Performance.cpp revision 8fb98fbc10b7eac3a486937f31fb10985a5db7d1
/* $Id$ */
/** @file
* VBox Performance Classes implementation.
*/
/*
* Copyright (C) 2008 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*
* @todo list:
*
* 1) Detection of erroneous metric names
*/
#ifndef VBOX_COLLECTOR_TEST_CASE
#include "VirtualBoxImpl.h"
#include "MachineImpl.h"
#endif
#include "Performance.h"
#include <VBox/com/array.h>
#include <VBox/com/ptr.h>
#include <VBox/com/string.h>
#include <VBox/err.h>
#include <iprt/string.h>
#include <iprt/mem.h>
#include <iprt/cpuset.h>
#include <algorithm>
#include "Logging.h"
using namespace pm;
// Stubs for non-pure virtual methods
int CollectorHAL::getHostCpuLoad(ULONG * /* user */, ULONG * /* kernel */, ULONG * /* idle */)
{
return E_NOTIMPL;
}
int CollectorHAL::getProcessCpuLoad(RTPROCESS /* process */, ULONG * /* user */, ULONG * /* kernel */)
{
return E_NOTIMPL;
}
int CollectorHAL::getRawHostCpuLoad(uint64_t * /* user */, uint64_t * /* kernel */, uint64_t * /* idle */)
{
return E_NOTIMPL;
}
int CollectorHAL::getRawHostNetworkLoad(const char * /* name */, uint64_t * /* rx */, uint64_t * /* tx */, uint64_t */* speed */)
{
return E_NOTIMPL;
}
int CollectorHAL::getRawProcessCpuLoad(RTPROCESS /* process */, uint64_t * /* user */, uint64_t * /* kernel */, uint64_t * /* total */)
{
return E_NOTIMPL;
}
int CollectorHAL::getHostMemoryUsage(ULONG * /* total */, ULONG * /* used */, ULONG * /* available */)
{
return E_NOTIMPL;
}
int CollectorHAL::getProcessMemoryUsage(RTPROCESS /* process */, ULONG * /* used */)
{
return E_NOTIMPL;
}
/* Generic implementations */
int CollectorHAL::getHostCpuMHz(ULONG *mhz)
{
unsigned cCpus = 0;
uint64_t u64TotalMHz = 0;
RTCPUSET OnlineSet;
RTMpGetOnlineSet(&OnlineSet);
for (RTCPUID iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
{
LogAleksey(("{%p} " LOG_FN_FMT ": Checking if CPU %d is member of online set...\n",
this, __PRETTY_FUNCTION__, (int)iCpu));
if (RTCpuSetIsMemberByIndex(&OnlineSet, iCpu))
{
LogAleksey(("{%p} " LOG_FN_FMT ": Getting frequency for CPU %d...\n",
this, __PRETTY_FUNCTION__, (int)iCpu));
uint32_t uMHz = RTMpGetCurFrequency(RTMpCpuIdFromSetIndex(iCpu));
if (uMHz != 0)
{
LogAleksey(("{%p} " LOG_FN_FMT ": CPU %d %u MHz\n",
this, __PRETTY_FUNCTION__, (int)iCpu, uMHz));
u64TotalMHz += uMHz;
cCpus++;
}
}
}
AssertReturn(cCpus, VERR_NOT_IMPLEMENTED);
*mhz = (ULONG)(u64TotalMHz / cCpus);
return VINF_SUCCESS;
}
#ifndef VBOX_COLLECTOR_TEST_CASE
CollectorGuestQueue::CollectorGuestQueue()
{
mEvent = NIL_RTSEMEVENT;
RTSemEventCreate(&mEvent);
}
CollectorGuestQueue::~CollectorGuestQueue()
{
RTSemEventDestroy(mEvent);
}
void CollectorGuestQueue::push(CollectorGuestRequest* rq)
{
RTCLock lock(mLockMtx);
mQueue.push(rq);
RTSemEventSignal(mEvent);
}
CollectorGuestRequest* CollectorGuestQueue::pop()
{
int rc = VINF_SUCCESS;
CollectorGuestRequest* rq = NULL;
do
{
{
RTCLock lock(mLockMtx);
if (!mQueue.empty())
{
rq = mQueue.front();
mQueue.pop();
}
}
if (rq)
return rq;
else
rc = RTSemEventWaitNoResume(mEvent, RT_INDEFINITE_WAIT);
}
while (RT_SUCCESS(rc));
return NULL;
}
int CGRQEnable::execute()
{
Assert(mCGuest);
return mCGuest->enableInternal(mMask);
}
void CGRQEnable::debugPrint(void *aObject, const char *aFunction, const char *aText)
{
NOREF(aObject);
NOREF(aFunction);
NOREF(aText);
LogAleksey(("{%p} " LOG_FN_FMT ": CGRQEnable(mask=0x%x) %s\n",
aObject, aFunction, mMask, aText));
}
int CGRQDisable::execute()
{
Assert(mCGuest);
return mCGuest->disableInternal(mMask);
}
void CGRQDisable::debugPrint(void *aObject, const char *aFunction, const char *aText)
{
NOREF(aObject);
NOREF(aFunction);
NOREF(aText);
LogAleksey(("{%p} " LOG_FN_FMT ": CGRQDisable(mask=0x%x) %s\n",
aObject, aFunction, mMask, aText));
}
int CGRQAbort::execute()
{
return E_ABORT;
}
void CGRQAbort::debugPrint(void *aObject, const char *aFunction, const char *aText)
{
NOREF(aObject);
NOREF(aFunction);
NOREF(aText);
LogAleksey(("{%p} " LOG_FN_FMT ": CGRQAbort %s\n",
aObject, aFunction, aText));
}
CollectorGuest::CollectorGuest(Machine *machine, RTPROCESS process) :
mUnregistered(false), mEnabled(false), mValid(false), mMachine(machine), mProcess(process),
mCpuUser(0), mCpuKernel(0), mCpuIdle(0),
mMemTotal(0), mMemFree(0), mMemBalloon(0), mMemShared(0), mMemCache(0), mPageTotal(0),
mAllocVMM(0), mFreeVMM(0), mBalloonedVMM(0), mSharedVMM(0)
{
Assert(mMachine);
/* cannot use ComObjPtr<Machine> in Performance.h, do it manually */
mMachine->AddRef();
}
CollectorGuest::~CollectorGuest()
{
/* cannot use ComObjPtr<Machine> in Performance.h, do it manually */
mMachine->Release();
// Assert(!cEnabled); why?
}
int CollectorGuest::enableVMMStats(bool mCollectVMMStats)
{
HRESULT ret = S_OK;
if (mGuest)
{
/* @todo: replace this with a direct call to mGuest in trunk! */
AutoCaller autoCaller(mMachine);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
ComPtr<IInternalSessionControl> directControl;
ret = mMachine->getDirectControl(&directControl);
if (ret != S_OK)
return ret;
/* enable statistics collection; this is a remote call (!) */
ret = directControl->EnableVMMStatistics(mCollectVMMStats);
LogAleksey(("{%p} " LOG_FN_FMT ": %sable VMM stats (%s)\n",
this, __PRETTY_FUNCTION__, mCollectVMMStats?"En":"Dis",
SUCCEEDED(ret)?"success":"failed"));
}
return ret;
}
int CollectorGuest::enable(ULONG mask)
{
return enqueueRequest(new CGRQEnable(mask));
}
int CollectorGuest::disable(ULONG mask)
{
return enqueueRequest(new CGRQDisable(mask));
}
int CollectorGuest::enableInternal(ULONG mask)
{
HRESULT ret = S_OK;
if ((mEnabled & mask) == mask)
return E_UNEXPECTED;
if (!mEnabled)
{
/* Must make sure that the machine object does not get uninitialized
* in the middle of enabling this collector. Causes timing-related
* behavior otherwise, which we don't want. In particular the
* GetRemoteConsole call below can hang if the VM didn't completely
* terminate (the VM processes stop processing events shortly before
* closing the session). This avoids the hang. */
AutoCaller autoCaller(mMachine);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
mMachineName = mMachine->getName();
ComPtr<IInternalSessionControl> directControl;
ret = mMachine->getDirectControl(&directControl);
if (ret != S_OK)
return ret;
/* get the associated console; this is a remote call (!) */
ret = directControl->GetRemoteConsole(mConsole.asOutParam());
if (ret != S_OK)
return ret;
ret = mConsole->COMGETTER(Guest)(mGuest.asOutParam());
if (ret == S_OK)
{
ret = mGuest->COMSETTER(StatisticsUpdateInterval)(1 /* 1 sec */);
LogAleksey(("{%p} " LOG_FN_FMT ": Set guest statistics update interval to 1 sec (%s)\n",
this, __PRETTY_FUNCTION__, SUCCEEDED(ret)?"success":"failed"));
}
}
if ((mask & GUESTSTATS_VMMRAM) == GUESTSTATS_VMMRAM)
enableVMMStats(true);
mEnabled |= mask;
return ret;
}
int CollectorGuest::disableInternal(ULONG mask)
{
if (!(mEnabled & mask))
return E_UNEXPECTED;
if ((mask & GUESTSTATS_VMMRAM) == GUESTSTATS_VMMRAM)
enableVMMStats(false);
mEnabled &= ~mask;
if (!mEnabled)
{
Assert(mGuest && mConsole);
HRESULT ret = mGuest->COMSETTER(StatisticsUpdateInterval)(0 /* off */);
NOREF(ret);
LogAleksey(("{%p} " LOG_FN_FMT ": Set guest statistics update interval to 0 sec (%s)\n",
this, __PRETTY_FUNCTION__, SUCCEEDED(ret)?"success":"failed"));
invalidate(GUESTSTATS_ALL);
}
return S_OK;
}
int CollectorGuest::enqueueRequest(CollectorGuestRequest *aRequest)
{
if (mManager)
{
aRequest->setGuest(this);
return mManager->enqueueRequest(aRequest);
}
LogAleksey(("{%p} " LOG_FN_FMT ": Attempted enqueue guest request when mManager is null\n",
this, __PRETTY_FUNCTION__));
return E_POINTER;
}
void CollectorGuest::updateStats(ULONG aValidStats, ULONG aCpuUser,
ULONG aCpuKernel, ULONG aCpuIdle,
ULONG aMemTotal, ULONG aMemFree,
ULONG aMemBalloon, ULONG aMemShared,
ULONG aMemCache, ULONG aPageTotal,
ULONG aAllocVMM, ULONG aFreeVMM,
ULONG aBalloonedVMM, ULONG aSharedVMM)
{
if ((aValidStats & GUESTSTATS_CPULOAD) == GUESTSTATS_CPULOAD)
{
mCpuUser = aCpuUser;
mCpuKernel = aCpuKernel,
mCpuIdle = aCpuIdle;
}
if ((aValidStats & GUESTSTATS_RAMUSAGE) == GUESTSTATS_RAMUSAGE)
{
mMemTotal = aMemTotal;
mMemFree = aMemFree;
mMemBalloon = aMemBalloon;
mMemShared = aMemShared;
mMemCache = aMemCache;
mPageTotal = aPageTotal;
}
if ((aValidStats & GUESTSTATS_VMMRAM) == GUESTSTATS_VMMRAM)
{
mAllocVMM = aAllocVMM;
mFreeVMM = aFreeVMM;
mBalloonedVMM = aBalloonedVMM;
mSharedVMM = aSharedVMM;
}
mValid = aValidStats;
}
CollectorGuestManager::CollectorGuestManager()
: mVMMStatsProvider(NULL), mGuestBeingCalled(NULL)
{
int rc = RTThreadCreate(&mThread, CollectorGuestManager::requestProcessingThread,
this, 0, RTTHREADTYPE_MAIN_WORKER, RTTHREADFLAGS_WAITABLE,
"CGMgr");
NOREF(rc);
LogAleksey(("{%p} " LOG_FN_FMT ": RTThreadCreate returned %u (mThread=%p)\n",
this, __PRETTY_FUNCTION__, rc));
}
CollectorGuestManager::~CollectorGuestManager()
{
Assert(mGuests.size() == 0);
int rcThread = 0;
int rc = enqueueRequest(new CGRQAbort());
if (SUCCEEDED(rc))
{
/* We wait only if we were able to put the abort request to a queue */
LogAleksey(("{%p} " LOG_FN_FMT ": Waiting for CGM request processing thread to stop...\n",
this, __PRETTY_FUNCTION__));
rc = RTThreadWait(mThread, 1000 /* 1 sec */, &rcThread);
LogAleksey(("{%p} " LOG_FN_FMT ": RTThreadWait returned %u (thread exit code: %u)\n",
this, __PRETTY_FUNCTION__, rc, rcThread));
}
}
void CollectorGuestManager::registerGuest(CollectorGuest* pGuest)
{
pGuest->setManager(this);
mGuests.push_back(pGuest);
/*
* If no VMM stats provider was elected previously than this is our
* candidate.
*/
if (!mVMMStatsProvider)
mVMMStatsProvider = pGuest;
LogAleksey(("{%p} " LOG_FN_FMT ": Registered guest=%p provider=%p\n",
this, __PRETTY_FUNCTION__, pGuest, mVMMStatsProvider));
}
void CollectorGuestManager::unregisterGuest(CollectorGuest* pGuest)
{
int rc = S_OK;
LogAleksey(("{%p} " LOG_FN_FMT ": About to unregister guest=%p provider=%p\n",
this, __PRETTY_FUNCTION__, pGuest, mVMMStatsProvider));
//mGuests.remove(pGuest); => destroyUnregistered()
pGuest->unregister();
if (pGuest == mVMMStatsProvider)
{
/* This was our VMM stats provider, it is time to re-elect */
CollectorGuestList::iterator it;
/* Assume that nobody can provide VMM stats */
mVMMStatsProvider = NULL;
for (it = mGuests.begin(); it != mGuests.end(); it++)
{
/* Skip unregistered as they are about to be destroyed */
if ((*it)->isUnregistered())
continue;
if ((*it)->isEnabled())
{
/* Found the guest already collecting stats, elect it */
mVMMStatsProvider = *it;
rc = mVMMStatsProvider->enqueueRequest(new CGRQEnable(GUESTSTATS_VMMRAM));
if (FAILED(rc))
{
/* This is not a good candidate -- try to find another */
mVMMStatsProvider = NULL;
continue;
}
break;
}
}
if (!mVMMStatsProvider)
{
/* If nobody collects stats, take the first registered */
for (it = mGuests.begin(); it != mGuests.end(); it++)
{
/* Skip unregistered as they are about to be destroyed */
if ((*it)->isUnregistered())
continue;
mVMMStatsProvider = *it;
//mVMMStatsProvider->enable(GUESTSTATS_VMMRAM);
rc = mVMMStatsProvider->enqueueRequest(new CGRQEnable(GUESTSTATS_VMMRAM));
if (SUCCEEDED(rc))
break;
/* This was not a good candidate -- try to find another */
mVMMStatsProvider = NULL;
}
}
}
LogAleksey(("{%p} " LOG_FN_FMT ": LEAVE new provider=%p\n",
this, __PRETTY_FUNCTION__, mVMMStatsProvider));
}
void CollectorGuestManager::destroyUnregistered()
{
CollectorGuestList::iterator it;
for (it = mGuests.begin(); it != mGuests.end();)
if ((*it)->isUnregistered())
{
delete *it;
it = mGuests.erase(it);
LogAleksey(("{%p} " LOG_FN_FMT ": Number of guests after erasing unregistered is %d\n",
this, __PRETTY_FUNCTION__, mGuests.size()));
}
else
++it;
}
int CollectorGuestManager::enqueueRequest(CollectorGuestRequest *aRequest)
{
#ifdef DEBUG
aRequest->debugPrint(this, __PRETTY_FUNCTION__, "added to CGM queue");
#endif /* DEBUG */
/*
* It is very unlikely that we will get high frequency calls to configure
* guest metrics collection, so we rely on this fact to detect blocked
* guests. If the guest has not finished processing the previous request
* after half a second we consider it blocked.
*/
if (aRequest->getGuest() && aRequest->getGuest() == mGuestBeingCalled)
{
/*
* Before we can declare a guest blocked we need to wait for a while
* and then check again as it may never had a chance to process
* the previous request. Half a second is an eternity for processes
* and is barely noticable by humans.
*/
LogAleksey(("{%p} " LOG_FN_FMT ": Suspecting %s is stalled. Waiting for .5 sec...\n",
this, __PRETTY_FUNCTION__,
aRequest->getGuest()->getVMName().c_str()));
RTThreadSleep(500 /* ms */);
if (aRequest->getGuest() == mGuestBeingCalled) {
LogAleksey(("{%p} " LOG_FN_FMT ": Request processing stalled for %s\n",
this, __PRETTY_FUNCTION__,
aRequest->getGuest()->getVMName().c_str()));
/* Request execution got stalled for this guest -- report an error */
return E_FAIL;
}
}
mQueue.push(aRequest);
return S_OK;
}
/* static */
DECLCALLBACK(int) CollectorGuestManager::requestProcessingThread(RTTHREAD /* aThread */, void *pvUser)
{
CollectorGuestRequest *pReq;
CollectorGuestManager *mgr = static_cast<CollectorGuestManager*>(pvUser);
HRESULT rc = S_OK;
LogAleksey(("{%p} " LOG_FN_FMT ": Starting request processing loop...\n",
mgr, __PRETTY_FUNCTION__));
while ((pReq = mgr->mQueue.pop()) != NULL)
{
#ifdef DEBUG
pReq->debugPrint(mgr, __PRETTY_FUNCTION__, "is being executed...");
#endif /* DEBUG */
mgr->mGuestBeingCalled = pReq->getGuest();
rc = pReq->execute();
mgr->mGuestBeingCalled = NULL;
delete pReq;
if (rc == E_ABORT)
break;
if (FAILED(rc))
LogAleksey(("{%p} " LOG_FN_FMT ": request::execute returned %u\n",
mgr, __PRETTY_FUNCTION__, rc));
}
LogAleksey(("{%p} " LOG_FN_FMT ": Exiting request processing loop... rc=%u\n",
mgr, __PRETTY_FUNCTION__, rc));
return VINF_SUCCESS;
}
#endif /* !VBOX_COLLECTOR_TEST_CASE */
bool BaseMetric::collectorBeat(uint64_t nowAt)
{
if (isEnabled())
{
if (mLastSampleTaken == 0)
{
mLastSampleTaken = nowAt;
Log4(("{%p} " LOG_FN_FMT ": Collecting %s for obj(%p)...\n",
this, __PRETTY_FUNCTION__, getName(), (void *)mObject));
return true;
}
/*
* We use low resolution timers which may fire just a little bit early.
* We compensate for that by jumping into the future by several
* milliseconds (see @bugref{6345}).
*/
if (nowAt - mLastSampleTaken + PM_SAMPLER_PRECISION_MS >= mPeriod * 1000)
{
/*
* We don't want the beat to drift. This is why the timestamp of
* the last taken sample is not the actual time but the time we
* should have taken the measurement at.
*/
mLastSampleTaken += mPeriod * 1000;
Log4(("{%p} " LOG_FN_FMT ": Collecting %s for obj(%p)...\n",
this, __PRETTY_FUNCTION__, getName(), (void *)mObject));
return true;
}
Log4(("{%p} " LOG_FN_FMT ": Enabled but too early to collect %s for obj(%p)\n",
this, __PRETTY_FUNCTION__, getName(), (void *)mObject));
}
return false;
}
void HostCpuLoad::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mUser->init(mLength);
mKernel->init(mLength);
mIdle->init(mLength);
}
void HostCpuLoad::collect()
{
ULONG user, kernel, idle;
int rc = mHAL->getHostCpuLoad(&user, &kernel, &idle);
if (RT_SUCCESS(rc))
{
mUser->put(user);
mKernel->put(kernel);
mIdle->put(idle);
}
}
void HostCpuLoadRaw::preCollect(CollectorHints& hints, uint64_t /* iTick */)
{
hints.collectHostCpuLoad();
}
void HostCpuLoadRaw::collect()
{
uint64_t user, kernel, idle;
uint64_t userDiff, kernelDiff, idleDiff, totalDiff;
int rc = mHAL->getRawHostCpuLoad(&user, &kernel, &idle);
if (RT_SUCCESS(rc))
{
userDiff = user - mUserPrev;
kernelDiff = kernel - mKernelPrev;
idleDiff = idle - mIdlePrev;
totalDiff = userDiff + kernelDiff + idleDiff;
if (totalDiff == 0)
{
/* This is only possible if none of counters has changed! */
LogFlowThisFunc(("Impossible! User, kernel and idle raw "
"counters has not changed since last sample.\n" ));
mUser->put(0);
mKernel->put(0);
mIdle->put(0);
}
else
{
mUser->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * userDiff / totalDiff));
mKernel->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * kernelDiff / totalDiff));
mIdle->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * idleDiff / totalDiff));
}
mUserPrev = user;
mKernelPrev = kernel;
mIdlePrev = idle;
}
}
void HostNetworkLoadRaw::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mRx->init(mLength);
mTx->init(mLength);
uint64_t speed;
int rc = mHAL->getRawHostNetworkLoad(mInterfaceName.c_str(), &mRxPrev, &mTxPrev, &speed);
AssertRC(rc);
}
void HostNetworkLoadRaw::preCollect(CollectorHints& /* hints */, uint64_t /* iTick */)
{
}
void HostNetworkLoadRaw::collect()
{
uint64_t rx, tx, speed;
int rc = mHAL->getRawHostNetworkLoad(mInterfaceName.c_str(), &rx, &tx, &speed);
if (RT_SUCCESS(rc))
{
uint64_t rxDiff = rx - mRxPrev;
uint64_t txDiff = tx - mTxPrev;
if (RT_UNLIKELY(speed * getPeriod() == 0))
{
Assert(speed * getPeriod());
LogFlowThisFunc(("Impossible! speed=%llu period=%d.\n", speed, getPeriod()));
mRx->put(0);
mTx->put(0);
}
else
{
mRx->put((ULONG)(PM_NETWORK_LOAD_MULTIPLIER * rxDiff / (speed * getPeriod())));
mTx->put((ULONG)(PM_NETWORK_LOAD_MULTIPLIER * txDiff / (speed * getPeriod())));
}
mRxPrev = rx;
mTxPrev = tx;
}
}
void HostCpuMhz::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mMHz->init(mLength);
}
void HostCpuMhz::collect()
{
ULONG mhz;
int rc = mHAL->getHostCpuMHz(&mhz);
if (RT_SUCCESS(rc))
mMHz->put(mhz);
}
void HostRamUsage::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mTotal->init(mLength);
mUsed->init(mLength);
mAvailable->init(mLength);
}
void HostRamUsage::preCollect(CollectorHints& hints, uint64_t /* iTick */)
{
hints.collectHostRamUsage();
}
void HostRamUsage::collect()
{
ULONG total, used, available;
int rc = mHAL->getHostMemoryUsage(&total, &used, &available);
if (RT_SUCCESS(rc))
{
mTotal->put(total);
mUsed->put(used);
mAvailable->put(available);
}
}
#ifndef VBOX_COLLECTOR_TEST_CASE
void HostRamVmm::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mAllocVMM->init(mLength);
mFreeVMM->init(mLength);
mBalloonVMM->init(mLength);
mSharedVMM->init(mLength);
}
int HostRamVmm::enable()
{
int rc = S_OK;
CollectorGuest *provider = mCollectorGuestManager->getVMMStatsProvider();
if (provider)
rc = provider->enable(GUESTSTATS_VMMRAM);
BaseMetric::enable();
return rc;
}
int HostRamVmm::disable()
{
int rc = S_OK;
BaseMetric::disable();
CollectorGuest *provider = mCollectorGuestManager->getVMMStatsProvider();
if (provider)
rc = provider->disable(GUESTSTATS_VMMRAM);
return rc;
}
void HostRamVmm::preCollect(CollectorHints& hints, uint64_t /* iTick */)
{
hints.collectHostRamVmm();
}
void HostRamVmm::collect()
{
CollectorGuest *provider = mCollectorGuestManager->getVMMStatsProvider();
if (provider)
{
LogAleksey(("{%p} " LOG_FN_FMT ": provider=%p enabled=%s valid=%s...\n",
this, __PRETTY_FUNCTION__, provider, provider->isEnabled()?"y":"n",
provider->isValid(GUESTSTATS_VMMRAM)?"y":"n"));
if (provider->isValid(GUESTSTATS_VMMRAM))
{
/* Provider is ready, get updated stats */
mAllocCurrent = provider->getAllocVMM();
mFreeCurrent = provider->getFreeVMM();
mBalloonedCurrent = provider->getBalloonedVMM();
mSharedCurrent = provider->getSharedVMM();
provider->invalidate(GUESTSTATS_VMMRAM);
}
/*
* Note that if there are no new values from the provider we will use
* the ones most recently provided instead of zeros, which is probably
* a desirable behavior.
*/
}
else
{
mAllocCurrent = 0;
mFreeCurrent = 0;
mBalloonedCurrent = 0;
mSharedCurrent = 0;
}
LogAleksey(("{%p} " LOG_FN_FMT ": mAllocCurrent=%u mFreeCurrent=%u mBalloonedCurrent=%u mSharedCurrent=%u\n",
this, __PRETTY_FUNCTION__,
mAllocCurrent, mFreeCurrent, mBalloonedCurrent, mSharedCurrent));
mAllocVMM->put(mAllocCurrent);
mFreeVMM->put(mFreeCurrent);
mBalloonVMM->put(mBalloonedCurrent);
mSharedVMM->put(mSharedCurrent);
}
#endif /* !VBOX_COLLECTOR_TEST_CASE */
void MachineCpuLoad::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mUser->init(mLength);
mKernel->init(mLength);
}
void MachineCpuLoad::collect()
{
ULONG user, kernel;
int rc = mHAL->getProcessCpuLoad(mProcess, &user, &kernel);
if (RT_SUCCESS(rc))
{
mUser->put(user);
mKernel->put(kernel);
}
}
void MachineCpuLoadRaw::preCollect(CollectorHints& hints, uint64_t /* iTick */)
{
hints.collectProcessCpuLoad(mProcess);
}
void MachineCpuLoadRaw::collect()
{
uint64_t processUser, processKernel, hostTotal;
int rc = mHAL->getRawProcessCpuLoad(mProcess, &processUser, &processKernel, &hostTotal);
if (RT_SUCCESS(rc))
{
if (hostTotal == mHostTotalPrev)
{
/* Nearly impossible, but... */
mUser->put(0);
mKernel->put(0);
}
else
{
mUser->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * (processUser - mProcessUserPrev) / (hostTotal - mHostTotalPrev)));
mKernel->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * (processKernel - mProcessKernelPrev ) / (hostTotal - mHostTotalPrev)));
}
mHostTotalPrev = hostTotal;
mProcessUserPrev = processUser;
mProcessKernelPrev = processKernel;
}
}
void MachineRamUsage::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mUsed->init(mLength);
}
void MachineRamUsage::preCollect(CollectorHints& hints, uint64_t /* iTick */)
{
hints.collectProcessRamUsage(mProcess);
}
void MachineRamUsage::collect()
{
ULONG used;
int rc = mHAL->getProcessMemoryUsage(mProcess, &used);
if (RT_SUCCESS(rc))
mUsed->put(used);
}
#ifndef VBOX_COLLECTOR_TEST_CASE
void GuestCpuLoad::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mUser->init(mLength);
mKernel->init(mLength);
mIdle->init(mLength);
}
void GuestCpuLoad::preCollect(CollectorHints& hints, uint64_t /* iTick */)
{
hints.collectGuestStats(mCGuest->getProcess());
}
void GuestCpuLoad::collect()
{
if (mCGuest->isValid(GUESTSTATS_CPULOAD))
{
mUser->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * mCGuest->getCpuUser()) / 100);
mKernel->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * mCGuest->getCpuKernel()) / 100);
mIdle->put((ULONG)(PM_CPU_LOAD_MULTIPLIER * mCGuest->getCpuIdle()) / 100);
mCGuest->invalidate(GUESTSTATS_CPULOAD);
}
}
int GuestCpuLoad::enable()
{
int rc = mCGuest->enable(GUESTSTATS_CPULOAD);
BaseMetric::enable();
return rc;
}
int GuestCpuLoad::disable()
{
BaseMetric::disable();
return mCGuest->disable(GUESTSTATS_CPULOAD);
}
void GuestRamUsage::init(ULONG period, ULONG length)
{
mPeriod = period;
mLength = length;
mTotal->init(mLength);
mFree->init(mLength);
mBallooned->init(mLength);
mShared->init(mLength);
mCache->init(mLength);
mPagedTotal->init(mLength);
}
void GuestRamUsage::collect()
{
if (mCGuest->isValid(GUESTSTATS_RAMUSAGE))
{
mTotal->put(mCGuest->getMemTotal());
mFree->put(mCGuest->getMemFree());
mBallooned->put(mCGuest->getMemBalloon());
mShared->put(mCGuest->getMemShared());
mCache->put(mCGuest->getMemCache());
mPagedTotal->put(mCGuest->getPageTotal());
mCGuest->invalidate(GUESTSTATS_RAMUSAGE);
}
}
int GuestRamUsage::enable()
{
int rc = mCGuest->enable(GUESTSTATS_RAMUSAGE);
BaseMetric::enable();
return rc;
}
int GuestRamUsage::disable()
{
BaseMetric::disable();
return mCGuest->disable(GUESTSTATS_RAMUSAGE);
}
void GuestRamUsage::preCollect(CollectorHints& hints, uint64_t /* iTick */)
{
hints.collectGuestStats(mCGuest->getProcess());
}
#endif /* !VBOX_COLLECTOR_TEST_CASE */
void CircularBuffer::init(ULONG ulLength)
{
if (mData)
RTMemFree(mData);
mLength = ulLength;
if (mLength)
mData = (ULONG*)RTMemAllocZ(ulLength * sizeof(ULONG));
else
mData = NULL;
mWrapped = false;
mEnd = 0;
mSequenceNumber = 0;
}
ULONG CircularBuffer::length()
{
return mWrapped ? mLength : mEnd;
}
void CircularBuffer::put(ULONG value)
{
if (mData)
{
mData[mEnd++] = value;
if (mEnd >= mLength)
{
mEnd = 0;
mWrapped = true;
}
++mSequenceNumber;
}
}
void CircularBuffer::copyTo(ULONG *data)
{
if (mWrapped)
{
memcpy(data, mData + mEnd, (mLength - mEnd) * sizeof(ULONG));
// Copy the wrapped part
if (mEnd)
memcpy(data + (mLength - mEnd), mData, mEnd * sizeof(ULONG));
}
else
memcpy(data, mData, mEnd * sizeof(ULONG));
}
void SubMetric::query(ULONG *data)
{
copyTo(data);
}
void Metric::query(ULONG **data, ULONG *count, ULONG *sequenceNumber)
{
ULONG length;
ULONG *tmpData;
length = mSubMetric->length();
*sequenceNumber = mSubMetric->getSequenceNumber() - length;
if (length)
{
tmpData = (ULONG*)RTMemAlloc(sizeof(*tmpData)*length);
mSubMetric->query(tmpData);
if (mAggregate)
{
*count = 1;
*data = (ULONG*)RTMemAlloc(sizeof(**data));
**data = mAggregate->compute(tmpData, length);
RTMemFree(tmpData);
}
else
{
*count = length;
*data = tmpData;
}
}
else
{
*count = 0;
*data = 0;
}
}
ULONG AggregateAvg::compute(ULONG *data, ULONG length)
{
uint64_t tmp = 0;
for (ULONG i = 0; i < length; ++i)
tmp += data[i];
return (ULONG)(tmp / length);
}
const char * AggregateAvg::getName()
{
return "avg";
}
ULONG AggregateMin::compute(ULONG *data, ULONG length)
{
ULONG tmp = *data;
for (ULONG i = 0; i < length; ++i)
if (data[i] < tmp)
tmp = data[i];
return tmp;
}
const char * AggregateMin::getName()
{
return "min";
}
ULONG AggregateMax::compute(ULONG *data, ULONG length)
{
ULONG tmp = *data;
for (ULONG i = 0; i < length; ++i)
if (data[i] > tmp)
tmp = data[i];
return tmp;
}
const char * AggregateMax::getName()
{
return "max";
}
Filter::Filter(ComSafeArrayIn(IN_BSTR, metricNames),
ComSafeArrayIn(IUnknown *, objects))
{
/*
* Let's work around null/empty safe array mess. I am not sure there is
* a way to pass null arrays via webservice, I haven't found one. So I
* guess the users will be forced to use empty arrays instead. Constructing
* an empty SafeArray is a bit awkward, so what we do in this method is
* actually convert null arrays to empty arrays and pass them down to
* init() method. If someone knows how to do it better, please be my guest,
* fix it.
*/
if (ComSafeArrayInIsNull(metricNames))
{
com::SafeArray<BSTR> nameArray;
if (ComSafeArrayInIsNull(objects))
{
com::SafeIfaceArray<IUnknown> objectArray;
objectArray.reset(0);
init(ComSafeArrayAsInParam(nameArray),
ComSafeArrayAsInParam(objectArray));
}
else
{
com::SafeIfaceArray<IUnknown> objectArray(ComSafeArrayInArg(objects));
init(ComSafeArrayAsInParam(nameArray),
ComSafeArrayAsInParam(objectArray));
}
}
else
{
com::SafeArray<IN_BSTR> nameArray(ComSafeArrayInArg(metricNames));
if (ComSafeArrayInIsNull(objects))
{
com::SafeIfaceArray<IUnknown> objectArray;
objectArray.reset(0);
init(ComSafeArrayAsInParam(nameArray),
ComSafeArrayAsInParam(objectArray));
}
else
{
com::SafeIfaceArray<IUnknown> objectArray(ComSafeArrayInArg(objects));
init(ComSafeArrayAsInParam(nameArray),
ComSafeArrayAsInParam(objectArray));
}
}
}
Filter::Filter(const com::Utf8Str name, const ComPtr<IUnknown> &aObject)
{
processMetricList(name, aObject);
}
void Filter::init(ComSafeArrayIn(IN_BSTR, metricNames),
ComSafeArrayIn(IUnknown *, objects))
{
com::SafeArray<IN_BSTR> nameArray(ComSafeArrayInArg(metricNames));
com::SafeIfaceArray<IUnknown> objectArray(ComSafeArrayInArg(objects));
if (!objectArray.size())
{
if (nameArray.size())
{
for (size_t i = 0; i < nameArray.size(); ++i)
processMetricList(com::Utf8Str(nameArray[i]), ComPtr<IUnknown>());
}
else
processMetricList("*", ComPtr<IUnknown>());
}
else
{
for (size_t i = 0; i < objectArray.size(); ++i)
switch (nameArray.size())
{
case 0:
processMetricList("*", objectArray[i]);
break;
case 1:
processMetricList(com::Utf8Str(nameArray[0]), objectArray[i]);
break;
default:
processMetricList(com::Utf8Str(nameArray[i]), objectArray[i]);
break;
}
}
}
void Filter::processMetricList(const com::Utf8Str &name, const ComPtr<IUnknown> object)
{
size_t startPos = 0;
for (size_t pos = name.find(",");
pos != com::Utf8Str::npos;
pos = name.find(",", startPos))
{
mElements.push_back(std::make_pair(object, RTCString(name.substr(startPos, pos - startPos).c_str())));
startPos = pos + 1;
}
mElements.push_back(std::make_pair(object, RTCString(name.substr(startPos).c_str())));
}
/**
* The following method was borrowed from stamR3Match (VMM/STAM.cpp) and
* modified to handle the special case of trailing colon in the pattern.
*
* @returns True if matches, false if not.
* @param pszPat Pattern.
* @param pszName Name to match against the pattern.
* @param fSeenColon Seen colon (':').
*/
bool Filter::patternMatch(const char *pszPat, const char *pszName,
bool fSeenColon)
{
/* ASSUMES ASCII */
for (;;)
{
char chPat = *pszPat;
switch (chPat)
{
default:
if (*pszName != chPat)
return false;
break;
case '*':
{
while ((chPat = *++pszPat) == '*' || chPat == '?')
/* nothing */;
/* Handle a special case, the mask terminating with a colon. */
if (chPat == ':')
{
if (!fSeenColon && !pszPat[1])
return !strchr(pszName, ':');
fSeenColon = true;
}
for (;;)
{
char ch = *pszName++;
if ( ch == chPat
&& ( !chPat
|| patternMatch(pszPat + 1, pszName, fSeenColon)))
return true;
if (!ch)
return false;
}
/* won't ever get here */
break;
}
case '?':
if (!*pszName)
return false;
break;
/* Handle a special case, the mask terminating with a colon. */
case ':':
if (!fSeenColon && !pszPat[1])
return !*pszName;
if (*pszName != ':')
return false;
fSeenColon = true;
break;
case '\0':
return !*pszName;
}
pszName++;
pszPat++;
}
return true;
}
bool Filter::match(const ComPtr<IUnknown> object, const RTCString &name) const
{
ElementList::const_iterator it;
//LogAleksey(("Filter::match(%p, %s)\n", static_cast<const IUnknown*> (object), name.c_str()));
for (it = mElements.begin(); it != mElements.end(); it++)
{
//LogAleksey(("...matching against(%p, %s)\n", static_cast<const IUnknown*> ((*it).first), (*it).second.c_str()));
if ((*it).first.isNull() || (*it).first == object)
{
// Objects match, compare names
if (patternMatch((*it).second.c_str(), name.c_str()))
{
LogFlowThisFunc(("...found!\n"));
return true;
}
}
}
//LogAleksey(("...no matches!\n"));
return false;
}
/* vi: set tabstop=4 shiftwidth=4 expandtab: */