heapsimple.cpp revision 767f61e405ca26e8b1e516d9ce33cb7d245f1fa9
/* $Id$ */
/** @file
* IPRT - A Simple Heap.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP RTLOGGROUP_DEFAULT
#if defined(IN_GUEST_R0) && defined(RT_OS_LINUX) && defined(IN_MODULE)
/* should come first to prevent warnings about duplicate definitions of PAGE_* */
# include "the-linux-kernel.h"
#endif
#include <iprt/heap.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/string.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include "internal/magics.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/** Pointer to the heap anchor block. */
typedef struct RTHEAPSIMPLEINTERNAL *PRTHEAPSIMPLEINTERNAL;
/** Pointer to a heap block. */
typedef struct RTHEAPSIMPLEBLOCK *PRTHEAPSIMPLEBLOCK;
/** Pointer to a free heap block. */
typedef struct RTHEAPSIMPLEFREE *PRTHEAPSIMPLEFREE;
/**
* Structure describing a simple heap block.
* If this block is allocated, it is followed by the user data.
* If this block is free, see RTHEAPSIMPLEFREE.
*/
typedef struct RTHEAPSIMPLEBLOCK
{
/** The next block in the global block list. */
PRTHEAPSIMPLEBLOCK pNext;
/** The previous block in the global block list. */
PRTHEAPSIMPLEBLOCK pPrev;
/** Pointer to the heap anchor block. */
PRTHEAPSIMPLEINTERNAL pHeap;
/** Flags + magic. */
uintptr_t fFlags;
} RTHEAPSIMPLEBLOCK;
AssertCompileSizeAlignment(RTHEAPSIMPLEBLOCK, 16);
/** The block is free if this flag is set. When cleared it's allocated. */
#define RTHEAPSIMPLEBLOCK_FLAGS_FREE ((uintptr_t)RT_BIT(0))
/** The magic value. */
#define RTHEAPSIMPLEBLOCK_FLAGS_MAGIC ((uintptr_t)0xabcdef00)
/** The mask that needs to be applied to RTHEAPSIMPLEBLOCK::fFalgs to obtain the magic value. */
#define RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK (~(uintptr_t)RT_BIT(0))
/**
* Checks if the specified block is valid or not.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_VALID(pBlock) \
( ((pBlock)->fFlags & RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK) == RTHEAPSIMPLEBLOCK_FLAGS_MAGIC )
/**
* Checks if the specified block is valid and in use.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_VALID_USED(pBlock) \
( ((pBlock)->fFlags & (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK | RTHEAPSIMPLEBLOCK_FLAGS_FREE)) \
== RTHEAPSIMPLEBLOCK_FLAGS_MAGIC )
/**
* Checks if the specified block is valid and free.
* @returns boolean answer.
* @param pBlock Pointer to a RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_VALID_FREE(pBlock) \
( ((pBlock)->fFlags & (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC_MASK | RTHEAPSIMPLEBLOCK_FLAGS_FREE)) \
== (RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE) )
/**
* Checks if the specified block is free or not.
* @returns boolean answer.
* @param pBlock Pointer to a valid RTHEAPSIMPLEBLOCK structure.
*/
#define RTHEAPSIMPLEBLOCK_IS_FREE(pBlock) (!!((pBlock)->fFlags & RTHEAPSIMPLEBLOCK_FLAGS_FREE))
/**
* A free heap block.
* This is an extended version of RTHEAPSIMPLEBLOCK that takes the unused
* user data to store free list pointers and a cached size value.
*/
typedef struct RTHEAPSIMPLEFREE
{
/** Core stuff. */
RTHEAPSIMPLEBLOCK Core;
/** Pointer to the next free block. */
PRTHEAPSIMPLEFREE pNext;
/** Pointer to the previous free block. */
PRTHEAPSIMPLEFREE pPrev;
/** The size of the block (excluding the RTHEAPSIMPLEBLOCK part). */
size_t cb;
/** An alignment filler to make it a multiple of (sizeof(void *) * 2). */
size_t Alignment;
} RTHEAPSIMPLEFREE;
/**
* The heap anchor block.
* This structure is placed at the head of the memory block specified to RTHeapSimpleInit(),
* which means that the first RTHEAPSIMPLEBLOCK appears immediately after this structure.
*/
typedef struct RTHEAPSIMPLEINTERNAL
{
/** The typical magic (RTHEAPSIMPLE_MAGIC). */
size_t uMagic;
/** The heap size. (This structure is not included!) */
size_t cbHeap;
/** Pointer to the end of the heap. */
void *pvEnd;
/** The amount of free memory in the heap. */
size_t cbFree;
/** Free head pointer. */
PRTHEAPSIMPLEFREE pFreeHead;
/** Free tail pointer. */
PRTHEAPSIMPLEFREE pFreeTail;
/** Make the size of this structure is a multiple of 32. */
size_t auAlignment[2];
} RTHEAPSIMPLEINTERNAL;
AssertCompileSizeAlignment(RTHEAPSIMPLEINTERNAL, 32);
/** The minimum allocation size. */
#define RTHEAPSIMPLE_MIN_BLOCK (sizeof(RTHEAPSIMPLEBLOCK))
AssertCompile(RTHEAPSIMPLE_MIN_BLOCK >= sizeof(RTHEAPSIMPLEBLOCK));
AssertCompile(RTHEAPSIMPLE_MIN_BLOCK >= sizeof(RTHEAPSIMPLEFREE) - sizeof(RTHEAPSIMPLEBLOCK));
/** The minimum and default alignment. */
#define RTHEAPSIMPLE_ALIGNMENT (sizeof(RTHEAPSIMPLEBLOCK))
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#ifdef RT_STRICT
# define RTHEAPSIMPLE_STRICT 1
#endif
#define ASSERT_L(a, b) AssertMsg((uintptr_t)(a) < (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_LE(a, b) AssertMsg((uintptr_t)(a) <= (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_G(a, b) AssertMsg((uintptr_t)(a) > (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_GE(a, b) AssertMsg((uintptr_t)(a) >= (uintptr_t)(b), ("a=%p b=%p\n", (uintptr_t)(a), (uintptr_t)(b)))
#define ASSERT_ALIGN(a) AssertMsg(!((uintptr_t)(a) & (RTHEAPSIMPLE_ALIGNMENT - 1)), ("a=%p\n", (uintptr_t)(a)))
#define ASSERT_PREV(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->pPrev); \
if ((pBlock)->pPrev) \
{ \
ASSERT_L((pBlock)->pPrev, (pBlock)); \
ASSERT_GE((pBlock)->pPrev, (pHeapInt) + 1); \
} \
else \
Assert((pBlock) == (PRTHEAPSIMPLEBLOCK)((pHeapInt) + 1)); \
} while (0)
#define ASSERT_NEXT(pHeap, pBlock) \
do { ASSERT_ALIGN((pBlock)->pNext); \
if ((pBlock)->pNext) \
{ \
ASSERT_L((pBlock)->pNext, (pHeapInt)->pvEnd); \
ASSERT_G((pBlock)->pNext, (pBlock)); \
} \
} while (0)
#define ASSERT_BLOCK(pHeapInt, pBlock) \
do { AssertMsg(RTHEAPSIMPLEBLOCK_IS_VALID(pBlock), ("%#x\n", (pBlock)->fFlags)); \
AssertMsg((pBlock)->pHeap == (pHeapInt), ("%p != %p\n", (pBlock)->pHeap, (pHeapInt))); \
ASSERT_GE((pBlock), (pHeapInt) + 1); \
ASSERT_L((pBlock), (pHeapInt)->pvEnd); \
ASSERT_NEXT(pHeapInt, pBlock); \
ASSERT_PREV(pHeapInt, pBlock); \
} while (0)
#define ASSERT_BLOCK_USED(pHeapInt, pBlock) \
do { AssertMsg(RTHEAPSIMPLEBLOCK_IS_VALID_USED((pBlock)), ("%#x\n", (pBlock)->fFlags)); \
AssertMsg((pBlock)->pHeap == (pHeapInt), ("%p != %p\n", (pBlock)->pHeap, (pHeapInt))); \
ASSERT_GE((pBlock), (pHeapInt) + 1); \
ASSERT_L((pBlock), (pHeapInt)->pvEnd); \
ASSERT_NEXT(pHeapInt, pBlock); \
ASSERT_PREV(pHeapInt, pBlock); \
} while (0)
#define ASSERT_FREE_PREV(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->pPrev); \
if ((pBlock)->pPrev) \
{ \
ASSERT_GE((pBlock)->pPrev, (pHeapInt)->pFreeHead); \
ASSERT_L((pBlock)->pPrev, (pBlock)); \
ASSERT_LE((pBlock)->pPrev, (pBlock)->Core.pPrev); \
} \
else \
Assert((pBlock) == (pHeapInt)->pFreeHead); \
} while (0)
#define ASSERT_FREE_NEXT(pHeapInt, pBlock) \
do { ASSERT_ALIGN((pBlock)->pNext); \
if ((pBlock)->pNext) \
{ \
ASSERT_LE((pBlock)->pNext, (pHeapInt)->pFreeTail); \
ASSERT_G((pBlock)->pNext, (pBlock)); \
ASSERT_GE((pBlock)->pNext, (pBlock)->Core.pNext); \
} \
else \
Assert((pBlock) == (pHeapInt)->pFreeTail); \
} while (0)
#ifdef RTHEAPSIMPLE_STRICT
# define ASSERT_FREE_CB(pHeapInt, pBlock) \
do { size_t cbCalc = ((pBlock)->Core.pNext ? (uintptr_t)(pBlock)->Core.pNext : (uintptr_t)(pHeapInt)->pvEnd) \
- (uintptr_t)(pBlock) - sizeof(RTHEAPSIMPLEBLOCK); \
AssertMsg((pBlock)->cb == cbCalc, ("cb=%#zx cbCalc=%#zx\n", (pBlock)->cb, cbCalc)); \
} while (0)
#else
# define ASSERT_FREE_CB(pHeapInt, pBlock) do {} while (0)
#endif
/** Asserts that a free block is valid. */
#define ASSERT_BLOCK_FREE(pHeapInt, pBlock) \
do { ASSERT_BLOCK(pHeapInt, &(pBlock)->Core); \
Assert(RTHEAPSIMPLEBLOCK_IS_VALID_FREE(&(pBlock)->Core)); \
ASSERT_GE((pBlock), (pHeapInt)->pFreeHead); \
ASSERT_LE((pBlock), (pHeapInt)->pFreeTail); \
ASSERT_FREE_NEXT(pHeapInt, pBlock); \
ASSERT_FREE_PREV(pHeapInt, pBlock); \
ASSERT_FREE_CB(pHeapInt, pBlock); \
} while (0)
/** Asserts that the heap anchor block is ok. */
#define ASSERT_ANCHOR(pHeapInt) \
do { AssertPtr(pHeapInt);\
Assert((pHeapInt)->uMagic == RTHEAPSIMPLE_MAGIC); \
} while (0)
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
#ifdef RTHEAPSIMPLE_STRICT
static void rtHeapSimpleAssertAll(PRTHEAPSIMPLEINTERNAL pHeapInt);
#endif
static PRTHEAPSIMPLEBLOCK rtHeapSimpleAllocBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, size_t cb, size_t uAlignment);
static void rtHeapSimpleFreeBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, PRTHEAPSIMPLEBLOCK pBlock);
/**
* Initializes the heap.
*
* @returns IPRT status code on success.
* @param pHeap Where to store the heap anchor block on success.
* @param pvMemory Pointer to the heap memory.
* @param cbMemory The size of the heap memory.
*/
RTDECL(int) RTHeapSimpleInit(PRTHEAPSIMPLE pHeap, void *pvMemory, size_t cbMemory)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
PRTHEAPSIMPLEFREE pFree;
unsigned i;
/*
* Validate input. The imposed minimum heap size is just a convenien value.
*/
AssertReturn(cbMemory >= PAGE_SIZE, VERR_INVALID_PARAMETER);
AssertPtrReturn(pvMemory, VERR_INVALID_POINTER);
AssertReturn((uintptr_t)pvMemory + (cbMemory - 1) > (uintptr_t)cbMemory, VERR_INVALID_PARAMETER);
/*
* Place the heap anchor block at the start of the heap memory,
* enforce 32 byte alignment of it. Also align the heap size correctly.
*/
pHeapInt = (PRTHEAPSIMPLEINTERNAL)pvMemory;
if ((uintptr_t)pvMemory & 31)
{
const uintptr_t off = 32 - ((uintptr_t)pvMemory & 31);
cbMemory -= off;
pHeapInt = (PRTHEAPSIMPLEINTERNAL)((uintptr_t)pvMemory + off);
}
cbMemory &= ~(RTHEAPSIMPLE_ALIGNMENT - 1);
/* Init the heap anchor block. */
pHeapInt->uMagic = RTHEAPSIMPLE_MAGIC;
pHeapInt->pvEnd = (uint8_t *)pHeapInt + cbMemory;
pHeapInt->cbHeap = cbMemory;
pHeapInt->cbFree = cbMemory
- sizeof(RTHEAPSIMPLEBLOCK)
- sizeof(RTHEAPSIMPLEINTERNAL);
pHeapInt->pFreeTail = pHeapInt->pFreeHead = (PRTHEAPSIMPLEFREE)(pHeapInt + 1);
for (i = 0; i < RT_ELEMENTS(pHeapInt->auAlignment); i++)
pHeapInt->auAlignment[i] = ~(size_t)0;
/* Init the single free block. */
pFree = pHeapInt->pFreeHead;
pFree->Core.pNext = NULL;
pFree->Core.pPrev = NULL;
pFree->Core.pHeap = pHeapInt;
pFree->Core.fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->pNext = NULL;
pFree->pPrev = NULL;
pFree->cb = pHeapInt->cbFree;
*pHeap = pHeapInt;
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
return VINF_SUCCESS;
}
/**
* Allocates memory from the specified simple heap.
*
* @returns Pointer to the allocated memory block on success.
* @returns NULL if the request cannot be satisfied. (A VERR_NO_MEMORY condition.)
*
* @param Heap The heap to allocate the memory on.
* @param cb The requested heap block size.
* @param cbAlignment The requested heap block alignment. Pass 0 for default alignment.
* Must be a power of 2.
*/
RTDECL(void *) RTHeapSimpleAlloc(RTHEAPSIMPLE Heap, size_t cb, size_t cbAlignment)
{
PRTHEAPSIMPLEINTERNAL pHeapInt = Heap;
PRTHEAPSIMPLEBLOCK pBlock;
/*
* Validate and adjust the input.
*/
AssertPtrReturn(pHeapInt, NULL);
if (cb < RTHEAPSIMPLE_MIN_BLOCK)
cb = RTHEAPSIMPLE_MIN_BLOCK;
else
cb = RT_ALIGN_Z(cb, RTHEAPSIMPLE_ALIGNMENT);
if (!cbAlignment)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
else
{
Assert(!(cbAlignment & (cbAlignment - 1)));
Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment);
if (cbAlignment < RTHEAPSIMPLE_ALIGNMENT)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
}
/*
* Do the allocation.
*/
pBlock = rtHeapSimpleAllocBlock(pHeapInt, cb, cbAlignment);
if (RT_LIKELY(pBlock))
{
void *pv = pBlock + 1;
return pv;
}
return NULL;
}
/**
* Allocates zeroed memory from the specified simple heap.
*
* @returns Pointer to the allocated memory block on success.
* @returns NULL if the request cannot be satisfied. (A VERR_NO_MEMORY condition.)
*
* @param Heap The heap to allocate the memory on.
* @param cb The requested heap block size.
* @param cbAlignment The requested heap block alignment. Pass 0 for default alignment.
* Must be a power of 2.
*/
RTDECL(void *) RTHeapSimpleAllocZ(RTHEAPSIMPLE Heap, size_t cb, size_t cbAlignment)
{
PRTHEAPSIMPLEINTERNAL pHeapInt = Heap;
PRTHEAPSIMPLEBLOCK pBlock;
/*
* Validate and adjust the input.
*/
AssertPtrReturn(pHeapInt, NULL);
if (cb < RTHEAPSIMPLE_MIN_BLOCK)
cb = RTHEAPSIMPLE_MIN_BLOCK;
else
cb = RT_ALIGN_Z(cb, RTHEAPSIMPLE_ALIGNMENT);
if (!cbAlignment)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
else
{
Assert(!(cbAlignment & (cbAlignment - 1)));
Assert((cbAlignment & ~(cbAlignment - 1)) == cbAlignment);
if (cbAlignment < RTHEAPSIMPLE_ALIGNMENT)
cbAlignment = RTHEAPSIMPLE_ALIGNMENT;
}
/*
* Do the allocation.
*/
pBlock = rtHeapSimpleAllocBlock(pHeapInt, cb, cbAlignment);
if (RT_LIKELY(pBlock))
{
void *pv = pBlock + 1;
memset(pv, 0, cb);
return pv;
}
return NULL;
}
/**
* Allocates a block of memory from the specified heap.
*
* No parameter validation or adjustment is preformed.
*
* @returns Pointer to the allocated block.
* @returns NULL on failure.
* @param pHeapInt The heap.
* @param cb Size of the memory block to allocate.
* @param uAlignment The alignment specifications for the allocated block.
*/
static PRTHEAPSIMPLEBLOCK rtHeapSimpleAllocBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, size_t cb, size_t uAlignment)
{
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
/*
* Search for a fitting block from the lower end of the heap.
*/
PRTHEAPSIMPLEBLOCK pRet = NULL;
PRTHEAPSIMPLEFREE pFree;
for (pFree = pHeapInt->pFreeHead;
pFree;
pFree = pFree->pNext)
{
uintptr_t offAlign;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
/*
* Match for size and alignment.
*/
if (pFree->cb < cb)
continue;
offAlign = (uintptr_t)(&pFree->Core + 1) & (uAlignment - 1);
if (offAlign)
{
RTHEAPSIMPLEFREE Free;
PRTHEAPSIMPLEBLOCK pPrev;
offAlign = uAlignment - offAlign;
if (pFree->cb - offAlign < cb)
continue;
/*
* Make a stack copy of the free block header and adjust the pointer.
*/
Free = *pFree;
pFree = (PRTHEAPSIMPLEFREE)((uintptr_t)pFree + offAlign);
/*
* Donate offAlign bytes to the node in front of us.
* If we're the head node, we'll have to create a fake node. We'll
* mark it USED for simplicity.
*
* (Should this policy of donating memory to the guy in front of us
* cause big 'leaks', we could create a new free node if there is room
* for that.)
*/
pPrev = Free.Core.pPrev;
if (pPrev)
{
AssertMsg(!RTHEAPSIMPLEBLOCK_IS_FREE(pPrev), ("Impossible!\n"));
pPrev->pNext = &pFree->Core;
}
else
{
pPrev = (PRTHEAPSIMPLEBLOCK)(pHeapInt + 1);
Assert(pPrev == &pFree->Core);
pPrev->pPrev = NULL;
pPrev->pNext = &pFree->Core;
pPrev->pHeap = pHeapInt;
pPrev->fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC;
}
pHeapInt->cbFree -= offAlign;
/*
* Recreate pFree in the new position and adjust the neighbours.
*/
*pFree = Free;
/* the core */
if (pFree->Core.pNext)
pFree->Core.pNext->pPrev = &pFree->Core;
pFree->Core.pPrev = pPrev;
/* the free part */
pFree->cb -= offAlign;
if (pFree->pNext)
pFree->pNext->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
if (pFree->pPrev)
pFree->pPrev->pNext = pFree;
else
pHeapInt->pFreeHead = pFree;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
ASSERT_BLOCK_USED(pHeapInt, pPrev);
}
/*
* Split off a new FREE block?
*/
if (pFree->cb >= cb + RT_ALIGN_Z(sizeof(RTHEAPSIMPLEFREE), RTHEAPSIMPLE_ALIGNMENT))
{
/*
* Move the FREE block up to make room for the new USED block.
*/
PRTHEAPSIMPLEFREE pNew = (PRTHEAPSIMPLEFREE)((uintptr_t)&pFree->Core + cb + sizeof(RTHEAPSIMPLEBLOCK));
pNew->Core.pNext = pFree->Core.pNext;
if (pFree->Core.pNext)
pFree->Core.pNext->pPrev = &pNew->Core;
pNew->Core.pPrev = &pFree->Core;
pNew->Core.pHeap = pHeapInt;
pNew->Core.fFlags = RTHEAPSIMPLEBLOCK_FLAGS_MAGIC | RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pNew->pNext = pFree->pNext;
if (pNew->pNext)
pNew->pNext->pPrev = pNew;
else
pHeapInt->pFreeTail = pNew;
pNew->pPrev = pFree->pPrev;
if (pNew->pPrev)
pNew->pPrev->pNext = pNew;
else
pHeapInt->pFreeHead = pNew;
pNew->cb = (pNew->Core.pNext ? (uintptr_t)pNew->Core.pNext : (uintptr_t)pHeapInt->pvEnd) \
- (uintptr_t)pNew - sizeof(RTHEAPSIMPLEBLOCK);
ASSERT_BLOCK_FREE(pHeapInt, pNew);
/*
* Update the old FREE node making it a USED node.
*/
pFree->Core.fFlags &= ~RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->Core.pNext = &pNew->Core;
pHeapInt->cbFree -= pFree->cb;
pHeapInt->cbFree += pNew->cb;
pRet = &pFree->Core;
ASSERT_BLOCK_USED(pHeapInt, pRet);
}
else
{
/*
* Link it out of the free list.
*/
if (pFree->pNext)
pFree->pNext->pPrev = pFree->pPrev;
else
pHeapInt->pFreeTail = pFree->pPrev;
if (pFree->pPrev)
pFree->pPrev->pNext = pFree->pNext;
else
pHeapInt->pFreeHead = pFree->pNext;
/*
* Convert it to a used block.
*/
pHeapInt->cbFree -= pFree->cb;
pFree->Core.fFlags &= ~RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pRet = &pFree->Core;
ASSERT_BLOCK_USED(pHeapInt, pRet);
}
break;
}
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
return pRet;
}
/**
* Frees memory allocated from a simple heap.
*
* @param Heap The heap. This is optional and will only be used for strict assertions.
* @param pv The heap block returned by RTHeapSimple
*/
RTDECL(void) RTHeapSimpleFree(RTHEAPSIMPLE Heap, void *pv)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
PRTHEAPSIMPLEBLOCK pBlock;
/*
* Validate input.
*/
if (!pv)
return;
AssertPtr(pv);
Assert(RT_ALIGN_P(pv, RTHEAPSIMPLE_ALIGNMENT) == pv);
/*
* Get the block and heap. If in strict mode, validate these.
*/
pBlock = (PRTHEAPSIMPLEBLOCK)pv - 1;
pHeapInt = pBlock->pHeap;
ASSERT_BLOCK_USED(pHeapInt, pBlock);
ASSERT_ANCHOR(pHeapInt);
Assert(pHeapInt == (PRTHEAPSIMPLEINTERNAL)Heap || !Heap);
#ifdef RTHEAPSIMPLE_FREE_POISON
/*
* Poison the block.
*/
const size_t cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pBlock - sizeof(RTHEAPSIMPLEBLOCK);
memset(pBlock + 1, RTHEAPSIMPLE_FREE_POISON, cbBlock);
#endif
/*
* Call worker which does the actual job.
*/
rtHeapSimpleFreeBlock(pHeapInt, pBlock);
}
/**
* Free memory a memory block.
*
* @param pHeapInt The heap.
* @param pBlock The memory block to free.
*/
static void rtHeapSimpleFreeBlock(PRTHEAPSIMPLEINTERNAL pHeapInt, PRTHEAPSIMPLEBLOCK pBlock)
{
PRTHEAPSIMPLEFREE pFree = (PRTHEAPSIMPLEFREE)pBlock;
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
/*
* Look for the closest free list blocks by walking the blocks right
* of us (both list are sorted on address).
*/
PRTHEAPSIMPLEFREE pLeft = NULL;
PRTHEAPSIMPLEFREE pRight = NULL;
if (pHeapInt->pFreeTail)
{
pRight = (PRTHEAPSIMPLEFREE)pFree->Core.pNext;
while (pRight && !RTHEAPSIMPLEBLOCK_IS_FREE(&pRight->Core))
{
ASSERT_BLOCK(pHeapInt, &pRight->Core);
pRight = (PRTHEAPSIMPLEFREE)pRight->Core.pNext;
}
if (!pRight)
pLeft = pHeapInt->pFreeTail;
else
{
ASSERT_BLOCK_FREE(pHeapInt, pRight);
pLeft = pRight->pPrev;
}
if (pLeft)
ASSERT_BLOCK_FREE(pHeapInt, pLeft);
}
AssertMsgReturnVoid(pLeft != pFree, ("Freed twice! pv=%p (pBlock=%p)\n", pBlock + 1, pBlock));
ASSERT_L(pLeft, pFree);
Assert(!pRight || (uintptr_t)pRight > (uintptr_t)pFree);
Assert(!pLeft || pLeft->pNext == pRight);
/*
* Insert at the head of the free block list?
*/
if (!pLeft)
{
Assert(pRight == pHeapInt->pFreeHead);
pFree->Core.fFlags |= RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->pPrev = NULL;
pFree->pNext = pRight;
if (pRight)
pRight->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
pHeapInt->pFreeHead = pFree;
}
else
{
/*
* Can we merge with left hand free block?
*/
if (pLeft->Core.pNext == &pFree->Core)
{
pLeft->Core.pNext = pFree->Core.pNext;
if (pFree->Core.pNext)
pFree->Core.pNext->pPrev = &pLeft->Core;
pHeapInt->cbFree -= pLeft->cb;
pFree = pLeft;
}
/*
* No, just link it into the free list then.
*/
else
{
pFree->Core.fFlags |= RTHEAPSIMPLEBLOCK_FLAGS_FREE;
pFree->pNext = pRight;
pFree->pPrev = pLeft;
pLeft->pNext = pFree;
if (pRight)
pRight->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
}
}
/*
* Can we merge with right hand free block?
*/
if ( pRight
&& pRight->Core.pPrev == &pFree->Core)
{
/* core */
pFree->Core.pNext = pRight->Core.pNext;
if (pRight->Core.pNext)
pRight->Core.pNext->pPrev = &pFree->Core;
/* free */
pFree->pNext = pRight->pNext;
if (pRight->pNext)
pRight->pNext->pPrev = pFree;
else
pHeapInt->pFreeTail = pFree;
pHeapInt->cbFree -= pRight->cb;
}
/*
* Calculate the size and update free stats.
*/
pFree->cb = (pFree->Core.pNext ? (uintptr_t)pFree->Core.pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pFree - sizeof(RTHEAPSIMPLEBLOCK);
pHeapInt->cbFree += pFree->cb;
ASSERT_BLOCK_FREE(pHeapInt, pFree);
#ifdef RTHEAPSIMPLE_STRICT
rtHeapSimpleAssertAll(pHeapInt);
#endif
}
#ifdef RTHEAPSIMPLE_STRICT
/**
* Internal consitency check (relying on assertions).
* @param pHeapInt
*/
static void rtHeapSimpleAssertAll(PRTHEAPSIMPLEINTERNAL pHeapInt)
{
PRTHEAPSIMPLEFREE pPrev = NULL;
PRTHEAPSIMPLEFREE pPrevFree = NULL;
PRTHEAPSIMPLEFREE pBlock;
for (pBlock = (PRTHEAPSIMPLEFREE)(pHeapInt + 1);
pBlock;
pBlock = (PRTHEAPSIMPLEFREE)pBlock->Core.pNext)
{
if (RTHEAPSIMPLEBLOCK_IS_FREE(&pBlock->Core))
{
ASSERT_BLOCK_FREE(pHeapInt, pBlock);
Assert(pBlock->pPrev == pPrevFree);
Assert(pPrevFree || pHeapInt->pFreeHead == pBlock);
pPrevFree = pBlock;
}
else
ASSERT_BLOCK_USED(pHeapInt, &pBlock->Core);
Assert(!pPrev || pPrev == (PRTHEAPSIMPLEFREE)pBlock->Core.pPrev);
pPrev = pBlock;
}
Assert(pHeapInt->pFreeTail == pPrevFree);
}
#endif
/**
* Gets the size of the specified heap block.
*
* @returns The actual size of the heap block.
* @returns 0 if \a pv is NULL or it doesn't point to a valid heap block. An invalid \a pv
* can also cause traps or trigger assertions.
* @param Heap The heap. This is optional and will only be used for strict assertions.
* @param pv The heap block returned by RTHeapSimple
*/
RTDECL(size_t) RTHeapSimpleSize(RTHEAPSIMPLE Heap, void *pv)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
PRTHEAPSIMPLEBLOCK pBlock;
size_t cbBlock;
/*
* Validate input.
*/
if (!pv)
return 0;
AssertPtrReturn(pv, 0);
AssertReturn(RT_ALIGN_P(pv, RTHEAPSIMPLE_ALIGNMENT) == pv, 0);
/*
* Get the block and heap. If in strict mode, validate these.
*/
pBlock = (PRTHEAPSIMPLEBLOCK)pv - 1;
pHeapInt = pBlock->pHeap;
ASSERT_BLOCK_USED(pHeapInt, pBlock);
ASSERT_ANCHOR(pHeapInt);
Assert(pHeapInt == (PRTHEAPSIMPLEINTERNAL)Heap || !Heap);
/*
* Calculate the block size.
*/
cbBlock = (pBlock->pNext ? (uintptr_t)pBlock->pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pBlock- sizeof(RTHEAPSIMPLEBLOCK);
return cbBlock;
}
/**
* Gets the size of the heap.
*
* This size includes all the internal heap structures. So, even if the heap is
* empty the RTHeapSimpleGetFreeSize() will never reach the heap size returned
* by this function.
*
* @returns The heap size.
* @returns 0 if heap was safely detected as being bad.
* @param Heap The heap.
*/
RTDECL(size_t) RTHeapSimpleGetHeapSize(RTHEAPSIMPLE Heap)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
if (Heap == NIL_RTHEAPSIMPLE)
return 0;
pHeapInt = Heap;
AssertPtrReturn(pHeapInt, 0);
ASSERT_ANCHOR(pHeapInt);
return pHeapInt->cbHeap;
}
/**
* Returns the sum of all free heap blocks.
*
* This is the amount of memory you can theoretically allocate
* if you do allocations exactly matching the free blocks.
*
* @returns The size of the free blocks.
* @returns 0 if heap was safely detected as being bad.
* @param Heap The heap.
*/
RTDECL(size_t) RTHeapSimpleGetFreeSize(RTHEAPSIMPLE Heap)
{
PRTHEAPSIMPLEINTERNAL pHeapInt;
if (Heap == NIL_RTHEAPSIMPLE)
return 0;
pHeapInt = Heap;
AssertPtrReturn(pHeapInt, 0);
ASSERT_ANCHOR(pHeapInt);
return pHeapInt->cbFree;
}
/**
* Dumps the hypervisor heap.
*
* @param Heap The heap handle.
* @param pfnPrintf Printf like function that groks IPRT formatting.
*/
RTDECL(void) RTHeapSimpleDump(RTHEAPSIMPLE Heap, PFNRTHEAPSIMPLEPRINTF pfnPrintf)
{
PRTHEAPSIMPLEINTERNAL pHeapInt = (PRTHEAPSIMPLEINTERNAL)Heap;
PRTHEAPSIMPLEFREE pBlock;
pfnPrintf("**** Dumping Heap %p - cbHeap=%zx cbFree=%zx ****\n",
Heap, pHeapInt->cbHeap, pHeapInt->cbFree);
for (pBlock = (PRTHEAPSIMPLEFREE)(pHeapInt + 1);
pBlock;
pBlock = (PRTHEAPSIMPLEFREE)pBlock->Core.pNext)
{
size_t cb = (pBlock->pNext ? (uintptr_t)pBlock->Core.pNext : (uintptr_t)pHeapInt->pvEnd)
- (uintptr_t)pBlock - sizeof(RTHEAPSIMPLEBLOCK);
if (RTHEAPSIMPLEBLOCK_IS_FREE(&pBlock->Core))
pfnPrintf("%p %06x FREE pNext=%p pPrev=%p fFlags=%#x cb=%#06x : cb=%#06x pNext=%p pPrev=%p\n",
pBlock, (uintptr_t)pBlock - (uintptr_t)(pHeapInt + 1), pBlock->Core.pNext, pBlock->Core.pPrev, pBlock->Core.fFlags, cb,
pBlock->cb, pBlock->pNext, pBlock->pPrev);
else
pfnPrintf("%p %06x USED pNext=%p pPrev=%p fFlags=%#x cb=%#06x\n",
pBlock, (uintptr_t)pBlock - (uintptr_t)(pHeapInt + 1), pBlock->Core.pNext, pBlock->Core.pPrev, pBlock->Core.fFlags, cb);
}
pfnPrintf("**** Done dumping Heap %p ****\n", Heap);
}
#if defined(IN_GUEST_R0) && defined(RT_OS_LINUX) && defined(IN_MODULE)
EXPORT_SYMBOL(RTHeapSimpleAlloc);
EXPORT_SYMBOL(RTHeapSimpleInit);
EXPORT_SYMBOL(RTHeapSimpleFree);
#endif