/** The heap. */
static RTHEAPSIMPLE g_HeapExec = NIL_RTHEAPSIMPLE;
/** Spinlock protecting the heap. */
static RTSPINLOCK g_HeapExecSpinlock = NIL_RTSPINLOCK;
#endif
/**
* API for cleaning up the heap spinlock on IPRT termination.
* This is as RTMemExecDonate specific to AMD64 Linux/GNU.
*/
DECLHIDDEN(void) rtR0MemExecCleanup(void)
{
#ifdef RTMEMALLOC_EXEC_HEAP
RTSpinlockDestroy(g_HeapExecSpinlock);
g_HeapExecSpinlock = NIL_RTSPINLOCK;
#endif
}
/**
* Donate read+write+execute memory to the exec heap.
*
* This API is specific to AMD64 and Linux/GNU. A kernel module that desires to
* use RTMemExecAlloc on AMD64 Linux/GNU will have to donate some statically
* allocated memory in the module if it wishes for GCC generated code to work.
* GCC can only generate modules that work in the address range ~2GB to ~0
* currently.
*
* The API only accept one single donation.
*
* @returns IPRT status code.
* @retval VERR_NOT_SUPPORTED if the code isn't enabled.
* @param pvMemory Pointer to the memory block.
* @param cb The size of the memory block.
*/
RTR0DECL(int) RTR0MemExecDonate(void *pvMemory, size_t cb)
{
#ifdef RTMEMALLOC_EXEC_HEAP
int rc;
AssertReturn(g_HeapExec == NIL_RTHEAPSIMPLE, VERR_WRONG_ORDER);
rc = RTSpinlockCreate(&g_HeapExecSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTR0MemExecDonate");
if (RT_SUCCESS(rc))
{
rc = RTHeapSimpleInit(&g_HeapExec, pvMemory, cb);
if (RT_FAILURE(rc))
rtR0MemExecCleanup();
}
return rc;
#else
return VERR_NOT_SUPPORTED;
#endif
}
RT_EXPORT_SYMBOL(RTR0MemExecDonate);
#ifdef RTMEMALLOC_EXEC_VM_AREA
/**
* Allocate executable kernel memory in the module range.
*
* @returns Pointer to a allocation header success. NULL on failure.
*
* @param cb The size the user requested.
*/
static PRTMEMHDR rtR0MemAllocExecVmArea(size_t cb)
{
size_t const cbAlloc = RT_ALIGN_Z(sizeof(RTMEMLNXHDREX) + cb, PAGE_SIZE);
size_t const cPages = cbAlloc >> PAGE_SHIFT;
struct page **papPages;
struct vm_struct *pVmArea;
size_t iPage;
pVmArea = __get_vm_area(cbAlloc, VM_ALLOC, MODULES_VADDR, MODULES_END);
if (!pVmArea)
return NULL;
pVmArea->nr_pages = 0; /* paranoia? */
pVmArea->pages = NULL; /* paranoia? */
papPages = (struct page **)kmalloc(cPages * sizeof(papPages[0]), GFP_KERNEL);
if (!papPages)
{
vunmap(pVmArea->addr);
return NULL;
}
for (iPage = 0; iPage < cPages; iPage++)
{
papPages[iPage] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN);
if (!papPages[iPage])
break;
}
if (iPage == cPages)
{
/*
* Map the pages. The API requires an iterator argument, which can be
* used, in case of failure, to figure out how much was actually
* mapped. Not sure how useful this really is, but whatever.
*
* Not entirely sure we really need to set nr_pages and pages here, but
* they provide a very convenient place for storing something we need
* in the free function, if nothing else...
*/
struct page **papPagesIterator = papPages;
pVmArea->nr_pages = cPages;
pVmArea->pages = papPages;
if (!map_vm_area(pVmArea, PAGE_KERNEL_EXEC, &papPagesIterator))
{
PRTMEMLNXHDREX pHdrEx = (PRTMEMLNXHDREX)pVmArea->addr;
pHdrEx->pVmArea = pVmArea;
pHdrEx->pvDummy = NULL;
return &pHdrEx->Hdr;
}
/* bail out */
pVmArea->nr_pages = papPagesIterator - papPages;
}
vunmap(pVmArea->addr);
while (iPage-- > 0)
__free_page(papPages[iPage]);
kfree(papPages);
return NULL;
}
#endif /* RTMEMALLOC_EXEC_VM_AREA */
/**
* OS specific allocation function.
*/
DECLHIDDEN(int) rtR0MemAllocEx(size_t cb, uint32_t fFlags, PRTMEMHDR *ppHdr)
{
PRTMEMHDR pHdr;
/*
* Allocate.
*/
if (fFlags & RTMEMHDR_FLAG_EXEC)
{
if (fFlags & RTMEMHDR_FLAG_ANY_CTX)
return VERR_NOT_SUPPORTED;
#if defined(RT_ARCH_AMD64)
# ifdef RTMEMALLOC_EXEC_HEAP
if (g_HeapExec != NIL_RTHEAPSIMPLE)
{
RTSpinlockAcquire(g_HeapExecSpinlock);
pHdr = (PRTMEMHDR)RTHeapSimpleAlloc(g_HeapExec, cb + sizeof(*pHdr), 0);
RTSpinlockRelease(g_HeapExecSpinlock);
fFlags |= RTMEMHDR_FLAG_EXEC_HEAP;
}
else
pHdr = NULL;
# elif defined(RTMEMALLOC_EXEC_VM_AREA)
pHdr = rtR0MemAllocExecVmArea(cb);
fFlags |= RTMEMHDR_FLAG_EXEC_VM_AREA;
# else /* !RTMEMALLOC_EXEC_HEAP */
# error "you don not want to go here..."
pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM, MY_PAGE_KERNEL_EXEC);
# endif /* !RTMEMALLOC_EXEC_HEAP */
#elif defined(PAGE_KERNEL_EXEC) && defined(CONFIG_X86_PAE)
pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM, MY_PAGE_KERNEL_EXEC);
#else
pHdr = (PRTMEMHDR)vmalloc(cb + sizeof(*pHdr));
#endif
}
else
{
if (
#if 1 /* vmalloc has serious performance issues, avoid it. */
cb <= PAGE_SIZE*16 - sizeof(*pHdr)
#else
cb <= PAGE_SIZE
#endif
|| (fFlags & RTMEMHDR_FLAG_ANY_CTX)
)
{
fFlags |= RTMEMHDR_FLAG_KMALLOC;
pHdr = kmalloc(cb + sizeof(*pHdr),
(fFlags & RTMEMHDR_FLAG_ANY_CTX_ALLOC) ? GFP_ATOMIC : GFP_KERNEL);
if (RT_UNLIKELY( !pHdr
&& cb > PAGE_SIZE
&& !(fFlags & RTMEMHDR_FLAG_ANY_CTX) ))
{
fFlags &= ~RTMEMHDR_FLAG_KMALLOC;
pHdr = vmalloc(cb + sizeof(*pHdr));
}
}
else
pHdr = vmalloc(cb + sizeof(*pHdr));
}
if (RT_UNLIKELY(!pHdr))
return VERR_NO_MEMORY;
/*
* Initialize.
*/
pHdr->u32Magic = RTMEMHDR_MAGIC;
pHdr->fFlags = fFlags;
pHdr->cb = cb;
pHdr->cbReq = cb;
*ppHdr = pHdr;
return VINF_SUCCESS;
}
/**
* OS specific free function.
*/
DECLHIDDEN(void) rtR0MemFree(PRTMEMHDR pHdr)
{
pHdr->u32Magic += 1;
if (pHdr->fFlags & RTMEMHDR_FLAG_KMALLOC)
kfree(pHdr);
#ifdef RTMEMALLOC_EXEC_HEAP
else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_HEAP)
{
RTSpinlockAcquire(g_HeapExecSpinlock);
RTHeapSimpleFree(g_HeapExec, pHdr);
RTSpinlockRelease(g_HeapExecSpinlock);
}
#endif
#ifdef RTMEMALLOC_EXEC_VM_AREA
else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_VM_AREA)
{
PRTMEMLNXHDREX pHdrEx = RT_FROM_MEMBER(pHdr, RTMEMLNXHDREX, Hdr);
size_t iPage = pHdrEx->pVmArea->nr_pages;
struct page **papPages = pHdrEx->pVmArea->pages;
void *pvMapping = pHdrEx->pVmArea->addr;
vunmap(pvMapping);
while (iPage-- > 0)
__free_page(papPages[iPage]);
kfree(papPages);
}
#endif
else
vfree(pHdr);
}
/**
* Compute order. Some functions allocate 2^order pages.
*
* @returns order.
* @param cPages Number of pages.
*/
static int CalcPowerOf2Order(unsigned long cPages)
{
int iOrder;
unsigned long cTmp;
for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
;
if (cPages & ~(1 << iOrder))
++iOrder;
return iOrder;
}
/**
* Allocates physical contiguous memory (below 4GB).
* The allocation is page aligned and the content is undefined.
*
* @returns Pointer to the memory block. This is page aligned.
* @param pPhys Where to store the physical address.
* @param cb The allocation size in bytes. This is always
* rounded up to PAGE_SIZE.
*/
RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb)
{
int cOrder;
unsigned cPages;
struct page *paPages;
/*
* validate input.
*/
Assert(VALID_PTR(pPhys));
Assert(cb > 0);
/*
* Allocate page pointer array.
*/
cb = RT_ALIGN_Z(cb, PAGE_SIZE);
cPages = cb >> PAGE_SHIFT;
cOrder = CalcPowerOf2Order(cPages);
#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
/* ZONE_DMA32: 0-4GB */
paPages = alloc_pages(GFP_DMA32 | __GFP_NOWARN, cOrder);
if (!paPages)
#endif
#ifdef RT_ARCH_AMD64
/* ZONE_DMA; 0-16MB */
paPages = alloc_pages(GFP_DMA | __GFP_NOWARN, cOrder);
#else
/* ZONE_NORMAL: 0-896MB */
paPages = alloc_pages(GFP_USER | __GFP_NOWARN, cOrder);
#endif
if (paPages)
{
/*
* Reserve the pages and mark them executable.
*/
unsigned iPage;
for (iPage = 0; iPage < cPages; iPage++)
{
Assert(!PageHighMem(&paPages[iPage]));
if (iPage + 1 < cPages)
{
AssertMsg( (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage])) + PAGE_SIZE
== (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage + 1]))
&& page_to_phys(&paPages[iPage]) + PAGE_SIZE
== page_to_phys(&paPages[iPage + 1]),
("iPage=%i cPages=%u [0]=%#llx,%p [1]=%#llx,%p\n", iPage, cPages,
(long long)page_to_phys(&paPages[iPage]), phys_to_virt(page_to_phys(&paPages[iPage])),
(long long)page_to_phys(&paPages[iPage + 1]), phys_to_virt(page_to_phys(&paPages[iPage + 1])) ));
}
SetPageReserved(&paPages[iPage]);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
MY_SET_PAGES_EXEC(&paPages[iPage], 1);
#endif
}
*pPhys = page_to_phys(paPages);
return phys_to_virt(page_to_phys(paPages));
}
return NULL;
}
RT_EXPORT_SYMBOL(RTMemContAlloc);
/**
* Frees memory allocated using RTMemContAlloc().
*
* @param pv Pointer to return from RTMemContAlloc().
* @param cb The cb parameter passed to RTMemContAlloc().
*/
RTR0DECL(void) RTMemContFree(void *pv, size_t cb)
{
if (pv)
{
int cOrder;
unsigned cPages;
unsigned iPage;
struct page *paPages;
/* validate */
AssertMsg(!((uintptr_t)pv & PAGE_OFFSET_MASK), ("pv=%p\n", pv));
Assert(cb > 0);
/* calc order and get pages */
cb = RT_ALIGN_Z(cb, PAGE_SIZE);
cPages = cb >> PAGE_SHIFT;
cOrder = CalcPowerOf2Order(cPages);
paPages = virt_to_page(pv);
/*
* Restore page attributes freeing the pages.
*/
for (iPage = 0; iPage < cPages; iPage++)
{
ClearPageReserved(&paPages[iPage]);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
MY_SET_PAGES_NOEXEC(&paPages[iPage], 1);
#endif
}
__free_pages(paPages, cOrder);
}
}
RT_EXPORT_SYMBOL(RTMemContFree);