memobj-r0drv-freebsd.c revision b844496aef2c7a10e89a26770ad4c90daf5cfbfa
/* $Id$ */
/** @file
* IPRT - Ring-0 Memory Objects, FreeBSD.
*/
/*
* Copyright (c) 2007 knut st. osmundsen <bird-src-spam@anduin.net>
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-freebsd-kernel.h"
#include <iprt/memobj.h>
#include <iprt/mem.h>
#include <iprt/err.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include "internal/memobj.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The FreeBSD version of the memory object structure.
*/
typedef struct RTR0MEMOBJFREEBSD
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Type dependent data */
union
{
/** Non physical memory allocations */
struct
{
/** The VM object associated with the allocation. */
vm_object_t pObject;
} NonPhys;
/** Physical memory allocations */
struct
{
/** Number of pages */
uint32_t cPages;
/** Array of pages - variable */
vm_page_t apPages[1];
} Phys;
} u;
} RTR0MEMOBJFREEBSD, *PRTR0MEMOBJFREEBSD;
MALLOC_DEFINE(M_IPRTMOBJ, "iprtmobj", "IPRT - R0MemObj");
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
/**
* Gets the virtual memory map the specified object is mapped into.
*
* @returns VM map handle on success, NULL if no map.
* @param pMem The memory object.
*/
static vm_map_t rtR0MemObjFreeBSDGetMap(PRTR0MEMOBJINTERNAL pMem)
{
switch (pMem->enmType)
{
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_CONT:
return kernel_map;
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_PHYS_NC:
return NULL; /* pretend these have no mapping atm. */
case RTR0MEMOBJTYPE_LOCK:
return pMem->u.Lock.R0Process == NIL_RTR0PROCESS
? kernel_map
: &((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map;
case RTR0MEMOBJTYPE_RES_VIRT:
return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS
? kernel_map
: &((struct proc *)pMem->u.ResVirt.R0Process)->p_vmspace->vm_map;
case RTR0MEMOBJTYPE_MAPPING:
return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS
? kernel_map
: &((struct proc *)pMem->u.Mapping.R0Process)->p_vmspace->vm_map;
default:
return NULL;
}
}
int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)pMem;
int rc;
switch (pMemFreeBSD->Core.enmType)
{
case RTR0MEMOBJTYPE_CONT:
contigfree(pMemFreeBSD->Core.pv, pMemFreeBSD->Core.cb, M_IPRTMOBJ);
break;
case RTR0MEMOBJTYPE_PAGE:
{
rc = vm_map_remove(kernel_map,
(vm_offset_t)pMemFreeBSD->Core.pv,
(vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb);
AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
vm_page_lock_queues();
for (uint32_t iPage = 0; iPage < pMemFreeBSD->u.Phys.cPages; iPage++)
{
vm_page_t pPage = pMemFreeBSD->u.Phys.apPages[iPage];
vm_page_unwire(pPage, 0);
vm_page_free(pPage);
}
vm_page_unlock_queues();
break;
}
case RTR0MEMOBJTYPE_LOCK:
{
vm_map_t pMap = kernel_map;
if (pMemFreeBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
pMap = &((struct proc *)pMemFreeBSD->Core.u.Lock.R0Process)->p_vmspace->vm_map;
rc = vm_map_unwire(pMap,
(vm_offset_t)pMemFreeBSD->Core.pv,
(vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb,
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
break;
}
case RTR0MEMOBJTYPE_RES_VIRT:
{
vm_map_t pMap = kernel_map;
if (pMemFreeBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
pMap = &((struct proc *)pMemFreeBSD->Core.u.Lock.R0Process)->p_vmspace->vm_map;
rc = vm_map_remove(pMap,
(vm_offset_t)pMemFreeBSD->Core.pv,
(vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb);
AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
break;
}
case RTR0MEMOBJTYPE_MAPPING:
{
vm_map_t pMap = kernel_map;
if (pMemFreeBSD->Core.u.Mapping.R0Process != NIL_RTR0PROCESS)
pMap = &((struct proc *)pMemFreeBSD->Core.u.Mapping.R0Process)->p_vmspace->vm_map;
rc = vm_map_remove(pMap,
(vm_offset_t)pMemFreeBSD->Core.pv,
(vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb);
AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
break;
}
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_PHYS_NC:
{
vm_page_lock_queues();
for (uint32_t iPage = 0; iPage < pMemFreeBSD->u.Phys.cPages; iPage++)
{
vm_page_t pPage = pMemFreeBSD->u.Phys.apPages[iPage];
vm_page_unwire(pPage, 0);
vm_page_free(pPage);
}
vm_page_unlock_queues();
break;
}
#ifdef USE_KMEM_ALLOC_ATTR
case RTR0MEMOBJTYPE_LOW:
{
kmem_free(kernel_map, (vm_offset_t)pMemFreeBSD->Core.pv, pMemFreeBSD->Core.cb);
break;
}
#else
case RTR0MEMOBJTYPE_LOW: /* unused */
#endif
default:
AssertMsgFailed(("enmType=%d\n", pMemFreeBSD->Core.enmType));
return VERR_INTERNAL_ERROR;
}
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
int rc;
size_t cPages = cb >> PAGE_SHIFT;
/* create the object. */
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJFREEBSD, u.Phys.apPages[cPages]),
RTR0MEMOBJTYPE_PAGE, NULL, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
pMemFreeBSD->u.Phys.cPages = cPages;
vm_offset_t MapAddress = vm_map_min(kernel_map);
rc = vm_map_find(kernel_map, /* map */
NULL, /* object */
0, /* offset */
&MapAddress, /* addr (IN/OUT) */
cb, /* length */
TRUE, /* find_space */
fExecutable /* protection */
? VM_PROT_ALL
: VM_PROT_RW,
VM_PROT_ALL, /* max(_prot) */
0); /* cow (copy-on-write) */
if (rc == KERN_SUCCESS)
{
rc = VINF_SUCCESS;
for (size_t iPage = 0; iPage < cPages; iPage++)
{
vm_page_t pPage;
pPage = vm_page_alloc(NULL, iPage,
VM_ALLOC_SYSTEM |
VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
if (!pPage)
{
/*
* Out of pages
* Remove already allocated pages
*/
while (iPage-- > 0)
{
pPage = pMemFreeBSD->u.Phys.apPages[iPage];
vm_page_lock_queues();
vm_page_unwire(pPage, 0);
vm_page_free(pPage);
vm_page_unlock_queues();
}
rc = VERR_NO_MEMORY;
break;
}
pPage->valid = VM_PAGE_BITS_ALL;
pMemFreeBSD->u.Phys.apPages[iPage] = pPage;
}
if (rc == VINF_SUCCESS)
{
vm_offset_t AddressDst = MapAddress;
for (size_t iPage = 0; iPage < cPages; iPage++)
{
vm_page_t pPage = pMemFreeBSD->u.Phys.apPages[iPage];
MY_PMAP_ENTER(kernel_map->pmap, AddressDst, pPage,
fExecutable
? VM_PROT_ALL
: VM_PROT_RW,
TRUE);
AddressDst += PAGE_SIZE;
}
/* Store start address */
pMemFreeBSD->Core.pv = (void *)MapAddress;
*ppMem = &pMemFreeBSD->Core;
return VINF_SUCCESS;
}
}
rc = VERR_NO_MEMORY; /** @todo fix translation (borrow from darwin) */
rtR0MemObjDelete(&pMemFreeBSD->Core);
return rc;
}
int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
#ifdef USE_KMEM_ALLOC_ATTR
/*
* Use kmem_alloc_attr, fExectuable is not needed because the
* memory will be executable by default
*/
NOREF(fExecutable);
/* create the object. */
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_LOW, NULL, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
pMemFreeBSD->Core.pv = (void *)kmem_alloc_attr(kernel_map, /* Kernel */
cb, /* Amount */
M_ZERO, /* Zero memory */
0, /* Low physical address */
_4G - PAGE_SIZE, /* Highest physical address */
VM_MEMATTR_DEFAULT); /* Default memory attributes */
if (!pMemFreeBSD->Core.pv)
return VERR_NO_MEMORY;
return VINF_SUCCESS;
#else
/*
* Try a Alloc first and see if we get luck, if not try contigmalloc.
* Might wish to try find our own pages or something later if this
* turns into a problemspot on AMD64 boxes.
*/
int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
if (RT_SUCCESS(rc))
{
size_t iPage = cb >> PAGE_SHIFT;
while (iPage-- > 0)
if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) > (_4G - PAGE_SIZE))
{
RTR0MemObjFree(*ppMem, false);
*ppMem = NULL;
rc = VERR_NO_MEMORY;
break;
}
}
if (RT_FAILURE(rc))
rc = rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
return rc;
#endif
}
int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
/* create the object. */
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_CONT, NULL, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
/* do the allocation. */
pMemFreeBSD->Core.pv = contigmalloc(cb, /* size */
M_IPRTMOBJ, /* type */
M_NOWAIT | M_ZERO, /* flags */
0, /* lowest physical address*/
_4G-1, /* highest physical address */
PAGE_SIZE, /* alignment. */
0); /* boundrary */
if (pMemFreeBSD->Core.pv)
{
pMemFreeBSD->Core.u.Cont.Phys = vtophys(pMemFreeBSD->Core.pv);
*ppMem = &pMemFreeBSD->Core;
return VINF_SUCCESS;
}
NOREF(fExecutable);
rtR0MemObjDelete(&pMemFreeBSD->Core);
return VERR_NO_MEMORY;
}
static void rtR0MemObjFreeBSDPhysPageInit(vm_page_t pPage, vm_pindex_t iPage)
{
pPage->wire_count = 1;
pPage->pindex = iPage;
pPage->act_count = 0;
pPage->oflags = 0;
pPage->flags = PG_UNMANAGED;
atomic_add_int(&cnt.v_wire_count, 1);
}
static int rtR0MemObjFreeBSDAllocPhysPages(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
size_t cb,
RTHCPHYS PhysHighest, size_t uAlignment,
bool fContiguous)
{
int rc = VINF_SUCCESS;
uint32_t cPages = cb >> PAGE_SHIFT;
vm_paddr_t VmPhysAddrHigh;
/* create the object. */
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJFREEBSD, u.Phys.apPages[cPages]),
enmType, NULL, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
pMemFreeBSD->u.Phys.cPages = cPages;
if (PhysHighest != NIL_RTHCPHYS)
VmPhysAddrHigh = PhysHighest;
else
VmPhysAddrHigh = ~(vm_paddr_t)0;
if (fContiguous)
{
vm_page_t pPage = vm_phys_alloc_contig(cPages, 0, VmPhysAddrHigh, uAlignment, 0);
if (pPage)
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
rtR0MemObjFreeBSDPhysPageInit(&pPage[iPage], iPage);
pMemFreeBSD->u.Phys.apPages[iPage] = &pPage[iPage];
}
else
rc = VERR_NO_MEMORY;
}
else
{
/* Allocate page by page */
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
vm_page_t pPage = vm_phys_alloc_contig(1, 0, VmPhysAddrHigh, uAlignment, 0);
if (!pPage)
{
/* Free all allocated pages */
while (iPage-- > 0)
{
pPage = pMemFreeBSD->u.Phys.apPages[iPage];
vm_page_lock_queues();
vm_page_unwire(pPage, 0);
vm_page_free(pPage);
vm_page_unlock_queues();
}
rc = VERR_NO_MEMORY;
break;
}
rtR0MemObjFreeBSDPhysPageInit(pPage, iPage);
pMemFreeBSD->u.Phys.apPages[iPage] = pPage;
}
}
if (RT_FAILURE(rc))
rtR0MemObjDelete(&pMemFreeBSD->Core);
else
{
if (enmType == RTR0MEMOBJTYPE_PHYS)
{
pMemFreeBSD->Core.u.Phys.PhysBase = VM_PAGE_TO_PHYS(pMemFreeBSD->u.Phys.apPages[0]);
pMemFreeBSD->Core.u.Phys.fAllocated = true;
}
*ppMem = &pMemFreeBSD->Core;
}
return rc;
}
int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
#if 1
return rtR0MemObjFreeBSDAllocPhysPages(ppMem, RTR0MEMOBJTYPE_PHYS, cb, PhysHighest, uAlignment, true);
#else
/* create the object. */
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_CONT, NULL, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
/* do the allocation. */
pMemFreeBSD->Core.pv = contigmalloc(cb, /* size */
M_IPRTMOBJ, /* type */
M_NOWAIT | M_ZERO, /* flags */
0, /* lowest physical address*/
_4G-1, /* highest physical address */
uAlignment, /* alignment. */
0); /* boundrary */
if (pMemFreeBSD->Core.pv)
{
pMemFreeBSD->Core.u.Cont.Phys = vtophys(pMemFreeBSD->Core.pv);
*ppMem = &pMemFreeBSD->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemFreeBSD->Core);
return VERR_NO_MEMORY;
#endif
}
int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
#if 1
return rtR0MemObjFreeBSDAllocPhysPages(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PhysHighest, PAGE_SIZE, false);
#else
return VERR_NOT_SUPPORTED;
#endif
}
int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
{
AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_IMPLEMENTED);
/* create the object. */
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
/* there is no allocation here, it needs to be mapped somewhere first. */
pMemFreeBSD->Core.u.Phys.fAllocated = false;
pMemFreeBSD->Core.u.Phys.PhysBase = Phys;
pMemFreeBSD->Core.u.Phys.uCachePolicy = uCachePolicy;
*ppMem = &pMemFreeBSD->Core;
return VINF_SUCCESS;
}
/**
* Worker locking the memory in either kernel or user maps.
*/
static int rtR0MemObjNativeLockInMap(PPRTR0MEMOBJINTERNAL ppMem, vm_map_t pVmMap,
vm_offset_t AddrStart, size_t cb, uint32_t fAccess,
RTR0PROCESS R0Process, int fFlags)
{
int rc;
NOREF(fAccess);
/* create the object. */
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_LOCK, (void *)AddrStart, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
/*
* We could've used vslock here, but we don't wish to be subject to
* resource usage restrictions, so we'll call vm_map_wire directly.
*/
rc = vm_map_wire(pVmMap, /* the map */
AddrStart, /* start */
AddrStart + cb, /* end */
fFlags); /* flags */
if (rc == KERN_SUCCESS)
{
pMemFreeBSD->Core.u.Lock.R0Process = R0Process;
*ppMem = &pMemFreeBSD->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemFreeBSD->Core);
return VERR_NO_MEMORY;/** @todo fix mach -> vbox error conversion for freebsd. */
}
int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
{
return rtR0MemObjNativeLockInMap(ppMem,
&((struct proc *)R0Process)->p_vmspace->vm_map,
(vm_offset_t)R3Ptr,
cb,
fAccess,
R0Process,
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
}
int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
return rtR0MemObjNativeLockInMap(ppMem,
kernel_map,
(vm_offset_t)pv,
cb,
fAccess,
NIL_RTR0PROCESS,
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
}
/**
* Worker for the two virtual address space reservers.
*
* We're leaning on the examples provided by mmap and vm_mmap in vm_mmap.c here.
*/
static int rtR0MemObjNativeReserveInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process, vm_map_t pMap)
{
int rc;
/*
* The pvFixed address range must be within the VM space when specified.
*/
if (pvFixed != (void *)-1
&& ( (vm_offset_t)pvFixed < vm_map_min(pMap)
|| (vm_offset_t)pvFixed + cb > vm_map_max(pMap)))
return VERR_INVALID_PARAMETER;
/*
* Check that the specified alignment is supported.
*/
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/*
* Create the object.
*/
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_RES_VIRT, NULL, cb);
if (!pMemFreeBSD)
return VERR_NO_MEMORY;
/*
* Allocate an empty VM object and map it into the requested map.
*/
pMemFreeBSD->u.NonPhys.pObject = vm_object_allocate(OBJT_DEFAULT, cb >> PAGE_SHIFT);
if (pMemFreeBSD->u.NonPhys.pObject)
{
vm_offset_t MapAddress = pvFixed != (void *)-1
? (vm_offset_t)pvFixed
: vm_map_min(pMap);
if (pvFixed != (void *)-1)
vm_map_remove(pMap,
MapAddress,
MapAddress + cb);
rc = vm_map_find(pMap, /* map */
pMemFreeBSD->u.NonPhys.pObject, /* object */
0, /* offset */
&MapAddress, /* addr (IN/OUT) */
cb, /* length */
pvFixed == (void *)-1, /* find_space */
VM_PROT_NONE, /* protection */
VM_PROT_ALL, /* max(_prot) ?? */
0); /* cow (copy-on-write) */
if (rc == KERN_SUCCESS)
{
if (R0Process != NIL_RTR0PROCESS)
{
rc = vm_map_inherit(pMap,
MapAddress,
MapAddress + cb,
VM_INHERIT_SHARE);
AssertMsg(rc == KERN_SUCCESS, ("%#x\n", rc));
}
pMemFreeBSD->Core.pv = (void *)MapAddress;
pMemFreeBSD->Core.u.ResVirt.R0Process = R0Process;
*ppMem = &pMemFreeBSD->Core;
return VINF_SUCCESS;
}
vm_object_deallocate(pMemFreeBSD->u.NonPhys.pObject);
rc = VERR_NO_MEMORY; /** @todo fix translation (borrow from darwin) */
}
else
rc = VERR_NO_MEMORY;
rtR0MemObjDelete(&pMemFreeBSD->Core);
return rc;
}
int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
return rtR0MemObjNativeReserveInMap(ppMem, pvFixed, cb, uAlignment, NIL_RTR0PROCESS, kernel_map);
}
int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
return rtR0MemObjNativeReserveInMap(ppMem, (void *)R3PtrFixed, cb, uAlignment, R0Process,
&((struct proc *)R0Process)->p_vmspace->vm_map);
}
int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub)
{
AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
/*
* Check that the specified alignment is supported.
*/
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/* Phys: see pmap_mapdev in i386/i386/pmap.c (http://fxr.watson.org/fxr/source/i386/i386/pmap.c?v=RELENG62#L2860) */
/** @todo finish the implementation. */
return VERR_NOT_IMPLEMENTED;
}
/* see http://markmail.org/message/udhq33tefgtyfozs */
int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
/*
* Check for unsupported stuff.
*/
AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
int rc;
PRTR0MEMOBJFREEBSD pMemToMapFreeBSD = (PRTR0MEMOBJFREEBSD)pMemToMap;
struct proc *pProc = (struct proc *)R0Process;
struct vm_map *pProcMap = &pProc->p_vmspace->vm_map;
/* calc protection */
vm_prot_t ProtectionFlags = 0;
if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE)
ProtectionFlags = VM_PROT_NONE;
if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ)
ProtectionFlags |= VM_PROT_READ;
if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE)
ProtectionFlags |= VM_PROT_WRITE;
if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC)
ProtectionFlags |= VM_PROT_EXECUTE;
/* calc mapping address */
PROC_LOCK(pProc);
vm_offset_t AddrR3 = round_page((vm_offset_t)pProc->p_vmspace->vm_daddr + lim_max(pProc, RLIMIT_DATA));
PROC_UNLOCK(pProc);
/* Insert the object in the map. */
rc = vm_map_find(pProcMap, /* Map to insert the object in */
NULL, /* Object to map */
0, /* Start offset in the object */
&AddrR3, /* Start address IN/OUT */
pMemToMap->cb, /* Size of the mapping */
TRUE, /* Whether a suitable address should be searched for first */
ProtectionFlags, /* protection flags */
VM_PROT_ALL, /* Maximum protection flags */
0); /* Copy on write */
/* Map the memory page by page into the destination map. */
if (rc == KERN_SUCCESS)
{
size_t cPages = pMemToMap->cb >> PAGE_SHIFT;;
pmap_t pPhysicalMap = pProcMap->pmap;
vm_offset_t AddrR3Dst = AddrR3;
if ( pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS
|| pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS_NC
|| pMemToMap->enmType == RTR0MEMOBJTYPE_PAGE)
{
/* Mapping physical allocations */
Assert(cPages == pMemToMapFreeBSD->u.Phys.cPages);
/* Insert the memory page by page into the mapping. */
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
vm_page_t pPage = pMemToMapFreeBSD->u.Phys.apPages[iPage];
MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
AddrR3Dst += PAGE_SIZE;
}
}
else
{
/* Mapping cont or low memory types */
vm_offset_t AddrToMap = (vm_offset_t)pMemToMap->pv;
for (uint32_t iPage = 0; iPage < cPages; iPage++)
{
vm_page_t pPage = PHYS_TO_VM_PAGE(vtophys(AddrToMap));
MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
AddrR3Dst += PAGE_SIZE;
AddrToMap += PAGE_SIZE;
}
}
}
if (RT_SUCCESS(rc))
{
/*
* Create a mapping object for it.
*/
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(RTR0MEMOBJFREEBSD),
RTR0MEMOBJTYPE_MAPPING,
(void *)AddrR3,
pMemToMap->cb);
if (pMemFreeBSD)
{
Assert((vm_offset_t)pMemFreeBSD->Core.pv == AddrR3);
pMemFreeBSD->Core.u.Mapping.R0Process = R0Process;
*ppMem = &pMemFreeBSD->Core;
return VINF_SUCCESS;
}
rc = vm_map_remove(pProcMap, ((vm_offset_t)AddrR3), ((vm_offset_t)AddrR3) + pMemToMap->cb);
AssertMsg(rc == KERN_SUCCESS, ("Deleting mapping failed\n"));
}
return VERR_NO_MEMORY;
}
int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
vm_prot_t ProtectionFlags = 0;
vm_offset_t AddrStart = (uintptr_t)pMem->pv + offSub;
vm_offset_t AddrEnd = AddrStart + cbSub;
vm_map_t pVmMap = rtR0MemObjFreeBSDGetMap(pMem);
if (!pVmMap)
return VERR_NOT_SUPPORTED;
if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE)
ProtectionFlags = VM_PROT_NONE;
if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ)
ProtectionFlags |= VM_PROT_READ;
if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE)
ProtectionFlags |= VM_PROT_WRITE;
if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC)
ProtectionFlags |= VM_PROT_EXECUTE;
int krc = vm_map_protect(pVmMap, AddrStart, AddrEnd, ProtectionFlags, FALSE);
if (krc == KERN_SUCCESS)
return VINF_SUCCESS;
return VERR_NOT_SUPPORTED;
}
RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)pMem;
switch (pMemFreeBSD->Core.enmType)
{
case RTR0MEMOBJTYPE_LOCK:
{
if ( pMemFreeBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS
&& pMemFreeBSD->Core.u.Lock.R0Process != (RTR0PROCESS)curproc)
{
/* later */
return NIL_RTHCPHYS;
}
vm_offset_t pb = (vm_offset_t)pMemFreeBSD->Core.pv + (iPage << PAGE_SHIFT);
struct proc *pProc = (struct proc *)pMemFreeBSD->Core.u.Lock.R0Process;
struct vm_map *pProcMap = &pProc->p_vmspace->vm_map;
pmap_t pPhysicalMap = pProcMap->pmap;
return pmap_extract(pPhysicalMap, pb);
}
case RTR0MEMOBJTYPE_MAPPING:
{
vm_offset_t pb = (vm_offset_t)pMemFreeBSD->Core.pv + (iPage << PAGE_SHIFT);
if (pMemFreeBSD->Core.u.Mapping.R0Process != NIL_RTR0PROCESS)
{
struct proc *pProc = (struct proc *)pMemFreeBSD->Core.u.Mapping.R0Process;
struct vm_map *pProcMap = &pProc->p_vmspace->vm_map;
pmap_t pPhysicalMap = pProcMap->pmap;
return pmap_extract(pPhysicalMap, pb);
}
return vtophys(pb);
}
case RTR0MEMOBJTYPE_CONT:
return pMemFreeBSD->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS:
return pMemFreeBSD->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_PHYS_NC:
return VM_PAGE_TO_PHYS(pMemFreeBSD->u.Phys.apPages[iPage]);
case RTR0MEMOBJTYPE_RES_VIRT:
case RTR0MEMOBJTYPE_LOW:
default:
return NIL_RTHCPHYS;
}
}