alloc-r0drv-linux.c revision 077c71cbbf062c715b834bd6b0d5bd5ddd2ba170
/* $Id$ */
/** @file
* IPRT - Memory Allocation, Ring-0 Driver, Linux.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-linux-kernel.h"
#include "internal/iprt.h"
#include <iprt/mem.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include "r0drv/alloc-r0drv.h"
#if defined(RT_ARCH_AMD64) || defined(DOXYGEN_RUNNING)
/**
* We need memory in the module range (~2GB to ~0) this can only be obtained
* thru APIs that are not exported (see module_alloc()).
*
* So, we'll have to create a quick and dirty heap here using BSS memory.
* Very annoying and it's going to restrict us!
*/
# define RTMEMALLOC_EXEC_HEAP
#endif
#ifdef RTMEMALLOC_EXEC_HEAP
# include <iprt/heap.h>
# include <iprt/spinlock.h>
# include <iprt/err.h>
#endif
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef RTMEMALLOC_EXEC_HEAP
# ifdef CONFIG_DEBUG_SET_MODULE_RONX
# define RTMEMALLOC_EXEC_HEAP_VM_AREA 1
# endif
/** The heap. */
static RTHEAPSIMPLE g_HeapExec = NIL_RTHEAPSIMPLE;
/** Spinlock protecting the heap. */
static RTSPINLOCK g_HeapExecSpinlock = NIL_RTSPINLOCK;
# ifdef RTMEMALLOC_EXEC_HEAP_VM_AREA
static struct page **g_apPages;
static void *g_pvHeap;
static size_t g_cPages;
# endif
/**
* API for cleaning up the heap spinlock on IPRT termination.
* This is as RTMemExecDonate specific to AMD64 Linux/GNU.
*/
void rtR0MemExecCleanup(void)
{
# ifdef RTMEMALLOC_EXEC_HEAP_VM_AREA
unsigned i;
/* according to linux/drivers/lguest/core.c this function undoes
* map_vm_area() as well as __get_vm_area(). */
if (g_pvHeap)
vunmap(g_pvHeap);
for (i = 0; i < g_cPages; i++)
__free_page(g_apPages[i]);
kfree(g_apPages);
# endif
RTSpinlockDestroy(g_HeapExecSpinlock);
g_HeapExecSpinlock = NIL_RTSPINLOCK;
}
# ifndef RTMEMALLOC_EXEC_HEAP_VM_AREA
/**
* Donate read+write+execute memory to the exec heap.
*
* This API is specific to AMD64 and Linux/GNU. A kernel module that desires to
* use RTMemExecAlloc on AMD64 Linux/GNU will have to donate some statically
* allocated memory in the module if it wishes for GCC generated code to work.
* GCC can only generate modules that work in the address range ~2GB to ~0
* currently.
*
* The API only accept one single donation.
*
* @returns IPRT status code.
* @param pvMemory Pointer to the memory block.
* @param cb The size of the memory block.
*/
RTR0DECL(int) RTR0MemExecDonate(void *pvMemory, size_t cb)
{
int rc;
AssertReturn(g_HeapExec == NIL_RTHEAPSIMPLE, VERR_WRONG_ORDER);
rc = RTSpinlockCreate(&g_HeapExecSpinlock);
if (RT_SUCCESS(rc))
{
rc = RTHeapSimpleInit(&g_HeapExec, pvMemory, cb);
if (RT_FAILURE(rc))
rtR0MemExecCleanup();
}
return rc;
}
RT_EXPORT_SYMBOL(RTR0MemExecDonate);
# else /* !RTMEMALLOC_EXEC_HEAP_VM_AREA */
/**
* RTR0MemExecDonate() does not work if CONFIG_DEBUG_SET_MODULE_RONX is enabled.
* In that case, allocate a VM area in the modules range and back it with kernel
* memory. Unfortunately __vmalloc_area() is not exported so we have to emulate
* it.
*/
RTR0DECL(int) RTR0MemExecInit(size_t cb)
{
int rc;
struct vm_struct *area;
size_t cPages;
size_t cbPages;
unsigned i;
struct page **ppPages;
AssertReturn(g_HeapExec == NIL_RTHEAPSIMPLE, VERR_WRONG_ORDER);
rc = RTSpinlockCreate(&g_HeapExecSpinlock);
if (RT_SUCCESS(rc))
{
cb = RT_ALIGN(cb, PAGE_SIZE);
area = __get_vm_area(cb, VM_ALLOC, MODULES_VADDR, MODULES_END);
if (!area)
{
rtR0MemExecCleanup();
return VERR_NO_MEMORY;
}
g_pvHeap = area->addr;
cPages = cb >> PAGE_SHIFT;
area->nr_pages = 0;
cbPages = cPages * sizeof(struct page *);
g_apPages = kmalloc(cbPages, GFP_KERNEL);
area->pages = g_apPages;
if (!g_apPages)
{
rtR0MemExecCleanup();
return VERR_NO_MEMORY;
}
memset(area->pages, 0, cbPages);
for (i = 0; i < cPages; i++)
{
g_apPages[i] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
if (!g_apPages[i])
{
area->nr_pages = i;
g_cPages = i;
rtR0MemExecCleanup();
return VERR_NO_MEMORY;
}
}
area->nr_pages = cPages;
g_cPages = i;
ppPages = g_apPages;
if (map_vm_area(area, PAGE_KERNEL_EXEC, &ppPages))
{
rtR0MemExecCleanup();
return VERR_NO_MEMORY;
}
rc = RTHeapSimpleInit(&g_HeapExec, g_pvHeap, cb);
if (RT_FAILURE(rc))
rtR0MemExecCleanup();
}
return rc;
}
RT_EXPORT_SYMBOL(RTR0MemExecInit);
# endif /* RTMEMALLOC_EXEC_HEAP_VM_AREA */
#endif /* RTMEMALLOC_EXEC_HEAP */
/**
* OS specific allocation function.
*/
int rtR0MemAllocEx(size_t cb, uint32_t fFlags, PRTMEMHDR *ppHdr)
{
PRTMEMHDR pHdr;
/*
* Allocate.
*/
if (fFlags & RTMEMHDR_FLAG_EXEC)
{
if (fFlags & RTMEMHDR_FLAG_ANY_CTX)
return VERR_NOT_SUPPORTED;
#if defined(RT_ARCH_AMD64)
# ifdef RTMEMALLOC_EXEC_HEAP
if (g_HeapExec != NIL_RTHEAPSIMPLE)
{
RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
RTSpinlockAcquireNoInts(g_HeapExecSpinlock, &SpinlockTmp);
pHdr = (PRTMEMHDR)RTHeapSimpleAlloc(g_HeapExec, cb + sizeof(*pHdr), 0);
RTSpinlockReleaseNoInts(g_HeapExecSpinlock, &SpinlockTmp);
fFlags |= RTMEMHDR_FLAG_EXEC_HEAP;
}
else
pHdr = NULL;
# else /* !RTMEMALLOC_EXEC_HEAP */
pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM, MY_PAGE_KERNEL_EXEC);
# endif /* !RTMEMALLOC_EXEC_HEAP */
#elif defined(PAGE_KERNEL_EXEC) && defined(CONFIG_X86_PAE)
pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM, MY_PAGE_KERNEL_EXEC);
#else
pHdr = (PRTMEMHDR)vmalloc(cb + sizeof(*pHdr));
#endif
}
else
{
if (cb <= PAGE_SIZE || (fFlags & RTMEMHDR_FLAG_ANY_CTX))
{
fFlags |= RTMEMHDR_FLAG_KMALLOC;
pHdr = kmalloc(cb + sizeof(*pHdr),
(fFlags & RTMEMHDR_FLAG_ANY_CTX_ALLOC) ? GFP_ATOMIC : GFP_KERNEL);
}
else
pHdr = vmalloc(cb + sizeof(*pHdr));
}
if (RT_UNLIKELY(!pHdr))
return VERR_NO_MEMORY;
/*
* Initialize.
*/
pHdr->u32Magic = RTMEMHDR_MAGIC;
pHdr->fFlags = fFlags;
pHdr->cb = cb;
pHdr->cbReq = cb;
*ppHdr = pHdr;
return VINF_SUCCESS;
}
/**
* OS specific free function.
*/
void rtR0MemFree(PRTMEMHDR pHdr)
{
pHdr->u32Magic += 1;
if (pHdr->fFlags & RTMEMHDR_FLAG_KMALLOC)
kfree(pHdr);
#ifdef RTMEMALLOC_EXEC_HEAP
else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_HEAP)
{
RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
RTSpinlockAcquireNoInts(g_HeapExecSpinlock, &SpinlockTmp);
RTHeapSimpleFree(g_HeapExec, pHdr);
RTSpinlockReleaseNoInts(g_HeapExecSpinlock, &SpinlockTmp);
}
#endif
else
vfree(pHdr);
}
/**
* Compute order. Some functions allocate 2^order pages.
*
* @returns order.
* @param cPages Number of pages.
*/
static int CalcPowerOf2Order(unsigned long cPages)
{
int iOrder;
unsigned long cTmp;
for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
;
if (cPages & ~(1 << iOrder))
++iOrder;
return iOrder;
}
/**
* Allocates physical contiguous memory (below 4GB).
* The allocation is page aligned and the content is undefined.
*
* @returns Pointer to the memory block. This is page aligned.
* @param pPhys Where to store the physical address.
* @param cb The allocation size in bytes. This is always
* rounded up to PAGE_SIZE.
*/
RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb)
{
int cOrder;
unsigned cPages;
struct page *paPages;
/*
* validate input.
*/
Assert(VALID_PTR(pPhys));
Assert(cb > 0);
/*
* Allocate page pointer array.
*/
cb = RT_ALIGN_Z(cb, PAGE_SIZE);
cPages = cb >> PAGE_SHIFT;
cOrder = CalcPowerOf2Order(cPages);
#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
/* ZONE_DMA32: 0-4GB */
paPages = alloc_pages(GFP_DMA32, cOrder);
if (!paPages)
#endif
#ifdef RT_ARCH_AMD64
/* ZONE_DMA; 0-16MB */
paPages = alloc_pages(GFP_DMA, cOrder);
#else
/* ZONE_NORMAL: 0-896MB */
paPages = alloc_pages(GFP_USER, cOrder);
#endif
if (paPages)
{
/*
* Reserve the pages and mark them executable.
*/
unsigned iPage;
for (iPage = 0; iPage < cPages; iPage++)
{
Assert(!PageHighMem(&paPages[iPage]));
if (iPage + 1 < cPages)
{
AssertMsg( (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage])) + PAGE_SIZE
== (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage + 1]))
&& page_to_phys(&paPages[iPage]) + PAGE_SIZE
== page_to_phys(&paPages[iPage + 1]),
("iPage=%i cPages=%u [0]=%#llx,%p [1]=%#llx,%p\n", iPage, cPages,
(long long)page_to_phys(&paPages[iPage]), phys_to_virt(page_to_phys(&paPages[iPage])),
(long long)page_to_phys(&paPages[iPage + 1]), phys_to_virt(page_to_phys(&paPages[iPage + 1])) ));
}
SetPageReserved(&paPages[iPage]);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
MY_SET_PAGES_EXEC(&paPages[iPage], 1);
#endif
}
*pPhys = page_to_phys(paPages);
return phys_to_virt(page_to_phys(paPages));
}
return NULL;
}
RT_EXPORT_SYMBOL(RTMemContAlloc);
/**
* Frees memory allocated ysing RTMemContAlloc().
*
* @param pv Pointer to return from RTMemContAlloc().
* @param cb The cb parameter passed to RTMemContAlloc().
*/
RTR0DECL(void) RTMemContFree(void *pv, size_t cb)
{
if (pv)
{
int cOrder;
unsigned cPages;
unsigned iPage;
struct page *paPages;
/* validate */
AssertMsg(!((uintptr_t)pv & PAGE_OFFSET_MASK), ("pv=%p\n", pv));
Assert(cb > 0);
/* calc order and get pages */
cb = RT_ALIGN_Z(cb, PAGE_SIZE);
cPages = cb >> PAGE_SHIFT;
cOrder = CalcPowerOf2Order(cPages);
paPages = virt_to_page(pv);
/*
* Restore page attributes freeing the pages.
*/
for (iPage = 0; iPage < cPages; iPage++)
{
ClearPageReserved(&paPages[iPage]);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
MY_SET_PAGES_NOEXEC(&paPages[iPage], 1);
#endif
}
__free_pages(paPages, cOrder);
}
}
RT_EXPORT_SYMBOL(RTMemContFree);