tstCollector.cpp revision 986eb022f9ed91353388b58ff989774debca29ac
/* $Id$ */
/** @file
*
* Collector classes test cases.
*/
/*
* Copyright (C) 2008 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
#ifdef RT_OS_DARWIN
# include "../src-server/darwin/PerformanceDarwin.cpp"
#endif
#ifdef RT_OS_FREEBSD
# include "../src-server/freebsd/PerformanceFreeBSD.cpp"
#endif
#ifdef RT_OS_LINUX
# include "../src-server/linux/PerformanceLinux.cpp"
#endif
#ifdef RT_OS_OS2
# include "../src-server/os2/PerformanceOS2.cpp"
#endif
#ifdef RT_OS_SOLARIS
# include "../src-server/solaris/PerformanceSolaris.cpp"
#endif
#ifdef RT_OS_WINDOWS
# define _WIN32_DCOM
# include <objidl.h>
# include <objbase.h>
# include "../src-server/win/PerformanceWin.cpp"
#endif
#include <iprt/initterm.h>
#include <iprt/stream.h>
#include <iprt/env.h>
#include <iprt/err.h>
#include <iprt/process.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#define RUN_TIME_MS 1000
#define N_CALLS(n, fn) \
for (int call = 0; call < n; ++call) \
rc = collector->fn; \
if (RT_FAILURE(rc)) \
RTPrintf("tstCollector: "#fn" -> %Rrc\n", rc)
#define CALLS_PER_SECOND(fn) \
nCalls = 0; \
start = RTTimeMilliTS(); \
do { \
rc = collector->fn; \
if (RT_FAILURE(rc)) \
break; \
++nCalls; \
} while(RTTimeMilliTS() - start < RUN_TIME_MS); \
if (RT_FAILURE(rc)) \
{ \
RTPrintf("tstCollector: "#fn" -> %Rrc\n", rc); \
} \
else \
RTPrintf("%70s -- %u calls per second\n", #fn, nCalls)
void measurePerformance(pm::CollectorHAL *collector, const char *pszName, int cVMs)
{
static const char * const args[] = { pszName, "-child", NULL };
pm::CollectorHints hints;
std::vector<RTPROCESS> processes;
hints.collectHostCpuLoad();
hints.collectHostRamUsage();
/* Start fake VMs */
for (int i = 0; i < cVMs; ++i)
{
RTPROCESS pid;
int rc = RTProcCreate(pszName, args, RTENV_DEFAULT, 0, &pid);
if (RT_FAILURE(rc))
{
hints.getProcesses(processes);
std::for_each(processes.begin(), processes.end(), std::ptr_fun(RTProcTerminate));
RTPrintf("tstCollector: RTProcCreate() -> %Rrc\n", rc);
return;
}
hints.collectProcessCpuLoad(pid);
hints.collectProcessRamUsage(pid);
}
hints.getProcesses(processes);
RTThreadSleep(30000); // Let children settle for half a minute
int rc;
ULONG tmp;
uint64_t tmp64;
uint64_t start;
unsigned int nCalls;
/* Pre-collect */
CALLS_PER_SECOND(preCollect(hints, 0));
/* Host CPU load */
CALLS_PER_SECOND(getRawHostCpuLoad(&tmp64, &tmp64, &tmp64));
/* Process CPU load */
CALLS_PER_SECOND(getRawProcessCpuLoad(processes[nCalls%cVMs], &tmp64, &tmp64, &tmp64));
/* Host CPU speed */
CALLS_PER_SECOND(getHostCpuMHz(&tmp));
/* Host RAM usage */
CALLS_PER_SECOND(getHostMemoryUsage(&tmp, &tmp, &tmp));
/* Process RAM usage */
CALLS_PER_SECOND(getProcessMemoryUsage(processes[nCalls%cVMs], &tmp));
start = RTTimeNanoTS();
int times;
for (times = 0; times < 100; times++)
{
/* Pre-collect */
N_CALLS(1, preCollect(hints, 0));
/* Host CPU load */
N_CALLS(1, getRawHostCpuLoad(&tmp64, &tmp64, &tmp64));
/* Host CPU speed */
N_CALLS(1, getHostCpuMHz(&tmp));
/* Host RAM usage */
N_CALLS(1, getHostMemoryUsage(&tmp, &tmp, &tmp));
/* Process CPU load */
N_CALLS(cVMs, getRawProcessCpuLoad(processes[call], &tmp64, &tmp64, &tmp64));
/* Process RAM usage */
N_CALLS(cVMs, getProcessMemoryUsage(processes[call], &tmp));
}
printf("\n%u VMs -- %.2f%% of CPU time\n", cVMs, (RTTimeNanoTS() - start) / 10000000. / times);
/* Shut down fake VMs */
std::for_each(processes.begin(), processes.end(), std::ptr_fun(RTProcTerminate));
}
#ifdef RT_OS_SOLARIS
#define NETIFNAME "net0"
#else
#define NETIFNAME "eth0"
#endif
int testNetwork(pm::CollectorHAL *collector)
{
pm::CollectorHints hints;
uint64_t hostRxStart, hostTxStart;
uint64_t hostRxStop, hostTxStop, speed = 125000000; /* Assume 1Gbit/s */
RTPrintf("\ntstCollector: TESTING - Network load, sleeping for 5 sec...\n");
int rc = collector->preCollect(hints, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawHostNetworkLoad(NETIFNAME, &hostRxStart, &hostTxStart);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawHostNetworkLoad() -> %Rrc\n", rc);
return 1;
}
RTThreadSleep(5000); // Sleep for five seconds
rc = collector->preCollect(hints, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawHostNetworkLoad(NETIFNAME, &hostRxStop, &hostTxStop);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawHostNetworkLoad() -> %Rrc\n", rc);
return 1;
}
RTPrintf("tstCollector: host network speed = %llu bytes/sec (%llu mbit/sec)\n",
speed, speed/(1000000/8));
RTPrintf("tstCollector: host network rx = %llu bytes/sec (%llu mbit/sec, %d %%*100)\n",
(hostRxStop - hostRxStart)/5, (hostRxStop - hostRxStart)/(5000000/8),
(hostRxStop - hostRxStart) * 10000 / (speed * 5));
RTPrintf("tstCollector: host network tx = %llu bytes/sec (%llu mbit/sec, %d %%*100)\n",
(hostTxStop - hostTxStart)/5, (hostTxStop - hostTxStart)/(5000000/8),
(hostTxStop - hostTxStart) * 10000 / (speed * 5));
return 0;
}
int main(int argc, char *argv[])
{
/*
* Initialize the VBox runtime without loading
* the support driver.
*/
int rc = RTR3InitExe(argc, &argv, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: RTR3InitExe() -> %d\n", rc);
return 1;
}
if (argc > 1 && !strcmp(argv[1], "-child"))
{
/* We have spawned ourselves as a child process -- scratch the leg */
RTThreadSleep(1000000);
return 1;
}
#ifdef RT_OS_WINDOWS
HRESULT hRes = CoInitialize(NULL);
/*
* Need to initialize security to access performance enumerators.
*/
hRes = CoInitializeSecurity(
NULL,
-1,
NULL,
NULL,
RPC_C_AUTHN_LEVEL_NONE,
RPC_C_IMP_LEVEL_IMPERSONATE,
NULL, EOAC_NONE, 0);
#endif
pm::CollectorHAL *collector = pm::createHAL();
if (!collector)
{
RTPrintf("tstCollector: createMetricFactory() failed\n", rc);
return 1;
}
#if 1
pm::CollectorHints hints;
hints.collectHostCpuLoad();
hints.collectHostRamUsage();
hints.collectProcessCpuLoad(RTProcSelf());
hints.collectProcessRamUsage(RTProcSelf());
uint64_t start;
uint64_t hostUserStart, hostKernelStart, hostIdleStart;
uint64_t hostUserStop, hostKernelStop, hostIdleStop, hostTotal;
uint64_t processUserStart, processKernelStart, processTotalStart;
uint64_t processUserStop, processKernelStop, processTotalStop;
RTPrintf("tstCollector: TESTING - CPU load, sleeping for 5 sec\n");
rc = collector->preCollect(hints, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawHostCpuLoad(&hostUserStart, &hostKernelStart, &hostIdleStart);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStart, &processKernelStart, &processTotalStart);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc);
return 1;
}
RTThreadSleep(5000); // Sleep for 5 seconds
rc = collector->preCollect(hints, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawHostCpuLoad(&hostUserStop, &hostKernelStop, &hostIdleStop);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStop, &processKernelStop, &processTotalStop);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc);
return 1;
}
hostTotal = hostUserStop - hostUserStart
+ hostKernelStop - hostKernelStart
+ hostIdleStop - hostIdleStart;
/*printf("tstCollector: host cpu user = %f sec\n", (hostUserStop - hostUserStart) / 10000000.);
printf("tstCollector: host cpu kernel = %f sec\n", (hostKernelStop - hostKernelStart) / 10000000.);
printf("tstCollector: host cpu idle = %f sec\n", (hostIdleStop - hostIdleStart) / 10000000.);
printf("tstCollector: host cpu total = %f sec\n", hostTotal / 10000000.);*/
RTPrintf("tstCollector: host cpu user = %llu %%\n", (hostUserStop - hostUserStart) * 100 / hostTotal);
RTPrintf("tstCollector: host cpu kernel = %llu %%\n", (hostKernelStop - hostKernelStart) * 100 / hostTotal);
RTPrintf("tstCollector: host cpu idle = %llu %%\n", (hostIdleStop - hostIdleStart) * 100 / hostTotal);
RTPrintf("tstCollector: process cpu user = %llu %%\n", (processUserStop - processUserStart) * 100 / (processTotalStop - processTotalStart));
RTPrintf("tstCollector: process cpu kernel = %llu %%\n\n", (processKernelStop - processKernelStart) * 100 / (processTotalStop - processTotalStart));
RTPrintf("tstCollector: TESTING - CPU load, looping for 5 sec\n");
rc = collector->preCollect(hints, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawHostCpuLoad(&hostUserStart, &hostKernelStart, &hostIdleStart);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStart, &processKernelStart, &processTotalStart);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc);
return 1;
}
start = RTTimeMilliTS();
while(RTTimeMilliTS() - start < 5000)
; // Loop for 5 seconds
rc = collector->preCollect(hints, 0);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: preCollect() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawHostCpuLoad(&hostUserStop, &hostKernelStop, &hostIdleStop);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawHostCpuLoad() -> %Rrc\n", rc);
return 1;
}
rc = collector->getRawProcessCpuLoad(RTProcSelf(), &processUserStop, &processKernelStop, &processTotalStop);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getRawProcessCpuLoad() -> %Rrc\n", rc);
return 1;
}
hostTotal = hostUserStop - hostUserStart
+ hostKernelStop - hostKernelStart
+ hostIdleStop - hostIdleStart;
RTPrintf("tstCollector: host cpu user = %llu %%\n", (hostUserStop - hostUserStart) * 100 / hostTotal);
RTPrintf("tstCollector: host cpu kernel = %llu %%\n", (hostKernelStop - hostKernelStart) * 100 / hostTotal);
RTPrintf("tstCollector: host cpu idle = %llu %%\n", (hostIdleStop - hostIdleStart) * 100 / hostTotal);
RTPrintf("tstCollector: process cpu user = %llu %%\n", (processUserStop - processUserStart) * 100 / (processTotalStop - processTotalStart));
RTPrintf("tstCollector: process cpu kernel = %llu %%\n\n", (processKernelStop - processKernelStart) * 100 / (processTotalStop - processTotalStart));
RTPrintf("tstCollector: TESTING - Memory usage\n");
ULONG total, used, available, processUsed;
rc = collector->getHostMemoryUsage(&total, &used, &available);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getHostMemoryUsage() -> %Rrc\n", rc);
return 1;
}
rc = collector->getProcessMemoryUsage(RTProcSelf(), &processUsed);
if (RT_FAILURE(rc))
{
RTPrintf("tstCollector: getProcessMemoryUsage() -> %Rrc\n", rc);
return 1;
}
RTPrintf("tstCollector: host mem total = %lu kB\n", total);
RTPrintf("tstCollector: host mem used = %lu kB\n", used);
RTPrintf("tstCollector: host mem available = %lu kB\n", available);
RTPrintf("tstCollector: process mem used = %lu kB\n", processUsed);
#endif
#if 1
rc = testNetwork(collector);
#endif
#if 0
RTPrintf("\ntstCollector: TESTING - Performance\n\n");
measurePerformance(collector, argv[0], 100);
#endif
delete collector;
printf ("\ntstCollector FINISHED.\n");
return rc;
}