alloc-r0drv.cpp revision 9d577a7b721cf6430727d2bc2577642310642366
/* $Id$ */
/** @file
* IPRT - Memory Allocation, Ring-0 Driver.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/mem.h>
#include "internal/iprt.h"
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/assert.h>
#include <iprt/param.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include "r0drv/alloc-r0drv.h"
#undef RTMemTmpAlloc
#undef RTMemTmpAllocZ
#undef RTMemTmpFree
#undef RTMemAlloc
#undef RTMemAllocZ
#undef RTMemAllocVar
#undef RTMemAllocZVar
#undef RTMemRealloc
#undef RTMemFree
#undef RTMemDup
#undef RTMemDupEx
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#ifdef RT_STRICT
# define RTR0MEM_STRICT
#endif
#ifdef RTR0MEM_STRICT
# define RTR0MEM_FENCE_EXTRA 16
#else
# define RTR0MEM_FENCE_EXTRA 0
#endif
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#ifdef RTR0MEM_STRICT
/** Fence data. */
static uint8_t const g_abFence[RTR0MEM_FENCE_EXTRA] =
{
0x77, 0x88, 0x66, 0x99, 0x55, 0xaa, 0x44, 0xbb,
0x33, 0xcc, 0x22, 0xdd, 0x11, 0xee, 0x00, 0xff
};
#endif
#undef RTMemTmpAlloc
#undef RTMemTmpAllocTag
#undef RTMemTmpAllocZ
#undef RTMemTmpAllocZTag
#undef RTMemTmpFree
#undef RTMemAlloc
#undef RTMemAllocTag
#undef RTMemAllocZ
#undef RTMemAllocZTag
#undef RTMemAllocVar
#undef RTMemAllocVarTag
#undef RTMemAllocZVar
#undef RTMemAllocZVarTag
#undef RTMemRealloc
#undef RTMemReallocTag
#undef RTMemFree
#undef RTMemDup
#undef RTMemDupTag
#undef RTMemDupEx
#undef RTMemDupExTag
RTDECL(void *) RTMemTmpAllocTag(size_t cb, const char *pszTag) RT_NO_THROW
{
return RTMemAllocTag(cb, pszTag);
}
RT_EXPORT_SYMBOL(RTMemTmpAllocTag);
RTDECL(void *) RTMemTmpAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW
{
return RTMemAllocZTag(cb, pszTag);
}
RT_EXPORT_SYMBOL(RTMemTmpAllocZTag);
RTDECL(void) RTMemTmpFree(void *pv) RT_NO_THROW
{
return RTMemFree(pv);
}
RT_EXPORT_SYMBOL(RTMemTmpFree);
RTDECL(void *) RTMemAllocTag(size_t cb, const char *pszTag) RT_NO_THROW
{
PRTMEMHDR pHdr;
RT_ASSERT_INTS_ON();
pHdr = rtR0MemAlloc(cb + RTR0MEM_FENCE_EXTRA, 0);
if (pHdr)
{
#ifdef RTR0MEM_STRICT
pHdr->cbReq = (uint32_t)cb; Assert(pHdr->cbReq == cb);
memcpy((uint8_t *)(pHdr + 1) + cb, &g_abFence[0], RTR0MEM_FENCE_EXTRA);
#endif
return pHdr + 1;
}
return NULL;
}
RT_EXPORT_SYMBOL(RTMemAllocTag);
RTDECL(void *) RTMemAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW
{
PRTMEMHDR pHdr;
RT_ASSERT_INTS_ON();
pHdr = rtR0MemAlloc(cb + RTR0MEM_FENCE_EXTRA, RTMEMHDR_FLAG_ZEROED);
if (pHdr)
{
#ifdef RTR0MEM_STRICT
pHdr->cbReq = (uint32_t)cb; Assert(pHdr->cbReq == cb);
memcpy((uint8_t *)(pHdr + 1) + cb, &g_abFence[0], RTR0MEM_FENCE_EXTRA);
return memset(pHdr + 1, 0, cb);
#else
return memset(pHdr + 1, 0, pHdr->cb);
#endif
}
return NULL;
}
RT_EXPORT_SYMBOL(RTMemAllocZTag);
RTDECL(void *) RTMemAllocVarTag(size_t cbUnaligned, const char *pszTag)
{
size_t cbAligned;
if (cbUnaligned >= 16)
cbAligned = RT_ALIGN_Z(cbUnaligned, 16);
else
cbAligned = RT_ALIGN_Z(cbUnaligned, sizeof(void *));
return RTMemAllocTag(cbAligned, pszTag);
}
RT_EXPORT_SYMBOL(RTMemAllocVarTag);
RTDECL(void *) RTMemAllocZVarTag(size_t cbUnaligned, const char *pszTag)
{
size_t cbAligned;
if (cbUnaligned >= 16)
cbAligned = RT_ALIGN_Z(cbUnaligned, 16);
else
cbAligned = RT_ALIGN_Z(cbUnaligned, sizeof(void *));
return RTMemAllocZTag(cbAligned, pszTag);
}
RT_EXPORT_SYMBOL(RTMemAllocZVarTag);
RTDECL(void *) RTMemReallocTag(void *pvOld, size_t cbNew, const char *pszTag) RT_NO_THROW
{
if (!cbNew)
RTMemFree(pvOld);
else if (!pvOld)
return RTMemAllocTag(cbNew, pszTag);
else
{
PRTMEMHDR pHdrOld = (PRTMEMHDR)pvOld - 1;
RT_ASSERT_PREEMPTIBLE();
if (pHdrOld->u32Magic == RTMEMHDR_MAGIC)
{
PRTMEMHDR pHdrNew;
if (pHdrOld->cb >= cbNew && pHdrOld->cb - cbNew <= 128)
return pvOld;
pHdrNew = rtR0MemAlloc(cbNew + RTR0MEM_FENCE_EXTRA, 0);
if (pHdrNew)
{
size_t cbCopy = RT_MIN(pHdrOld->cb, pHdrNew->cb);
memcpy(pHdrNew + 1, pvOld, cbCopy);
#ifdef RTR0MEM_STRICT
pHdrNew->cbReq = (uint32_t)cbNew; Assert(pHdrNew->cbReq == cbNew);
memcpy((uint8_t *)(pHdrNew + 1) + cbNew, &g_abFence[0], RTR0MEM_FENCE_EXTRA);
AssertReleaseMsg(!memcmp((uint8_t *)(pHdrOld + 1) + pHdrOld->cbReq, &g_abFence[0], RTR0MEM_FENCE_EXTRA),
("pHdr=%p pvOld=%p cb=%zu cbNew=%zu\n"
"fence: %.*Rhxs\n"
"expected: %.*Rhxs\n",
pHdrOld, pvOld, pHdrOld->cb, cbNew,
RTR0MEM_FENCE_EXTRA, (uint8_t *)(pHdrOld + 1) + pHdrOld->cb,
RTR0MEM_FENCE_EXTRA, &g_abFence[0]));
#endif
rtR0MemFree(pHdrOld);
return pHdrNew + 1;
}
}
else
AssertMsgFailed(("pHdrOld->u32Magic=%RX32 pvOld=%p cbNew=%#zx\n", pHdrOld->u32Magic, pvOld, cbNew));
}
return NULL;
}
RT_EXPORT_SYMBOL(RTMemReallocTag);
RTDECL(void) RTMemFree(void *pv) RT_NO_THROW
{
PRTMEMHDR pHdr;
RT_ASSERT_INTS_ON();
if (!pv)
return;
pHdr = (PRTMEMHDR)pv - 1;
if (pHdr->u32Magic == RTMEMHDR_MAGIC)
{
Assert(!(pHdr->fFlags & RTMEMHDR_FLAG_EXEC));
#ifdef RTR0MEM_STRICT
AssertReleaseMsg(!memcmp((uint8_t *)(pHdr + 1) + pHdr->cbReq, &g_abFence[0], RTR0MEM_FENCE_EXTRA),
("pHdr=%p pv=%p cb=%zu\n"
"fence: %.*Rhxs\n"
"expected: %.*Rhxs\n",
pHdr, pv, pHdr->cb,
RTR0MEM_FENCE_EXTRA, (uint8_t *)(pHdr + 1) + pHdr->cb,
RTR0MEM_FENCE_EXTRA, &g_abFence[0]));
#endif
rtR0MemFree(pHdr);
}
else
AssertMsgFailed(("pHdr->u32Magic=%RX32 pv=%p\n", pHdr->u32Magic, pv));
}
RT_EXPORT_SYMBOL(RTMemFree);
RTDECL(void *) RTMemExecAllocTag(size_t cb, const char *pszTag) RT_NO_THROW
{
PRTMEMHDR pHdr;
#ifdef RT_OS_SOLARIS /** @todo figure out why */
RT_ASSERT_INTS_ON();
#else
RT_ASSERT_PREEMPTIBLE();
#endif
pHdr = rtR0MemAlloc(cb + RTR0MEM_FENCE_EXTRA, RTMEMHDR_FLAG_EXEC);
if (pHdr)
{
#ifdef RTR0MEM_STRICT
pHdr->cbReq = (uint32_t)cb; Assert(pHdr->cbReq == cb);
memcpy((uint8_t *)(pHdr + 1) + cb, &g_abFence[0], RTR0MEM_FENCE_EXTRA);
#endif
return pHdr + 1;
}
return NULL;
}
RT_EXPORT_SYMBOL(RTMemExecAllocTag);
RTDECL(void) RTMemExecFree(void *pv) RT_NO_THROW
{
PRTMEMHDR pHdr;
RT_ASSERT_INTS_ON();
if (!pv)
return;
pHdr = (PRTMEMHDR)pv - 1;
if (pHdr->u32Magic == RTMEMHDR_MAGIC)
{
#ifdef RTR0MEM_STRICT
AssertReleaseMsg(!memcmp((uint8_t *)(pHdr + 1) + pHdr->cbReq, &g_abFence[0], RTR0MEM_FENCE_EXTRA),
("pHdr=%p pv=%p cb=%zu\n"
"fence: %.*Rhxs\n"
"expected: %.*Rhxs\n",
pHdr, pv, pHdr->cb,
RTR0MEM_FENCE_EXTRA, (uint8_t *)(pHdr + 1) + pHdr->cb,
RTR0MEM_FENCE_EXTRA, &g_abFence[0]));
#endif
rtR0MemFree(pHdr);
}
else
AssertMsgFailed(("pHdr->u32Magic=%RX32 pv=%p\n", pHdr->u32Magic, pv));
}
RT_EXPORT_SYMBOL(RTMemExecFree);