alt-sha256.cpp revision ed6697871be690c5826c252d598ea9965c2816b4
/* $Id$ */
/** @file
* IPRT - SHA-256 and SHA-224 hash functions, Alternative Implementation.
*/
/*
* Copyright (C) 2009-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** The SHA-256 block size (in bytes). */
#define RTSHA256_BLOCK_SIZE 64U
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "internal/iprt.h"
#include <iprt/types.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
/** Our private context structure. */
typedef struct RTSHA256ALTPRIVATECTX
{
/** The W array.
* Buffering happens in the first 16 words, converted from big endian to host
* endian immediately before processing. The amount of buffered data is kept
* in the 6 least significant bits of cbMessage. */
uint32_t auW[64];
/** The message length (in bytes). */
uint64_t cbMessage;
/** The 8 hash values. */
uint32_t auH[8];
} RTSHA256ALTPRIVATECTX;
#define RT_SHA256_PRIVATE_ALT_CONTEXT
#include <iprt/sha.h>
AssertCompile(RT_SIZEOFMEMB(RTSHA256CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA256CONTEXT, AltPrivate));
AssertCompileMemberSize(RTSHA256ALTPRIVATECTX, auH, RTSHA256_HASH_SIZE);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** The K constants */
static uint32_t const g_auKs[] =
{
UINT32_C(0x428a2f98), UINT32_C(0x71374491), UINT32_C(0xb5c0fbcf), UINT32_C(0xe9b5dba5),
UINT32_C(0x3956c25b), UINT32_C(0x59f111f1), UINT32_C(0x923f82a4), UINT32_C(0xab1c5ed5),
UINT32_C(0xd807aa98), UINT32_C(0x12835b01), UINT32_C(0x243185be), UINT32_C(0x550c7dc3),
UINT32_C(0x72be5d74), UINT32_C(0x80deb1fe), UINT32_C(0x9bdc06a7), UINT32_C(0xc19bf174),
UINT32_C(0xe49b69c1), UINT32_C(0xefbe4786), UINT32_C(0x0fc19dc6), UINT32_C(0x240ca1cc),
UINT32_C(0x2de92c6f), UINT32_C(0x4a7484aa), UINT32_C(0x5cb0a9dc), UINT32_C(0x76f988da),
UINT32_C(0x983e5152), UINT32_C(0xa831c66d), UINT32_C(0xb00327c8), UINT32_C(0xbf597fc7),
UINT32_C(0xc6e00bf3), UINT32_C(0xd5a79147), UINT32_C(0x06ca6351), UINT32_C(0x14292967),
UINT32_C(0x27b70a85), UINT32_C(0x2e1b2138), UINT32_C(0x4d2c6dfc), UINT32_C(0x53380d13),
UINT32_C(0x650a7354), UINT32_C(0x766a0abb), UINT32_C(0x81c2c92e), UINT32_C(0x92722c85),
UINT32_C(0xa2bfe8a1), UINT32_C(0xa81a664b), UINT32_C(0xc24b8b70), UINT32_C(0xc76c51a3),
UINT32_C(0xd192e819), UINT32_C(0xd6990624), UINT32_C(0xf40e3585), UINT32_C(0x106aa070),
UINT32_C(0x19a4c116), UINT32_C(0x1e376c08), UINT32_C(0x2748774c), UINT32_C(0x34b0bcb5),
UINT32_C(0x391c0cb3), UINT32_C(0x4ed8aa4a), UINT32_C(0x5b9cca4f), UINT32_C(0x682e6ff3),
UINT32_C(0x748f82ee), UINT32_C(0x78a5636f), UINT32_C(0x84c87814), UINT32_C(0x8cc70208),
UINT32_C(0x90befffa), UINT32_C(0xa4506ceb), UINT32_C(0xbef9a3f7), UINT32_C(0xc67178f2),
};
RTDECL(void) RTSha256Init(PRTSHA256CONTEXT pCtx)
{
pCtx->AltPrivate.cbMessage = 0;
pCtx->AltPrivate.auH[0] = UINT32_C(0x6a09e667);
pCtx->AltPrivate.auH[1] = UINT32_C(0xbb67ae85);
pCtx->AltPrivate.auH[2] = UINT32_C(0x3c6ef372);
pCtx->AltPrivate.auH[3] = UINT32_C(0xa54ff53a);
pCtx->AltPrivate.auH[4] = UINT32_C(0x510e527f);
pCtx->AltPrivate.auH[5] = UINT32_C(0x9b05688c);
pCtx->AltPrivate.auH[6] = UINT32_C(0x1f83d9ab);
pCtx->AltPrivate.auH[7] = UINT32_C(0x5be0cd19);
}
RT_EXPORT_SYMBOL(RTSha256Init);
/** Function 4.2. */
DECL_FORCE_INLINE(uint32_t) rtSha256Ch(uint32_t uX, uint32_t uY, uint32_t uZ)
{
uint32_t uResult = uX & uY;
uResult ^= ~uX & uZ;
return uResult;
}
/** Function 4.3. */
DECL_FORCE_INLINE(uint32_t) rtSha256Maj(uint32_t uX, uint32_t uY, uint32_t uZ)
{
uint32_t uResult = uX & uY;
uResult ^= uX & uZ;
uResult ^= uY & uZ;
return uResult;
}
/** Function 4.4. */
DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma0(uint32_t uX)
{
uint32_t uResult = uX = ASMRotateRightU32(uX, 2);
uX = ASMRotateRightU32(uX, 13 - 2);
uResult ^= uX;
uX = ASMRotateRightU32(uX, 22 - 13);
uResult ^= uX;
return uResult;
}
/** Function 4.5. */
DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma1(uint32_t uX)
{
uint32_t uResult = uX = ASMRotateRightU32(uX, 6);
uX = ASMRotateRightU32(uX, 11 - 6);
uResult ^= uX;
uX = ASMRotateRightU32(uX, 25 - 11);
uResult ^= uX;
return uResult;
}
/** Function 4.6. */
DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma0(uint32_t uX)
{
uint32_t uResult = uX >> 3;
uX = ASMRotateRightU32(uX, 7);
uResult ^= uX;
uX = ASMRotateRightU32(uX, 18 - 7);
uResult ^= uX;
return uResult;
}
/** Function 4.7. */
DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma1(uint32_t uX)
{
uint32_t uResult = uX >> 10;
uX = ASMRotateRightU32(uX, 17);
uResult ^= uX;
uX = ASMRotateRightU32(uX, 19 - 17);
uResult ^= uX;
return uResult;
}
/**
* Initializes the auW array from the specfied input block.
*
* @param pCtx The SHA-256 context.
* @param pbBlock The block. Must be 32-bit aligned.
*/
DECLINLINE(void) rtSha256BlockInit(PRTSHA256CONTEXT pCtx, uint8_t const *pbBlock)
{
uint32_t const *pu32Block = (uint32_t const *)pbBlock;
Assert(!((uintptr_t)pu32Block & 3));
unsigned iWord;
for (iWord = 0; iWord < 16; iWord++)
pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pu32Block[iWord]);
for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
{
uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
u32 += pCtx->AltPrivate.auW[iWord - 7];
u32 += pCtx->AltPrivate.auW[iWord - 16];
pCtx->AltPrivate.auW[iWord] = u32;
}
}
/**
* Initializes the auW array from data buffered in the first part of the array.
*
* @param pCtx The SHA-256 context.
*/
DECLINLINE(void) rtSha256BlockInitBuffered(PRTSHA256CONTEXT pCtx)
{
unsigned iWord;
for (iWord = 0; iWord < 16; iWord++)
pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pCtx->AltPrivate.auW[iWord]);
for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
{
uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]);
u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]);
u32 += pCtx->AltPrivate.auW[iWord - 7];
u32 += pCtx->AltPrivate.auW[iWord - 16];
pCtx->AltPrivate.auW[iWord] = u32;
}
}
/**
* Process the current block.
*
* Requires one of the rtSha256BlockInit functions to be called first.
*
* @param pCtx The SHA-256 context.
*/
static void rtSha256BlockProcess(PRTSHA256CONTEXT pCtx)
{
uint32_t uA = pCtx->AltPrivate.auH[0];
uint32_t uB = pCtx->AltPrivate.auH[1];
uint32_t uC = pCtx->AltPrivate.auH[2];
uint32_t uD = pCtx->AltPrivate.auH[3];
uint32_t uE = pCtx->AltPrivate.auH[4];
uint32_t uF = pCtx->AltPrivate.auH[5];
uint32_t uG = pCtx->AltPrivate.auH[6];
uint32_t uH = pCtx->AltPrivate.auH[7];
for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++)
{
uint32_t uT1 = uH;
uT1 += rtSha256CapitalSigma1(uE);
uT1 += rtSha256Ch(uE, uF, uG);
uT1 += g_auKs[iWord];
uT1 += pCtx->AltPrivate.auW[iWord];
uint32_t uT2 = rtSha256CapitalSigma0(uA);
uT2 += rtSha256Maj(uA, uB, uC);
uH = uG;
uG = uF;
uF = uE;
uE = uD + uT1;
uD = uC;
uC = uB;
uB = uA;
uA = uT1 + uT2;
}
pCtx->AltPrivate.auH[0] += uA;
pCtx->AltPrivate.auH[1] += uB;
pCtx->AltPrivate.auH[2] += uC;
pCtx->AltPrivate.auH[3] += uD;
pCtx->AltPrivate.auH[4] += uE;
pCtx->AltPrivate.auH[5] += uF;
pCtx->AltPrivate.auH[6] += uG;
pCtx->AltPrivate.auH[7] += uH;
}
RTDECL(void) RTSha256Update(PRTSHA256CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
{
Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8);
uint8_t const *pbBuf = (uint8_t const *)pvBuf;
/*
* Deal with buffered bytes first.
*/
size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U);
if (cbBuffered)
{
size_t cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered;
if (cbBuf >= cbMissing)
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing);
pCtx->AltPrivate.cbMessage += cbMissing;
pbBuf += cbMissing;
cbBuf -= cbMissing;
rtSha256BlockInitBuffered(pCtx);
rtSha256BlockProcess(pCtx);
}
else
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf);
pCtx->AltPrivate.cbMessage += cbBuf;
return;
}
}
if (!((uintptr_t)pbBuf & 3))
{
/*
* Process full blocks directly from the input buffer.
*/
while (cbBuf >= RTSHA256_BLOCK_SIZE)
{
rtSha256BlockInit(pCtx, pbBuf);
rtSha256BlockProcess(pCtx);
pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE;
pbBuf += RTSHA256_BLOCK_SIZE;
cbBuf -= RTSHA256_BLOCK_SIZE;
}
}
else
{
/*
* Unaligned input, so buffer it.
*/
while (cbBuf >= RTSHA256_BLOCK_SIZE)
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA256_BLOCK_SIZE);
rtSha256BlockInitBuffered(pCtx);
rtSha256BlockProcess(pCtx);
pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE;
pbBuf += RTSHA256_BLOCK_SIZE;
cbBuf -= RTSHA256_BLOCK_SIZE;
}
}
/*
* Stash any remaining bytes into the context buffer.
*/
if (cbBuf > 0)
{
memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf);
pCtx->AltPrivate.cbMessage += cbBuf;
}
}
RT_EXPORT_SYMBOL(RTSha256Update);
/**
* Internal worker for RTSha256Final and RTSha224Final that finalizes the
* computation but does not copy out the hash value.
*
* @param pCtx The SHA-256 context.
*/
static void rtSha256FinalInternal(PRTSHA256CONTEXT pCtx)
{
Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8);
/*
* Complete the message by adding a single bit (0x80), padding till
* the next 448-bit boundrary, the add the message length.
*/
uint64_t const cMessageBits = pCtx->AltPrivate.cbMessage * 8;
unsigned cbMissing = RTSHA256_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U));
static uint8_t const s_abSingleBitAndSomePadding[12] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
if (cbMissing < 1U + 8U)
/* Less than 64+8 bits left in the current block, force a new block. */
RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding));
else
RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, 1);
unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U);
cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered;
Assert(cbMissing >= 8);
memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 8);
*(uint64_t *)&pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits);
/*
* Process the last buffered block constructed/completed above.
*/
rtSha256BlockInitBuffered(pCtx);
rtSha256BlockProcess(pCtx);
/*
* Convert the byte order of the hash words and we're done.
*/
pCtx->AltPrivate.auH[0] = RT_H2BE_U32(pCtx->AltPrivate.auH[0]);
pCtx->AltPrivate.auH[1] = RT_H2BE_U32(pCtx->AltPrivate.auH[1]);
pCtx->AltPrivate.auH[2] = RT_H2BE_U32(pCtx->AltPrivate.auH[2]);
pCtx->AltPrivate.auH[3] = RT_H2BE_U32(pCtx->AltPrivate.auH[3]);
pCtx->AltPrivate.auH[4] = RT_H2BE_U32(pCtx->AltPrivate.auH[4]);
pCtx->AltPrivate.auH[5] = RT_H2BE_U32(pCtx->AltPrivate.auH[5]);
pCtx->AltPrivate.auH[6] = RT_H2BE_U32(pCtx->AltPrivate.auH[6]);
pCtx->AltPrivate.auH[7] = RT_H2BE_U32(pCtx->AltPrivate.auH[7]);
pCtx->AltPrivate.cbMessage = UINT64_MAX;
}
RT_EXPORT_SYMBOL(RTSha256Final);
RTDECL(void) RTSha256Final(PRTSHA256CONTEXT pCtx, uint8_t pabDigest[RTSHA256_HASH_SIZE])
{
rtSha256FinalInternal(pCtx);
memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA256_HASH_SIZE);
}
RT_EXPORT_SYMBOL(RTSha256Final);
RTDECL(void) RTSha256(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA256_HASH_SIZE])
{
RTSHA256CONTEXT Ctx;
RTSha256Init(&Ctx);
RTSha256Update(&Ctx, pvBuf, cbBuf);
RTSha256Final(&Ctx, pabDigest);
}
RT_EXPORT_SYMBOL(RTSha256);
/*
* SHA-224 is just SHA-256 with different initial values an a truncated result.
*/
RTDECL(void) RTSha224Init(PRTSHA224CONTEXT pCtx)
{
pCtx->AltPrivate.cbMessage = 0;
pCtx->AltPrivate.auH[0] = UINT32_C(0xc1059ed8);
pCtx->AltPrivate.auH[1] = UINT32_C(0x367cd507);
pCtx->AltPrivate.auH[2] = UINT32_C(0x3070dd17);
pCtx->AltPrivate.auH[3] = UINT32_C(0xf70e5939);
pCtx->AltPrivate.auH[4] = UINT32_C(0xffc00b31);
pCtx->AltPrivate.auH[5] = UINT32_C(0x68581511);
pCtx->AltPrivate.auH[6] = UINT32_C(0x64f98fa7);
pCtx->AltPrivate.auH[7] = UINT32_C(0xbefa4fa4);
}
RT_EXPORT_SYMBOL(RTSha224Init);
RTDECL(void) RTSha224Update(PRTSHA224CONTEXT pCtx, const void *pvBuf, size_t cbBuf)
{
RTSha256Update(pCtx, pvBuf, cbBuf);
}
RT_EXPORT_SYMBOL(RTSha224Update);
RTDECL(void) RTSha224Final(PRTSHA224CONTEXT pCtx, uint8_t pabDigest[RTSHA224_HASH_SIZE])
{
rtSha256FinalInternal(pCtx);
memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA224_HASH_SIZE);
}
RT_EXPORT_SYMBOL(RTSha224Final);
RTDECL(void) RTSha224(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA224_HASH_SIZE])
{
RTSHA224CONTEXT Ctx;
RTSha224Init(&Ctx);
RTSha224Update(&Ctx, pvBuf, cbBuf);
RTSha224Final(&Ctx, pabDigest);
}
RT_EXPORT_SYMBOL(RTSha224);