asm-fake.cpp revision c58f1213e628a545081c70e26c6b67a841cff880
/* $Id$ */
/** @file
* IPRT - Fake asm.h routines for use early in a new port.
*/
/*
* Copyright (C) 2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/asm.h>
#include "internal/iprt.h"
#include <iprt/string.h>
#include <iprt/param.h>
RTDECL(uint8_t) ASMAtomicXchgU8(volatile uint8_t *pu8, uint8_t u8)
{
uint8_t u8Ret = *pu8;
*pu8 = u8;
return u8Ret;
}
RTDECL(uint16_t) ASMAtomicXchgU16(volatile uint16_t *pu16, uint16_t u16)
{
uint16_t u16Ret = *pu16;
*pu16 = u16;
return u16Ret;
}
RTDECL(uint32_t) ASMAtomicXchgU32(volatile uint32_t *pu32, uint32_t u32)
{
uint32_t u32Ret = *pu32;
*pu32 = u32;
return u32Ret;
}
RTDECL(uint64_t) ASMAtomicXchgU64(volatile uint64_t *pu64, uint64_t u64)
{
uint64_t u64Ret = *pu64;
*pu64 = u64;
return u64Ret;
}
RTDECL(bool) ASMAtomicCmpXchgU8(volatile uint8_t *pu8, const uint8_t u8New, const uint8_t u8Old)
{
if (*pu8 == u8Old)
{
*pu8 = u8New;
return true;
}
return false;
}
RTDECL(bool) ASMAtomicCmpXchgU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old)
{
if (*pu32 == u32Old)
{
*pu32 = u32New;
return true;
}
return false;
}
RTDECL(bool) ASMAtomicCmpXchgU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old)
{
if (*pu64 == u64Old)
{
*pu64 = u64New;
return true;
}
return false;
}
RTDECL(bool) ASMAtomicCmpXchgExU32(volatile uint32_t *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t *pu32Old)
{
uint32_t u32Cur = *pu32;
if (u32Cur == u32Old)
{
*pu32 = u32New;
*pu32Old = u32Old;
return true;
}
*pu32Old = u32Cur;
return false;
}
RTDECL(bool) ASMAtomicCmpXchgExU64(volatile uint64_t *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t *pu64Old)
{
uint64_t u64Cur = *pu64;
if (u64Cur == u64Old)
{
*pu64 = u64New;
*pu64Old = u64Old;
return true;
}
*pu64Old = u64Cur;
return false;
}
RTDECL(uint32_t) ASMAtomicAddU32(uint32_t volatile *pu32, uint32_t u32)
{
uint32_t u32Old = *pu32;
*pu32 = u32Old + u32;
return u32Old;
}
RTDECL(uint64_t) ASMAtomicAddU64(uint64_t volatile *pu64, uint64_t u64)
{
uint64_t u64Old = *pu64;
*pu64 = u64Old + u64;
return u64Old;
}
RTDECL(uint32_t) ASMAtomicIncU32(uint32_t volatile *pu32)
{
return *pu32 += 1;
}
RTDECL(uint32_t) ASMAtomicDecU32(uint32_t volatile *pu32)
{
return *pu32 -= 1;
}
RTDECL(uint64_t) ASMAtomicIncU64(uint64_t volatile *pu64)
{
return *pu64 += 1;
}
RTDECL(uint64_t) ASMAtomicDecU64(uint64_t volatile *pu64)
{
return *pu64 -= 1;
}
RTDECL(void) ASMAtomicOrU32(uint32_t volatile *pu32, uint32_t u32)
{
*pu32 |= u32;
}
RTDECL(void) ASMAtomicAndU32(uint32_t volatile *pu32, uint32_t u32)
{
*pu32 &= u32;
}
RTDECL(void) ASMAtomicOrU64(uint64_t volatile *pu64, uint64_t u64)
{
*pu64 |= u64;
}
RTDECL(void) ASMAtomicAndU64(uint64_t volatile *pu64, uint64_t u64)
{
*pu64 &= u64;
}
RTDECL(void) ASMSerializeInstruction(void)
{
}
RTDECL(uint64_t) ASMAtomicReadU64(volatile uint64_t *pu64)
{
return *pu64;
}
RTDECL(uint64_t) ASMAtomicUoReadU64(volatile uint64_t *pu64)
{
return *pu64;
}
RTDECL(void) ASMMemZeroPage(volatile void *pv)
{
uintptr_t volatile *puPtr = (uintptr_t volatile *)pv;
uint32_t cbLeft = PAGE_SIZE / sizeof(uintptr_t);
while (cbLeft-- > 0)
*puPtr++ = 0;
}
RTDECL(void) ASMMemZero32(volatile void *pv, size_t cb)
{
uint32_t volatile *pu32 = (uint32_t volatile *)pv;
uint32_t cbLeft = cb / sizeof(uint32_t);
while (cbLeft-- > 0)
*pu32++ = 0;
}
RTDECL(void) ASMMemFill32(volatile void *pv, size_t cb, uint32_t u32)
{
uint32_t volatile *pu32 = (uint32_t volatile *)pv;
while (cb > 0)
{
*pu32 = u32;
cb -= sizeof(uint32_t);
pu32++;
}
}
RTDECL(uint8_t) ASMProbeReadByte(const void *pvByte)
{
return *(volatile uint8_t *)pvByte;
}
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
RTDECL(void) ASMNopPause(void)
{
}
#endif
RTDECL(void) ASMBitSet(volatile void *pvBitmap, int32_t iBit)
{
uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap;
pau8Bitmap[iBit / 8] |= (uint8_t)RT_BIT_32(iBit & 7);
}
RTDECL(void) ASMAtomicBitSet(volatile void *pvBitmap, int32_t iBit)
{
ASMBitSet(pvBitmap, iBit);
}
RTDECL(void) ASMBitClear(volatile void *pvBitmap, int32_t iBit)
{
uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap;
pau8Bitmap[iBit / 8] &= ~((uint8_t)RT_BIT_32(iBit & 7));
}
RTDECL(void) ASMAtomicBitClear(volatile void *pvBitmap, int32_t iBit)
{
ASMBitClear(pvBitmap, iBit);
}
RTDECL(void) ASMBitToggle(volatile void *pvBitmap, int32_t iBit)
{
uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap;
pau8Bitmap[iBit / 8] ^= (uint8_t)RT_BIT_32(iBit & 7);
}
RTDECL(void) ASMAtomicBitToggle(volatile void *pvBitmap, int32_t iBit)
{
ASMBitToggle(pvBitmap, iBit);
}
RTDECL(bool) ASMBitTestAndSet(volatile void *pvBitmap, int32_t iBit)
{
if (ASMBitTest(pvBitmap, iBit))
return true;
ASMBitSet(pvBitmap, iBit);
return false;
}
RTDECL(bool) ASMAtomicBitTestAndSet(volatile void *pvBitmap, int32_t iBit)
{
return ASMBitTestAndSet(pvBitmap, iBit);
}
RTDECL(bool) ASMBitTestAndClear(volatile void *pvBitmap, int32_t iBit)
{
if (!ASMBitTest(pvBitmap, iBit))
return false;
ASMBitClear(pvBitmap, iBit);
return true;
}
RTDECL(bool) ASMAtomicBitTestAndClear(volatile void *pvBitmap, int32_t iBit)
{
return ASMBitTestAndClear(pvBitmap, iBit);
}
RTDECL(bool) ASMBitTestAndToggle(volatile void *pvBitmap, int32_t iBit)
{
bool fRet = ASMBitTest(pvBitmap, iBit);
ASMBitToggle(pvBitmap, iBit);
return fRet;
}
RTDECL(bool) ASMAtomicBitTestAndToggle(volatile void *pvBitmap, int32_t iBit)
{
return ASMBitTestAndToggle(pvBitmap, iBit);
}
RTDECL(bool) ASMBitTest(const volatile void *pvBitmap, int32_t iBit)
{
uint8_t volatile *pau8Bitmap = (uint8_t volatile *)pvBitmap;
return pau8Bitmap[iBit / 8] & (uint8_t)RT_BIT_32(iBit & 7) ? true : false;
}
RTDECL(int) ASMBitFirstClear(const volatile void *pvBitmap, uint32_t cBits)
{
uint32_t iBit = 0;
uint8_t volatile *pu8 = (uint8_t volatile *)pvBitmap;
while (iBit < cBits)
{
uint8_t u8 = *pu8;
if (u8 != UINT8_MAX)
{
while (u8 & 1)
{
u8 >>= 1;
iBit++;
}
if (iBit >= cBits)
return -1;
return iBit;
}
iBit += 8;
pu8++;
}
return -1;
}
RTDECL(int) ASMBitNextClear(const volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev)
{
const volatile uint8_t *pau8Bitmap = (const volatile uint8_t *)pvBitmap;
int iBit = ++iBitPrev & 7;
if (iBit)
{
/*
* Inspect the byte containing the unaligned bit.
*/
uint8_t u8 = ~pau8Bitmap[iBitPrev / 8] >> iBit;
if (u8)
{
iBit = 0;
while (!(u8 & 1))
{
u8 >>= 1;
iBit++;
}
return iBitPrev + iBit;
}
/*
* Skip ahead and see if there is anything left to search.
*/
iBitPrev |= 7;
iBitPrev++;
if (cBits <= iBitPrev)
return -1;
}
/*
* Byte search, let ASMBitFirstClear do the dirty work.
*/
iBit = ASMBitFirstClear(&pau8Bitmap[iBitPrev / 8], cBits - iBitPrev);
if (iBit >= 0)
iBit += iBitPrev;
return iBit;
}
RTDECL(int) ASMBitFirstSet(const volatile void *pvBitmap, uint32_t cBits)
{
uint32_t iBit = 0;
uint8_t volatile *pu8 = (uint8_t volatile *)pvBitmap;
while (iBit < cBits)
{
uint8_t u8 = *pu8;
if (u8 != 0)
{
while (!(u8 & 1))
{
u8 >>= 1;
iBit++;
}
if (iBit >= cBits)
return -1;
return iBit;
}
iBit += 8;
pu8++;
}
return -1;
}
RTDECL(int) ASMBitNextSet(const volatile void *pvBitmap, uint32_t cBits, uint32_t iBitPrev)
{
const volatile uint8_t *pau8Bitmap = (const volatile uint8_t *)pvBitmap;
int iBit = ++iBitPrev & 7;
if (iBit)
{
/*
* Inspect the byte containing the unaligned bit.
*/
uint8_t u8 = pau8Bitmap[iBitPrev / 8] >> iBit;
if (u8)
{
iBit = 0;
while (!(u8 & 1))
{
u8 >>= 1;
iBit++;
}
return iBitPrev + iBit;
}
/*
* Skip ahead and see if there is anything left to search.
*/
iBitPrev |= 7;
iBitPrev++;
if (cBits <= iBitPrev)
return -1;
}
/*
* Byte search, let ASMBitFirstSet do the dirty work.
*/
iBit = ASMBitFirstSet(&pau8Bitmap[iBitPrev / 8], cBits - iBitPrev);
if (iBit >= 0)
iBit += iBitPrev;
return iBit;
}
RTDECL(unsigned) ASMBitFirstSetU32(uint32_t u32)
{
uint32_t iBit;
for (iBit = 0; iBit < 32; iBit++)
if (u32 & RT_BIT_32(iBit))
return iBit + 1;
return 0;
}
RTDECL(unsigned) ASMBitLastSetU32(uint32_t u32)
{
int32_t iBit = 32;
while (iBit-- > 0)
if (u32 & RT_BIT_32(iBit))
return iBit + 1;
return 0;
}
RTDECL(uint16_t) ASMByteSwapU16(uint16_t u16)
{
return RT_MAKE_U16(RT_HIBYTE(u16), RT_LOBYTE(u16));
}
RTDECL(uint32_t) ASMByteSwapU32(uint32_t u32)
{
return RT_MAKE_U32_FROM_U8(RT_BYTE4(u32), RT_BYTE3(u32), RT_BYTE2(u32), RT_BYTE1(u32));
}