md5.cpp revision a0a3a26a4065b9401681a8c99a11bd83e08f94cc
/* $Id$ */
/** @file
* IPRT - MD5 message digest functions.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/* The code is virtually unchanged from the original version (see copyright
* notice below). Most changes are related to the function names and data
* types - in order to fit the code in the IPRT naming style. */
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* RTMD5CONTEXT structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/md5.h>
#include "internal/iprt.h"
#include <iprt/string.h> /* for memcpy() */
#if defined(RT_BIG_ENDIAN)
# include <iprt/asm.h> /* RT_LE2H_U32 uses ASMByteSwapU32. */
#endif
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/* The four core functions - F1 is optimized somewhat */
#if 1
/* #define F1(x, y, z) (x & y | ~x & z) */
# define F1(x, y, z) (z ^ (x & (y ^ z)))
# define F2(x, y, z) F1(z, x, y)
# define F3(x, y, z) (x ^ y ^ z)
# define F4(x, y, z) (y ^ (x | ~z))
#else /* gcc 4.0.1 (x86) benefits from the explicitness of F1() here. */
DECL_FORCE_INLINE(uint32_t) F1(uint32_t x, uint32_t y, uint32_t z)
{
register uint32_t r = y ^ z;
r &= x;
r ^= z;
return r;
}
# define F2(x, y, z) F1(z, x, y)
DECL_FORCE_INLINE(uint32_t) F3(uint32_t x, uint32_t y, uint32_t z)
{
register uint32_t r = x ^ y;
r ^= z;
return r;
}
DECL_FORCE_INLINE(uint32_t) F4(uint32_t x, uint32_t y, uint32_t z)
{
register uint32_t r = ~z;
r |= x;
r ^= y;
return r;
}
#endif
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/**
* The core of the MD5 algorithm, this alters an existing MD5 hash to reflect
* the addition of 16 longwords of new data. RTMd5Update blocks the data and
* converts bytes into longwords for this routine.
*/
static void rtMd5Transform(uint32_t buf[4], uint32_t const in[16])
{
uint32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
/* fn, w, x, y, z, data, s) */
MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
#ifdef RT_BIG_ENDIAN
/*
* Note: this code is harmless on little-endian machines.
*/
static void rtMd5ByteReverse(uint32_t *buf, unsigned int longs)
{
uint32_t t;
do
{
t = *buf;
t = RT_LE2H_U32(t);
*buf = t;
buf++;
} while (--longs);
}
#else /* little endian - do nothing */
# define rtMd5ByteReverse(buf, len) do { /* Nothing */ } while (0)
#endif
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
RTDECL(void) RTMd5Init(PRTMD5CONTEXT ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
RT_EXPORT_SYMBOL(RTMd5Init);
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
RTDECL(void) RTMd5Update(PRTMD5CONTEXT ctx, const void *pvBuf, size_t len)
{
const uint8_t *buf = (const uint8_t *)pvBuf;
uint32_t t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += (uint32_t)(len >> 29);
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t)
{
uint8_t *p = (uint8_t *) ctx->in + t;
t = 64 - t;
if (len < t)
{
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
rtMd5ByteReverse(ctx->in, 16);
rtMd5Transform(ctx->buf, ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
#ifndef RT_BIG_ENDIAN
if (!((uintptr_t)buf & 0x3))
{
while (len >= 64) {
rtMd5Transform(ctx->buf, (uint32_t const *)buf);
buf += 64;
len -= 64;
}
}
else
#endif
{
while (len >= 64) {
memcpy(ctx->in, buf, 64);
rtMd5ByteReverse(ctx->in, 16);
rtMd5Transform(ctx->buf, ctx->in);
buf += 64;
len -= 64;
}
}
/* Handle any remaining bytes of data */
memcpy(ctx->in, buf, len);
}
RT_EXPORT_SYMBOL(RTMd5Update);
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
RTDECL(void) RTMd5Final(uint8_t digest[16], PRTMD5CONTEXT ctx)
{
unsigned int count;
uint8_t *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = (uint8_t *)ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8)
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
rtMd5ByteReverse(ctx->in, 16);
rtMd5Transform(ctx->buf, ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
}
else
{
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
rtMd5ByteReverse(ctx->in, 14);
/* Append length in bits and transform */
ctx->in[14] = ctx->bits[0];
ctx->in[15] = ctx->bits[1];
rtMd5Transform(ctx->buf, ctx->in);
rtMd5ByteReverse(ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
}
RT_EXPORT_SYMBOL(RTMd5Final);
RTDECL(void) RTMd5(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTMD5HASHSIZE])
{
#if 0
RTMD5CONTEXT Ctx[2];
PRTMD5CONTEXT const pCtx = RT_ALIGN_PT(&Ctx[0], 64, PRTMD5CONTEXT);
#else
RTMD5CONTEXT Ctx;
PRTMD5CONTEXT const pCtx = &Ctx;
#endif
RTMd5Init(pCtx);
for (;;)
{
uint32_t cb = (uint32_t)RT_MIN(cbBuf, _2M);
RTMd5Update(pCtx, pvBuf, cb);
if (cb == cbBuf)
break;
cbBuf -= cb;
pvBuf = (uint8_t const *)pvBuf + cb;
}
RTMd5Final(pabDigest, pCtx);
}
RT_EXPORT_SYMBOL(RTMd5);