alt-sha512.cpp revision 0ff3ea690ada5a31247aa874ec391cf898536876
/* $Id$ */
/** @file
* IPRT - SHA-512 and SHA-384 hash functions, Alternative Implementation.
*/
/*
* Copyright (C) 2009-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The SHA-512 block size (in bytes). */
#define RTSHA512_BLOCK_SIZE 128U
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "internal/iprt.h"
#include <iprt/types.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
/** Our private context structure. */
typedef struct RTSHA512ALTPRIVATECTX
{
/** The W array.
* Buffering happens in the first 16 words, converted from big endian to host
* endian immediately before processing. The amount of buffered data is kept
* in the 6 least significant bits of cbMessage. */
uint64_t auW[80];
/** The message length (in bytes). */
RTUINT128U cbMessage;
/** The 8 hash values. */
uint64_t auH[8];
} RTSHA512ALTPRIVATECTX;
#define RT_SHA512_PRIVATE_ALT_CONTEXT
#include <iprt/sha.h>
AssertCompile(RT_SIZEOFMEMB(RTSHA512CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA512CONTEXT, AltPrivate));
AssertCompileMemberSize(RTSHA512ALTPRIVATECTX, auH, RTSHA512_HASH_SIZE);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** The K constants. */
static uint64_t const g_auKs[] =
{
UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
};
RTDECL(void) RTSha512Init(PRTSHA512CONTEXT pCtx)
{
pCtx->AltPrivate.cbMessage.s.Lo = 0;
pCtx->AltPrivate.cbMessage.s.Hi = 0;
pCtx->AltPrivate.auH[0] = UINT64_C(0x6a09e667f3bcc908);
pCtx->AltPrivate.auH[1] = UINT64_C(0xbb67ae8584caa73b);
pCtx->AltPrivate.auH[2] = UINT64_C(0x3c6ef372fe94f82b);
pCtx->AltPrivate.auH[3] = UINT64_C(0xa54ff53a5f1d36f1);
pCtx->AltPrivate.auH[4] = UINT64_C(0x510e527fade682d1);
pCtx->AltPrivate.auH[5] = UINT64_C(0x9b05688c2b3e6c1f);
pCtx->AltPrivate.auH[6] = UINT64_C(0x1f83d9abfb41bd6b);
pCtx->AltPrivate.auH[7] = UINT64_C(0x5be0cd19137e2179);
}
RT_EXPORT_SYMBOL(RTSha512Init);
/** Function 4.8. */
DECL_FORCE_INLINE(uint64_t) rtSha512Ch(uint64_t uX, uint64_t uY, uint64_t uZ)
{
uint64_t uResult = uX & uY;
uResult ^= ~uX & uZ;
return uResult;
}
/** Function 4.9. */
DECL_FORCE_INLINE(uint64_t) rtSha512Maj(uint64_t uX, uint64_t uY, uint64_t uZ)
{
uint64_t uResult = uX & uY;
uResult ^= uX & uZ;
uResult ^= uY & uZ;
return uResult;
}
/** Function 4.10. */
DECL_FORCE_INLINE(uint64_t) rtSha512CapitalSigma0(uint64_t uX)
{
uint64_t uResult = uX = ASMRotateRightU64(uX, 28);
uX = ASMRotateRightU64(uX, 34 - 28);
uResult ^= uX;
uX = ASMRotateRightU64(uX, 39 - 34);
uResult ^= uX;
return uResult;
}
/** Function 4.11. */
DECL_FORCE_INLINE(uint64_t) rtSha512CapitalSigma1(uint64_t uX)
{
uint64_t uResult = uX = ASMRotateRightU64(uX, 14);
uX = ASMRotateRightU64(uX, 18 - 14);
uResult ^= uX;
uX = ASMRotateRightU64(uX, 41 - 18);
uResult ^= uX;
return uResult;
}
/** Function 4.12. */
DECL_FORCE_INLINE(uint64_t) rtSha512SmallSigma0(uint64_t uX)
{
uint64_t uResult = uX >> 7;
uX = ASMRotateRightU64(uX, 1);
uResult ^= uX;
uX = ASMRotateRightU64(uX, 8 - 1);
uResult ^= uX;
return uResult;
}
/** Function 4.13. */
DECL_FORCE_INLINE(uint64_t) rtSha512SmallSigma1(uint64_t uX)
{
uint64_t uResult = uX >> 6;
uX = ASMRotateRightU64(uX, 19);
uResult ^= uX;
uX = ASMRotateRightU64(uX, 61 - 19);
uResult ^= uX;
return uResult;
}
/**
* Initializes the auW array from the specfied input block.
*
* @param pCtx The SHA-512 context.
* @param pbBlock The block. Must be 32-bit aligned.
*/
DECLINLINE(void) rtSha512BlockInit(PRTSHA512CONTEXT pCtx, uint8_t const *pbBlock)
{
uint64_t const *pu32Block = (uint64_t const *)pbBlock;
Assert(!((uintptr_t)pu32Block & 3));
unsigned iWord;
for (iWord = 0; iWord < 16; iWord++)
pCtx->AltPrivate.auW[iWord] = RT_BE2H_U64(pu32Block[iWord]);
for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
{
uint64_t u64 = rtSha512SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
u64 += rtSha512SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
u64 += pCtx->AltPrivate.auW[iWord - 7];
u64 += pCtx->AltPrivate.auW[iWord - 16];
pCtx->AltPrivate.auW[iWord] = u64;
}
}
/**
* Initializes the auW array from data buffered in the first part of the array.
*
* @param pCtx The SHA-512 context.
*/
DECLINLINE(void) rtSha512BlockInitBuffered(PRTSHA512CONTEXT pCtx)
{
unsigned iWord;
for (iWord = 0; iWord < 16; iWord++)
pCtx->AltPrivate.auW[iWord] = RT_BE2H_U64(pCtx->AltPrivate.auW[iWord]);
for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
{
uint64_t u64 = rtSha512SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
u64 += rtSha512SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
u64 += pCtx->AltPrivate.auW[iWord - 7];
u64 += pCtx->AltPrivate.auW[iWord - 16];
pCtx->AltPrivate.auW[iWord] = u64;
}
}
/**
* Process the current block.
*
* Requires one of the rtSha512BlockInit functions to be called first.
*
* @param pCtx The SHA-512 context.
*/
static void rtSha512BlockProcess(PRTSHA512CONTEXT pCtx)
{
uint64_t uA = pCtx->AltPrivate.auH[0];
uint64_t uB = pCtx->AltPrivate.auH[1];
uint64_t uC = pCtx->AltPrivate.auH[2];
uint64_t uD = pCtx->AltPrivate.auH[3];
uint64_t uE = pCtx->AltPrivate.auH[4];
uint64_t uF = pCtx->AltPrivate.auH[5];
uint64_t uG = pCtx->AltPrivate.auH[6];
uint64_t uH = pCtx->AltPrivate.auH[7];
for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
{
uint64_t uT1 = uH;
uT1 += rtSha512CapitalSigma1(uE);
uT1 += rtSha512Ch(uE, uF, uG);
uT1 += g_auKs[iWord];
uT1 += pCtx->AltPrivate.auW[iWord];
uint64_t uT2 = rtSha512CapitalSigma0(uA);
uT2 += rtSha512Maj(uA, uB, uC);
uH = uG;
uG = uF;
uF = uE;
uE = uD + uT1;
uD = uC;
uC = uB;
uB = uA;
uA = uT1 + uT2;
}
pCtx->AltPrivate.auH[0] += uA;
pCtx->AltPrivate.auH[1] += uB;
pCtx->AltPrivate.auH[2] += uC;
pCtx->AltPrivate.auH[3] += uD;
pCtx->AltPrivate.auH[4] += uE;
pCtx->AltPrivate.auH[5] += uF;
pCtx->AltPrivate.auH[6] += uG;
pCtx->AltPrivate.auH[7] += uH;
}
RTDECL(void) RTSha512Update(PRTSHA512CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
{
Assert(pCtx->AltPrivate.cbMessage.s.Hi < UINT64_MAX / 8);
uint8_t const *pbBuf = (uint8_t const *)pvBuf;
/*
* Deal with buffered bytes first.
*/
size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage.s.Lo & (RTSHA512_BLOCK_SIZE - 1U);
if (cbBuffered)
{
size_t cbMissing = RTSHA512_BLOCK_SIZE - cbBuffered;
if (cbBuf >= cbMissing)
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing);
pCtx->AltPrivate.cbMessage.s.Lo += cbMissing;
if (!pCtx->AltPrivate.cbMessage.s.Lo)
pCtx->AltPrivate.cbMessage.s.Hi++;
pbBuf += cbMissing;
cbBuf -= cbMissing;
rtSha512BlockInitBuffered(pCtx);
rtSha512BlockProcess(pCtx);
}
else
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf);
pCtx->AltPrivate.cbMessage.s.Lo += cbBuf;
return;
}
}
if (!((uintptr_t)pbBuf & 3))
{
/*
* Process full blocks directly from the input buffer.
*/
while (cbBuf >= RTSHA512_BLOCK_SIZE)
{
rtSha512BlockInit(pCtx, pbBuf);
rtSha512BlockProcess(pCtx);
pCtx->AltPrivate.cbMessage.s.Lo += RTSHA512_BLOCK_SIZE;
if (!pCtx->AltPrivate.cbMessage.s.Lo)
pCtx->AltPrivate.cbMessage.s.Hi++;
pbBuf += RTSHA512_BLOCK_SIZE;
cbBuf -= RTSHA512_BLOCK_SIZE;
}
}
else
{
/*
* Unaligned input, so buffer it.
*/
while (cbBuf >= RTSHA512_BLOCK_SIZE)
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA512_BLOCK_SIZE);
rtSha512BlockInitBuffered(pCtx);
rtSha512BlockProcess(pCtx);
pCtx->AltPrivate.cbMessage.s.Lo += RTSHA512_BLOCK_SIZE;
if (!pCtx->AltPrivate.cbMessage.s.Lo)
pCtx->AltPrivate.cbMessage.s.Hi++;
pbBuf += RTSHA512_BLOCK_SIZE;
cbBuf -= RTSHA512_BLOCK_SIZE;
}
}
/*
* Stash any remaining bytes into the context buffer.
*/
if (cbBuf > 0)
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf);
pCtx->AltPrivate.cbMessage.s.Lo += cbBuf;
if (!pCtx->AltPrivate.cbMessage.s.Lo)
pCtx->AltPrivate.cbMessage.s.Hi++;
}
}
RT_EXPORT_SYMBOL(RTSha512Update);
/**
* Internal worker for RTSha512Final and RTSha384Final that finalizes the
* computation but does not copy out the hash value.
*
* @param pCtx The SHA-512 context.
*/
static void rtSha512FinalInternal(PRTSHA512CONTEXT pCtx)
{
Assert(pCtx->AltPrivate.cbMessage.s.Hi < UINT64_MAX / 8);
/*
* Complete the message by adding a single bit (0x80), padding till
* the next 448-bit boundrary, the add the message length.
*/
RTUINT128U cMessageBits = pCtx->AltPrivate.cbMessage;
cMessageBits.s.Hi <<= 3;
cMessageBits.s.Hi |= cMessageBits.s.Lo >> 61;
cMessageBits.s.Lo <<= 3;
unsigned cbMissing = RTSHA512_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage.s.Lo & (RTSHA512_BLOCK_SIZE - 1U));
static uint8_t const s_abSingleBitAndSomePadding[20] =
{ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,};
if (cbMissing < 1U + 16U)
/* Less than 64+16 bits left in the current block, force a new block. */
RTSha512Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding));
else
RTSha512Update(pCtx, &s_abSingleBitAndSomePadding, 1);
unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage.s.Lo & (RTSHA512_BLOCK_SIZE - 1U);
cbMissing = RTSHA512_BLOCK_SIZE - cbBuffered;
Assert(cbMissing >= 16);
memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 16);
pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits.s.Hi);
pCtx->AltPrivate.auW[15] = RT_H2BE_U64(cMessageBits.s.Lo);
/*
* Process the last buffered block constructed/completed above.
*/
rtSha512BlockInitBuffered(pCtx);
rtSha512BlockProcess(pCtx);
/*
* Convert the byte order of the hash words and we're done.
*/
pCtx->AltPrivate.auH[0] = RT_H2BE_U64(pCtx->AltPrivate.auH[0]);
pCtx->AltPrivate.auH[1] = RT_H2BE_U64(pCtx->AltPrivate.auH[1]);
pCtx->AltPrivate.auH[2] = RT_H2BE_U64(pCtx->AltPrivate.auH[2]);
pCtx->AltPrivate.auH[3] = RT_H2BE_U64(pCtx->AltPrivate.auH[3]);
pCtx->AltPrivate.auH[4] = RT_H2BE_U64(pCtx->AltPrivate.auH[4]);
pCtx->AltPrivate.auH[5] = RT_H2BE_U64(pCtx->AltPrivate.auH[5]);
pCtx->AltPrivate.auH[6] = RT_H2BE_U64(pCtx->AltPrivate.auH[6]);
pCtx->AltPrivate.auH[7] = RT_H2BE_U64(pCtx->AltPrivate.auH[7]);
RT_ZERO(pCtx->AltPrivate.auW);
pCtx->AltPrivate.cbMessage.s.Lo = UINT64_MAX;
pCtx->AltPrivate.cbMessage.s.Hi = UINT64_MAX;
}
RT_EXPORT_SYMBOL(RTSha512Final);
RTDECL(void) RTSha512Final(PRTSHA512CONTEXT pCtx, uint8_t pabDigest[RTSHA512_HASH_SIZE])
{
rtSha512FinalInternal(pCtx);
memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA512_HASH_SIZE);
RT_ZERO(pCtx->AltPrivate.auH);
}
RT_EXPORT_SYMBOL(RTSha512Final);
RTDECL(void) RTSha512(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA512_HASH_SIZE])
{
RTSHA512CONTEXT Ctx;
RTSha512Init(&Ctx);
RTSha512Update(&Ctx, pvBuf, cbBuf);
RTSha512Final(&Ctx, pabDigest);
}
RT_EXPORT_SYMBOL(RTSha512);
/*
* SHA-384 is just SHA-512 with different initial values an a truncated result.
*/
RTDECL(void) RTSha384Init(PRTSHA384CONTEXT pCtx)
{
pCtx->AltPrivate.cbMessage.s.Lo = 0;
pCtx->AltPrivate.cbMessage.s.Hi = 0;
pCtx->AltPrivate.auH[0] = UINT64_C(0xcbbb9d5dc1059ed8);
pCtx->AltPrivate.auH[1] = UINT64_C(0x629a292a367cd507);
pCtx->AltPrivate.auH[2] = UINT64_C(0x9159015a3070dd17);
pCtx->AltPrivate.auH[3] = UINT64_C(0x152fecd8f70e5939);
pCtx->AltPrivate.auH[4] = UINT64_C(0x67332667ffc00b31);
pCtx->AltPrivate.auH[5] = UINT64_C(0x8eb44a8768581511);
pCtx->AltPrivate.auH[6] = UINT64_C(0xdb0c2e0d64f98fa7);
pCtx->AltPrivate.auH[7] = UINT64_C(0x47b5481dbefa4fa4);
}
RT_EXPORT_SYMBOL(RTSha384Init);
RTDECL(void) RTSha384Update(PRTSHA384CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
{
RTSha512Update(pCtx, pvBuf, cbBuf);
}
RT_EXPORT_SYMBOL(RTSha384Update);
RTDECL(void) RTSha384Final(PRTSHA384CONTEXT pCtx, uint8_t pabDigest[RTSHA384_HASH_SIZE])
{
rtSha512FinalInternal(pCtx);
memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA384_HASH_SIZE);
RT_ZERO(pCtx->AltPrivate.auH);
}
RT_EXPORT_SYMBOL(RTSha384Final);
RTDECL(void) RTSha384(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA384_HASH_SIZE])
{
RTSHA384CONTEXT Ctx;
RTSha384Init(&Ctx);
RTSha384Update(&Ctx, pvBuf, cbBuf);
RTSha384Final(&Ctx, pabDigest);
}
RT_EXPORT_SYMBOL(RTSha384);
/*
* SHA-512/224 is just SHA-512 with different initial values an a truncated result.
*/
RTDECL(void) RTSha512t224Init(PRTSHA512T224CONTEXT pCtx)
{
pCtx->AltPrivate.cbMessage.s.Lo = 0;
pCtx->AltPrivate.cbMessage.s.Hi = 0;
pCtx->AltPrivate.auH[0] = UINT64_C(0x8c3d37c819544da2);
pCtx->AltPrivate.auH[1] = UINT64_C(0x73e1996689dcd4d6);
pCtx->AltPrivate.auH[2] = UINT64_C(0x1dfab7ae32ff9c82);
pCtx->AltPrivate.auH[3] = UINT64_C(0x679dd514582f9fcf);
pCtx->AltPrivate.auH[4] = UINT64_C(0x0f6d2b697bd44da8);
pCtx->AltPrivate.auH[5] = UINT64_C(0x77e36f7304c48942);
pCtx->AltPrivate.auH[6] = UINT64_C(0x3f9d85a86a1d36c8);
pCtx->AltPrivate.auH[7] = UINT64_C(0x1112e6ad91d692a1);
}
RT_EXPORT_SYMBOL(RTSha512t224Init);
RTDECL(void) RTSha512t224Update(PRTSHA512T224CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
{
RTSha512Update(pCtx, pvBuf, cbBuf);
}
RT_EXPORT_SYMBOL(RTSha512t224Update);
RTDECL(void) RTSha512t224Final(PRTSHA512T224CONTEXT pCtx, uint8_t pabDigest[RTSHA512T224_HASH_SIZE])
{
rtSha512FinalInternal(pCtx);
memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA512T224_HASH_SIZE);
RT_ZERO(pCtx->AltPrivate.auH);
}
RT_EXPORT_SYMBOL(RTSha512t224Final);
RTDECL(void) RTSha512t224(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA512T224_HASH_SIZE])
{
RTSHA512T224CONTEXT Ctx;
RTSha512t224Init(&Ctx);
RTSha512t224Update(&Ctx, pvBuf, cbBuf);
RTSha512t224Final(&Ctx, pabDigest);
}
RT_EXPORT_SYMBOL(RTSha512t224);
/*
* SHA-512/256 is just SHA-512 with different initial values an a truncated result.
*/
RTDECL(void) RTSha512t256Init(PRTSHA512T256CONTEXT pCtx)
{
pCtx->AltPrivate.cbMessage.s.Lo = 0;
pCtx->AltPrivate.cbMessage.s.Hi = 0;
pCtx->AltPrivate.auH[0] = UINT64_C(0x22312194fc2bf72c);
pCtx->AltPrivate.auH[1] = UINT64_C(0x9f555fa3c84c64c2);
pCtx->AltPrivate.auH[2] = UINT64_C(0x2393b86b6f53b151);
pCtx->AltPrivate.auH[3] = UINT64_C(0x963877195940eabd);
pCtx->AltPrivate.auH[4] = UINT64_C(0x96283ee2a88effe3);
pCtx->AltPrivate.auH[5] = UINT64_C(0xbe5e1e2553863992);
pCtx->AltPrivate.auH[6] = UINT64_C(0x2b0199fc2c85b8aa);
pCtx->AltPrivate.auH[7] = UINT64_C(0x0eb72ddc81c52ca2);
}
RT_EXPORT_SYMBOL(RTSha512t256Init);
RTDECL(void) RTSha512t256Update(PRTSHA512T256CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
{
RTSha512Update(pCtx, pvBuf, cbBuf);
}
RT_EXPORT_SYMBOL(RTSha512t256Update);
RTDECL(void) RTSha512t256Final(PRTSHA512T256CONTEXT pCtx, uint8_t pabDigest[RTSHA512T256_HASH_SIZE])
{
rtSha512FinalInternal(pCtx);
memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA512T256_HASH_SIZE);
RT_ZERO(pCtx->AltPrivate.auH);
}
RT_EXPORT_SYMBOL(RTSha512t256Final);
RTDECL(void) RTSha512t256(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA512T256_HASH_SIZE])
{
RTSHA512T256CONTEXT Ctx;
RTSha512t256Init(&Ctx);
RTSha512t256Update(&Ctx, pvBuf, cbBuf);
RTSha512t256Final(&Ctx, pabDigest);
}
RT_EXPORT_SYMBOL(RTSha512t256);