semrw-generic.cpp revision c58f1213e628a545081c70e26c6b67a841cff880
/* $Id$ */
/** @file
* IPRT - Read-Write Semaphore, Generic.
*
* This is a generic implementation for OSes which don't have
* native RW semaphores.
*/
/*
* Copyright (C) 2006-2011 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define RTSEMRW_WITHOUT_REMAPPING
#include <iprt/semaphore.h>
#include "internal/iprt.h"
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/critsect.h>
#include <iprt/err.h>
#include <iprt/lockvalidator.h>
#include <iprt/mem.h>
#include <iprt/time.h>
#include <iprt/thread.h>
#include "internal/magics.h"
#include "internal/strict.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/** Internal representation of a Read-Write semaphore for the
* Generic implementation. */
struct RTSEMRWINTERNAL
{
/** The usual magic. (RTSEMRW_MAGIC) */
uint32_t u32Magic;
/* Alignment padding. */
uint32_t u32Padding;
/** This critical section serializes the access to and updating of the structure members. */
RTCRITSECT CritSect;
/** The current number of reads. (pure read recursion counts too) */
uint32_t cReads;
/** The current number of writes. (recursion counts too) */
uint32_t cWrites;
/** Number of read recursions by the writer. */
uint32_t cWriterReads;
/** Number of writers waiting. */
uint32_t cWritesWaiting;
/** The write owner of the lock. */
RTNATIVETHREAD hWriter;
/** The handle of the event object on which the waiting readers block. (manual reset). */
RTSEMEVENTMULTI ReadEvent;
/** The handle of the event object on which the waiting writers block. (automatic reset). */
RTSEMEVENT WriteEvent;
/** Need to reset ReadEvent. */
bool fNeedResetReadEvent;
#ifdef RTSEMRW_STRICT
/** The validator record for the writer. */
RTLOCKVALRECEXCL ValidatorWrite;
/** The validator record for the readers. */
RTLOCKVALRECSHRD ValidatorRead;
#endif
};
RTDECL(int) RTSemRWCreate(PRTSEMRW phRWSem)
{
return RTSemRWCreateEx(phRWSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, "RTSemRW");
}
RT_EXPORT_SYMBOL(RTSemRWCreate);
RTDECL(int) RTSemRWCreateEx(PRTSEMRW phRWSem, uint32_t fFlags,
RTLOCKVALCLASS hClass, uint32_t uSubClass, const char *pszNameFmt, ...)
{
AssertReturn(!(fFlags & ~RTSEMRW_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER);
/*
* Allocate memory.
*/
int rc;
struct RTSEMRWINTERNAL *pThis = (struct RTSEMRWINTERNAL *)RTMemAlloc(sizeof(struct RTSEMRWINTERNAL));
if (pThis)
{
/*
* Create the semaphores.
*/
rc = RTSemEventCreateEx(&pThis->WriteEvent, RTSEMEVENT_FLAGS_NO_LOCK_VAL, NIL_RTLOCKVALCLASS, NULL);
if (RT_SUCCESS(rc))
{
rc = RTSemEventMultiCreateEx(&pThis->ReadEvent, RTSEMEVENT_FLAGS_NO_LOCK_VAL, NIL_RTLOCKVALCLASS, NULL);
if (RT_SUCCESS(rc))
{
rc = RTCritSectInitEx(&pThis->CritSect, RTCRITSECT_FLAGS_NO_LOCK_VAL,
NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, NULL);
if (RT_SUCCESS(rc))
{
/*
* Signal the read semaphore and initialize other variables.
*/
rc = RTSemEventMultiSignal(pThis->ReadEvent);
if (RT_SUCCESS(rc))
{
pThis->u32Padding = UINT32_C(0xa5a55a5a);
pThis->cReads = 0;
pThis->cWrites = 0;
pThis->cWriterReads = 0;
pThis->cWritesWaiting = 0;
pThis->hWriter = NIL_RTNATIVETHREAD;
pThis->fNeedResetReadEvent = true;
pThis->u32Magic = RTSEMRW_MAGIC;
#ifdef RTSEMRW_STRICT
bool const fLVEnabled = !(fFlags & RTSEMRW_FLAGS_NO_LOCK_VAL);
if (!pszNameFmt)
{
static uint32_t volatile s_iSemRWAnon = 0;
uint32_t i = ASMAtomicIncU32(&s_iSemRWAnon) - 1;
RTLockValidatorRecExclInit(&pThis->ValidatorWrite, hClass, uSubClass, pThis,
fLVEnabled, "RTSemRW-%u", i);
RTLockValidatorRecSharedInit(&pThis->ValidatorRead, hClass, uSubClass, pThis,
false /*fSignaller*/, fLVEnabled, "RTSemRW-%u", i);
}
else
{
va_list va;
va_start(va, pszNameFmt);
RTLockValidatorRecExclInitV(&pThis->ValidatorWrite, hClass, uSubClass, pThis,
fLVEnabled, pszNameFmt, va);
va_end(va);
va_start(va, pszNameFmt);
RTLockValidatorRecSharedInitV(&pThis->ValidatorRead, hClass, uSubClass, pThis,
false /*fSignaller*/, fLVEnabled, pszNameFmt, va);
va_end(va);
}
RTLockValidatorRecMakeSiblings(&pThis->ValidatorWrite.Core, &pThis->ValidatorRead.Core);
#endif
*phRWSem = pThis;
return VINF_SUCCESS;
}
RTCritSectDelete(&pThis->CritSect);
}
RTSemEventMultiDestroy(pThis->ReadEvent);
}
RTSemEventDestroy(pThis->WriteEvent);
}
RTMemFree(pThis);
}
else
rc = VERR_NO_MEMORY;
return rc;
}
RT_EXPORT_SYMBOL(RTSemRWCreate);
RTDECL(int) RTSemRWDestroy(RTSEMRW hRWSem)
{
struct RTSEMRWINTERNAL *pThis = hRWSem;
/*
* Validate handle.
*/
if (pThis == NIL_RTSEMRW)
return VINF_SUCCESS;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, VERR_INVALID_HANDLE);
/*
* Check if busy.
*/
int rc = RTCritSectTryEnter(&pThis->CritSect);
if (RT_SUCCESS(rc))
{
if (!pThis->cReads && !pThis->cWrites)
{
/*
* Make it invalid and unusable.
*/
ASMAtomicWriteU32(&pThis->u32Magic, ~RTSEMRW_MAGIC);
pThis->cReads = ~0;
/*
* Do actual cleanup. None of these can now fail.
*/
rc = RTSemEventMultiDestroy(pThis->ReadEvent);
AssertMsgRC(rc, ("RTSemEventMultiDestroy failed! rc=%Rrc\n", rc));
pThis->ReadEvent = NIL_RTSEMEVENTMULTI;
rc = RTSemEventDestroy(pThis->WriteEvent);
AssertMsgRC(rc, ("RTSemEventDestroy failed! rc=%Rrc\n", rc));
pThis->WriteEvent = NIL_RTSEMEVENT;
RTCritSectLeave(&pThis->CritSect);
rc = RTCritSectDelete(&pThis->CritSect);
AssertMsgRC(rc, ("RTCritSectDelete failed! rc=%Rrc\n", rc));
#ifdef RTSEMRW_STRICT
RTLockValidatorRecSharedDelete(&pThis->ValidatorRead);
RTLockValidatorRecExclDelete(&pThis->ValidatorWrite);
#endif
RTMemFree(pThis);
rc = VINF_SUCCESS;
}
else
{
rc = VERR_SEM_BUSY;
RTCritSectLeave(&pThis->CritSect);
}
}
else
{
AssertMsgRC(rc, ("RTCritSectTryEnter failed! rc=%Rrc\n", rc));
rc = VERR_SEM_BUSY;
}
return rc;
}
RT_EXPORT_SYMBOL(RTSemRWDestroy);
RTDECL(uint32_t) RTSemRWSetSubClass(RTSEMRW hRWSem, uint32_t uSubClass)
{
#ifdef RTSEMRW_STRICT
/*
* Validate handle.
*/
struct RTSEMRWINTERNAL *pThis = hRWSem;
AssertPtrReturn(pThis, RTLOCKVAL_SUB_CLASS_INVALID);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, RTLOCKVAL_SUB_CLASS_INVALID);
RTLockValidatorRecSharedSetSubClass(&pThis->ValidatorRead, uSubClass);
return RTLockValidatorRecExclSetSubClass(&pThis->ValidatorWrite, uSubClass);
#else
return RTLOCKVAL_SUB_CLASS_INVALID;
#endif
}
RT_EXPORT_SYMBOL(RTSemRWSetSubClass);
DECL_FORCE_INLINE(int) rtSemRWRequestRead(RTSEMRW hRWSem, RTMSINTERVAL cMillies, bool fInterruptible, PCRTLOCKVALSRCPOS pSrcPos)
{
/*
* Validate handle.
*/
struct RTSEMRWINTERNAL *pThis = hRWSem;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, VERR_INVALID_HANDLE);
RTMSINTERVAL cMilliesInitial = cMillies;
uint64_t tsStart = 0;
if (cMillies != RT_INDEFINITE_WAIT && cMillies != 0)
tsStart = RTTimeNanoTS();
#ifdef RTSEMRW_STRICT
RTTHREAD hThreadSelf = RTThreadSelfAutoAdopt();
if (cMillies > 0)
{
int rc9;
if (pThis->hWriter != NIL_RTTHREAD && pThis->hWriter == RTThreadNativeSelf())
rc9 = RTLockValidatorRecExclCheckOrder(&pThis->ValidatorWrite, hThreadSelf, pSrcPos, cMillies);
else
rc9 = RTLockValidatorRecSharedCheckOrder(&pThis->ValidatorRead, hThreadSelf, pSrcPos, cMillies);
if (RT_FAILURE(rc9))
return rc9;
}
#endif
/*
* Take critsect.
*/
int rc = RTCritSectEnter(&pThis->CritSect);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("RTCritSectEnter failed on rwsem %p, rc=%Rrc\n", hRWSem, rc));
return rc;
}
/*
* Check if the state of affairs allows read access.
* Do not block further readers if there is a writer waiting, as
* that will break/deadlock reader recursion.
*/
if ( pThis->hWriter == NIL_RTNATIVETHREAD
#if 0
&& ( !pThis->cWritesWaiting
|| pThis->cReads)
#endif
)
{
pThis->cReads++;
Assert(pThis->cReads > 0);
#ifdef RTSEMRW_STRICT
RTLockValidatorRecSharedAddOwner(&pThis->ValidatorRead, hThreadSelf, pSrcPos);
#endif
RTCritSectLeave(&pThis->CritSect);
return VINF_SUCCESS;
}
RTNATIVETHREAD hNativeSelf = pThis->CritSect.NativeThreadOwner;
if (pThis->hWriter == hNativeSelf)
{
#ifdef RTSEMRW_STRICT
int rc9 = RTLockValidatorRecExclRecursionMixed(&pThis->ValidatorWrite, &pThis->ValidatorRead.Core, pSrcPos);
if (RT_FAILURE(rc9))
{
RTCritSectLeave(&pThis->CritSect);
return rc9;
}
#endif
pThis->cWriterReads++;
Assert(pThis->cWriterReads > 0);
RTCritSectLeave(&pThis->CritSect);
return VINF_SUCCESS;
}
RTCritSectLeave(&pThis->CritSect);
/*
* Wait till it's ready for reading.
*/
if (cMillies == 0)
return VERR_TIMEOUT;
#ifndef RTSEMRW_STRICT
RTTHREAD hThreadSelf = RTThreadSelf();
#endif
for (;;)
{
if (cMillies != RT_INDEFINITE_WAIT)
{
int64_t tsDelta = RTTimeNanoTS() - tsStart;
if (tsDelta >= 1000000)
{
tsDelta /= 1000000;
if ((uint64_t)tsDelta < cMilliesInitial)
cMilliesInitial = (RTMSINTERVAL)tsDelta;
else
cMilliesInitial = 1;
}
}
#ifdef RTSEMRW_STRICT
rc = RTLockValidatorRecSharedCheckBlocking(&pThis->ValidatorRead, hThreadSelf, pSrcPos, true,
cMillies, RTTHREADSTATE_RW_READ, false);
if (RT_FAILURE(rc))
break;
#else
RTThreadBlocking(hThreadSelf, RTTHREADSTATE_RW_READ, false);
#endif
int rcWait;
if (fInterruptible)
rcWait = rc = RTSemEventMultiWaitNoResume(pThis->ReadEvent, cMillies);
else
rcWait = rc = RTSemEventMultiWait(pThis->ReadEvent, cMillies);
RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_RW_READ);
if (RT_FAILURE(rc) && rc != VERR_TIMEOUT) /* handle timeout below */
{
AssertMsgRC(rc, ("RTSemEventMultiWait failed on rwsem %p, rc=%Rrc\n", hRWSem, rc));
break;
}
if (pThis->u32Magic != RTSEMRW_MAGIC)
{
rc = VERR_SEM_DESTROYED;
break;
}
/*
* Re-take critsect and repeat the check we did before the loop.
*/
rc = RTCritSectEnter(&pThis->CritSect);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("RTCritSectEnter failed on rwsem %p, rc=%Rrc\n", hRWSem, rc));
break;
}
if ( pThis->hWriter == NIL_RTNATIVETHREAD
#if 0
&& ( !pThis->cWritesWaiting
|| pThis->cReads)
#endif
)
{
pThis->cReads++;
Assert(pThis->cReads > 0);
#ifdef RTSEMRW_STRICT
RTLockValidatorRecSharedAddOwner(&pThis->ValidatorRead, hThreadSelf, pSrcPos);
#endif
RTCritSectLeave(&pThis->CritSect);
return VINF_SUCCESS;
}
RTCritSectLeave(&pThis->CritSect);
/*
* Quit if the wait already timed out.
*/
if (rcWait == VERR_TIMEOUT)
{
rc = VERR_TIMEOUT;
break;
}
}
/* failed */
return rc;
}
RTDECL(int) RTSemRWRequestRead(RTSEMRW hRWSem, RTMSINTERVAL cMillies)
{
#ifndef RTSEMRW_STRICT
return rtSemRWRequestRead(hRWSem, cMillies, false, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtSemRWRequestRead(hRWSem, cMillies, false, &SrcPos);
#endif
}
RT_EXPORT_SYMBOL(RTSemRWRequestRead);
RTDECL(int) RTSemRWRequestReadDebug(RTSEMRW hRWSem, RTMSINTERVAL cMillies, RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtSemRWRequestRead(hRWSem, cMillies, false, &SrcPos);
}
RT_EXPORT_SYMBOL(RTSemRWRequestReadDebug);
RTDECL(int) RTSemRWRequestReadNoResume(RTSEMRW hRWSem, RTMSINTERVAL cMillies)
{
#ifndef RTSEMRW_STRICT
return rtSemRWRequestRead(hRWSem, cMillies, true, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtSemRWRequestRead(hRWSem, cMillies, true, &SrcPos);
#endif
}
RT_EXPORT_SYMBOL(RTSemRWRequestReadNoResume);
RTDECL(int) RTSemRWRequestReadNoResumeDebug(RTSEMRW hRWSem, RTMSINTERVAL cMillies, RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtSemRWRequestRead(hRWSem, cMillies, true, &SrcPos);
}
RT_EXPORT_SYMBOL(RTSemRWRequestReadNoResumeDebug);
RTDECL(int) RTSemRWReleaseRead(RTSEMRW hRWSem)
{
struct RTSEMRWINTERNAL *pThis = hRWSem;
/*
* Validate handle.
*/
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, VERR_INVALID_HANDLE);
/*
* Take critsect.
*/
int rc = RTCritSectEnter(&pThis->CritSect);
if (RT_SUCCESS(rc))
{
if (pThis->hWriter == NIL_RTNATIVETHREAD)
{
#ifdef RTSEMRW_STRICT
rc = RTLockValidatorRecSharedCheckAndRelease(&pThis->ValidatorRead, NIL_RTTHREAD);
if (RT_SUCCESS(rc))
#endif
{
if (RT_LIKELY(pThis->cReads > 0))
{
pThis->cReads--;
/* Kick off a writer if appropriate. */
if ( pThis->cWritesWaiting > 0
&& !pThis->cReads)
{
rc = RTSemEventSignal(pThis->WriteEvent);
AssertMsgRC(rc, ("Failed to signal writers on rwsem %p, rc=%Rrc\n", hRWSem, rc));
}
}
else
{
AssertFailed();
rc = VERR_NOT_OWNER;
}
}
}
else
{
RTNATIVETHREAD hNativeSelf = pThis->CritSect.NativeThreadOwner;
if (pThis->hWriter == hNativeSelf)
{
if (pThis->cWriterReads > 0)
{
#ifdef RTSEMRW_STRICT
rc = RTLockValidatorRecExclUnwindMixed(&pThis->ValidatorWrite, &pThis->ValidatorRead.Core);
if (RT_SUCCESS(rc))
#endif
{
pThis->cWriterReads--;
}
}
else
{
AssertFailed();
rc = VERR_NOT_OWNER;
}
}
else
{
AssertFailed();
rc = VERR_NOT_OWNER;
}
}
RTCritSectLeave(&pThis->CritSect);
}
else
AssertMsgFailed(("RTCritSectEnter failed on rwsem %p, rc=%Rrc\n", hRWSem, rc));
return rc;
}
RT_EXPORT_SYMBOL(RTSemRWReleaseRead);
DECL_FORCE_INLINE(int) rtSemRWRequestWrite(RTSEMRW hRWSem, RTMSINTERVAL cMillies, bool fInterruptible, PCRTLOCKVALSRCPOS pSrcPos)
{
/*
* Validate handle.
*/
struct RTSEMRWINTERNAL *pThis = hRWSem;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, VERR_INVALID_HANDLE);
RTMSINTERVAL cMilliesInitial = cMillies;
uint64_t tsStart = 0;
if (cMillies != RT_INDEFINITE_WAIT && cMillies != 0)
tsStart = RTTimeNanoTS();
#ifdef RTSEMRW_STRICT
RTTHREAD hThreadSelf = NIL_RTTHREAD;
if (cMillies)
{
hThreadSelf = RTThreadSelfAutoAdopt();
int rc9 = RTLockValidatorRecExclCheckOrder(&pThis->ValidatorWrite, hThreadSelf, pSrcPos, cMillies);
if (RT_FAILURE(rc9))
return rc9;
}
#endif
/*
* Take critsect.
*/
int rc = RTCritSectEnter(&pThis->CritSect);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("RTCritSectEnter failed on rwsem %p, rc=%Rrc\n", hRWSem, rc));
return rc;
}
/*
* Check if the state of affairs allows write access.
*/
RTNATIVETHREAD hNativeSelf = pThis->CritSect.NativeThreadOwner;
if ( !pThis->cReads
&& ( ( !pThis->cWrites
&& ( !pThis->cWritesWaiting /* play fair if we can wait */
|| !cMillies)
)
|| pThis->hWriter == hNativeSelf
)
)
{
/*
* Reset the reader event semaphore if necessary.
*/
if (pThis->fNeedResetReadEvent)
{
pThis->fNeedResetReadEvent = false;
rc = RTSemEventMultiReset(pThis->ReadEvent);
AssertMsgRC(rc, ("Failed to reset readers, rwsem %p, rc=%Rrc.\n", hRWSem, rc));
}
pThis->cWrites++;
pThis->hWriter = hNativeSelf;
#ifdef RTSEMRW_STRICT
RTLockValidatorRecExclSetOwner(&pThis->ValidatorWrite, hThreadSelf, pSrcPos, pThis->cWrites == 1);
#endif
RTCritSectLeave(&pThis->CritSect);
return VINF_SUCCESS;
}
/*
* Signal writer presence.
*/
if (cMillies != 0)
pThis->cWritesWaiting++;
RTCritSectLeave(&pThis->CritSect);
/*
* Wait till it's ready for writing.
*/
if (cMillies == 0)
return VERR_TIMEOUT;
#ifndef RTSEMRW_STRICT
RTTHREAD hThreadSelf = RTThreadSelf();
#endif
for (;;)
{
if (cMillies != RT_INDEFINITE_WAIT)
{
int64_t tsDelta = RTTimeNanoTS() - tsStart;
if (tsDelta >= 1000000)
{
tsDelta /= 1000000;
if ((uint64_t)tsDelta < cMilliesInitial)
cMilliesInitial = (RTMSINTERVAL)tsDelta;
else
cMilliesInitial = 1;
}
}
#ifdef RTSEMRW_STRICT
rc = RTLockValidatorRecExclCheckBlocking(&pThis->ValidatorWrite, hThreadSelf, pSrcPos, true,
cMillies, RTTHREADSTATE_RW_WRITE, false);
if (RT_FAILURE(rc))
break;
#else
RTThreadBlocking(hThreadSelf, RTTHREADSTATE_RW_WRITE, false);
#endif
int rcWait;
if (fInterruptible)
rcWait = rc = RTSemEventWaitNoResume(pThis->WriteEvent, cMillies);
else
rcWait = rc = RTSemEventWait(pThis->WriteEvent, cMillies);
RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_RW_WRITE);
if (RT_UNLIKELY(RT_FAILURE_NP(rc) && rc != VERR_TIMEOUT)) /* timeouts are handled below */
{
AssertMsgRC(rc, ("RTSemEventWait failed on rwsem %p, rc=%Rrc\n", hRWSem, rc));
break;
}
if (RT_UNLIKELY(pThis->u32Magic != RTSEMRW_MAGIC))
{
rc = VERR_SEM_DESTROYED;
break;
}
/*
* Re-take critsect and repeat the check we did prior to this loop.
*/
rc = RTCritSectEnter(&pThis->CritSect);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("RTCritSectEnter failed on rwsem %p, rc=%Rrc\n", hRWSem, rc));
break;
}
if (!pThis->cReads && (!pThis->cWrites || pThis->hWriter == hNativeSelf))
{
/*
* Reset the reader event semaphore if necessary.
*/
if (pThis->fNeedResetReadEvent)
{
pThis->fNeedResetReadEvent = false;
rc = RTSemEventMultiReset(pThis->ReadEvent);
AssertMsgRC(rc, ("Failed to reset readers, rwsem %p, rc=%Rrc.\n", hRWSem, rc));
}
pThis->cWrites++;
pThis->hWriter = hNativeSelf;
pThis->cWritesWaiting--;
#ifdef RTSEMRW_STRICT
RTLockValidatorRecExclSetOwner(&pThis->ValidatorWrite, hThreadSelf, pSrcPos, true);
#endif
RTCritSectLeave(&pThis->CritSect);
return VINF_SUCCESS;
}
RTCritSectLeave(&pThis->CritSect);
/*
* Quit if the wait already timed out.
*/
if (rcWait == VERR_TIMEOUT)
{
rc = VERR_TIMEOUT;
break;
}
}
/*
* Timeout/error case, clean up.
*/
if (pThis->u32Magic == RTSEMRW_MAGIC)
{
RTCritSectEnter(&pThis->CritSect);
/* Adjust this counter, whether we got the critsect or not. */
pThis->cWritesWaiting--;
RTCritSectLeave(&pThis->CritSect);
}
return rc;
}
RTDECL(int) RTSemRWRequestWrite(RTSEMRW hRWSem, RTMSINTERVAL cMillies)
{
#ifndef RTSEMRW_STRICT
return rtSemRWRequestWrite(hRWSem, cMillies, false, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtSemRWRequestWrite(hRWSem, cMillies, false, &SrcPos);
#endif
}
RT_EXPORT_SYMBOL(RTSemRWRequestWrite);
RTDECL(int) RTSemRWRequestWriteDebug(RTSEMRW hRWSem, RTMSINTERVAL cMillies, RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtSemRWRequestWrite(hRWSem, cMillies, false, &SrcPos);
}
RT_EXPORT_SYMBOL(RTSemRWRequestWriteDebug);
RTDECL(int) RTSemRWRequestWriteNoResume(RTSEMRW hRWSem, RTMSINTERVAL cMillies)
{
#ifndef RTSEMRW_STRICT
return rtSemRWRequestWrite(hRWSem, cMillies, true, NULL);
#else
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
return rtSemRWRequestWrite(hRWSem, cMillies, true, &SrcPos);
#endif
}
RT_EXPORT_SYMBOL(RTSemRWRequestWriteNoResume);
RTDECL(int) RTSemRWRequestWriteNoResumeDebug(RTSEMRW hRWSem, RTMSINTERVAL cMillies, RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
return rtSemRWRequestWrite(hRWSem, cMillies, true, &SrcPos);
}
RT_EXPORT_SYMBOL(RTSemRWRequestWriteNoResumeDebug);
RTDECL(int) RTSemRWReleaseWrite(RTSEMRW hRWSem)
{
/*
* Validate handle.
*/
struct RTSEMRWINTERNAL *pThis = hRWSem;
AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, VERR_INVALID_HANDLE);
/*
* Take critsect.
*/
int rc = RTCritSectEnter(&pThis->CritSect);
AssertRCReturn(rc, rc);
/*
* Check if owner.
*/
RTNATIVETHREAD hNativeSelf = pThis->CritSect.NativeThreadOwner;
if (pThis->hWriter != hNativeSelf)
{
RTCritSectLeave(&pThis->CritSect);
AssertMsgFailed(("Not read-write owner of rwsem %p.\n", hRWSem));
return VERR_NOT_OWNER;
}
#ifdef RTSEMRW_STRICT
if (pThis->cWrites > 1 || !pThis->cWriterReads) /* don't check+release if VERR_WRONG_ORDER */
{
int rc9 = RTLockValidatorRecExclReleaseOwner(&pThis->ValidatorWrite, pThis->cWrites == 1);
if (RT_FAILURE(rc9))
{
RTCritSectLeave(&pThis->CritSect);
return rc9;
}
}
#endif
/*
* Release ownership and remove ourselves from the writers count.
*/
Assert(pThis->cWrites > 0);
pThis->cWrites--;
if (!pThis->cWrites)
{
if (RT_UNLIKELY(pThis->cWriterReads > 0))
{
pThis->cWrites++;
RTCritSectLeave(&pThis->CritSect);
AssertMsgFailed(("All recursive read locks need to be released prior to the final write lock! (%p)n\n", pThis));
return VERR_WRONG_ORDER;
}
pThis->hWriter = NIL_RTNATIVETHREAD;
}
/*
* Release the readers if no more writers waiting, otherwise the writers.
*/
if (!pThis->cWritesWaiting)
{
rc = RTSemEventMultiSignal(pThis->ReadEvent);
AssertMsgRC(rc, ("RTSemEventMultiSignal failed for rwsem %p, rc=%Rrc.\n", hRWSem, rc));
pThis->fNeedResetReadEvent = true;
}
else
{
rc = RTSemEventSignal(pThis->WriteEvent);
AssertMsgRC(rc, ("Failed to signal writers on rwsem %p, rc=%Rrc\n", hRWSem, rc));
}
RTCritSectLeave(&pThis->CritSect);
return rc;
}
RT_EXPORT_SYMBOL(RTSemRWReleaseWrite);
RTDECL(bool) RTSemRWIsWriteOwner(RTSEMRW hRWSem)
{
/*
* Validate handle.
*/
struct RTSEMRWINTERNAL *pThis = hRWSem;
AssertPtrReturn(pThis, false);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, false);
/*
* Check ownership.
*/
RTNATIVETHREAD hNativeSelf = RTThreadNativeSelf();
RTNATIVETHREAD hWriter;
ASMAtomicUoReadHandle(&pThis->hWriter, &hWriter);
return hWriter == hNativeSelf;
}
RT_EXPORT_SYMBOL(RTSemRWIsWriteOwner);
RTDECL(bool) RTSemRWIsReadOwner(RTSEMRW hRWSem, bool fWannaHear)
{
/*
* Validate handle.
*/
struct RTSEMRWINTERNAL *pThis = hRWSem;
AssertPtrReturn(pThis, false);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, false);
/*
* Check write ownership. The writer is also a valid reader.
*/
RTNATIVETHREAD hNativeSelf = RTThreadNativeSelf();
RTNATIVETHREAD hWriter;
ASMAtomicUoReadHandle(&pThis->hWriter, &hWriter);
if (hWriter == hNativeSelf)
return true;
if (hWriter != NIL_RTNATIVETHREAD)
return false;
#ifdef RTSEMRW_STRICT
/*
* Ask the lock validator.
*/
NOREF(fWannaHear);
return RTLockValidatorRecSharedIsOwner(&pThis->ValidatorRead, NIL_RTTHREAD);
#else
/*
* If there are no reads we cannot be one of them... But if there are we
* cannot know and can only return what the caller want to hear.
*/
if (pThis->cReads == 0)
return false;
return fWannaHear;
#endif
}
RT_EXPORT_SYMBOL(RTSemRWIsReadOwner);
RTDECL(uint32_t) RTSemRWGetWriteRecursion(RTSEMRW hRWSem)
{
struct RTSEMRWINTERNAL *pThis = hRWSem;
/*
* Validate handle.
*/
AssertPtrReturn(pThis, 0);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, 0);
/*
* Return the requested data.
*/
return pThis->cWrites;
}
RT_EXPORT_SYMBOL(RTSemRWGetWriteRecursion);
RTDECL(uint32_t) RTSemRWGetWriterReadRecursion(RTSEMRW hRWSem)
{
struct RTSEMRWINTERNAL *pThis = hRWSem;
/*
* Validate handle.
*/
AssertPtrReturn(pThis, 0);
AssertReturn(pThis->u32Magic == RTSEMRW_MAGIC, 0);
/*
* Return the requested data.
*/
return pThis->cWriterReads;
}
RT_EXPORT_SYMBOL(RTSemRWGetWriterReadRecursion);
RTDECL(uint32_t) RTSemRWGetReadCount(RTSEMRW hRWSem)
{
/*
* Validate input.
*/
struct RTSEMRWINTERNAL *pThis = hRWSem;
AssertPtrReturn(pThis, 0);
AssertMsgReturn(pThis->u32Magic == RTSEMRW_MAGIC,
("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic),
0);
/*
* Return the requested data.
*/
return pThis->cReads;
}
RT_EXPORT_SYMBOL(RTSemRWGetReadCount);