ApplianceImplImport.cpp revision d4c0b01d95e56701ccb5a430fea1a36dc671153b
/* $Id$ */
/** @file
*
* IAppliance and IVirtualSystem COM class implementations.
*/
/*
* Copyright (C) 2008-2011 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
#include <iprt/path.h>
#include <iprt/dir.h>
#include <iprt/file.h>
#include <iprt/s3.h>
#include <iprt/sha.h>
#include <iprt/manifest.h>
#include <iprt/tar.h>
#include <iprt/stream.h>
#include <VBox/vd.h>
#include <VBox/com/array.h>
#include "ApplianceImpl.h"
#include "VirtualBoxImpl.h"
#include "GuestOSTypeImpl.h"
#include "ProgressImpl.h"
#include "MachineImpl.h"
#include "MediumImpl.h"
#include "MediumFormatImpl.h"
#include "SystemPropertiesImpl.h"
#include "HostImpl.h"
#include "AutoCaller.h"
#include "Logging.h"
#include "ApplianceImplPrivate.h"
#include <VBox/param.h>
#include <VBox/version.h>
#include <VBox/settings.h>
using namespace std;
////////////////////////////////////////////////////////////////////////////////
//
// IAppliance public methods
//
////////////////////////////////////////////////////////////////////////////////
/**
* Public method implementation. This opens the OVF with ovfreader.cpp.
* Thread implementation is in Appliance::readImpl().
*
* @param path
* @return
*/
STDMETHODIMP Appliance::Read(IN_BSTR path, IProgress **aProgress)
{
if (!path) return E_POINTER;
CheckComArgOutPointerValid(aProgress);
AutoCaller autoCaller(this);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
if (!isApplianceIdle())
return E_ACCESSDENIED;
if (m->pReader)
{
delete m->pReader;
m->pReader = NULL;
}
// see if we can handle this file; for now we insist it has an ovf/ova extension
Utf8Str strPath (path);
if (!( strPath.endsWith(".ovf", Utf8Str::CaseInsensitive)
|| strPath.endsWith(".ova", Utf8Str::CaseInsensitive)))
return setError(VBOX_E_FILE_ERROR,
tr("Appliance file must have .ovf extension"));
ComObjPtr<Progress> progress;
HRESULT rc = S_OK;
try
{
/* Parse all necessary info out of the URI */
parseURI(strPath, m->locInfo);
rc = readImpl(m->locInfo, progress);
}
catch (HRESULT aRC)
{
rc = aRC;
}
if (SUCCEEDED(rc))
/* Return progress to the caller */
progress.queryInterfaceTo(aProgress);
return S_OK;
}
/**
* Public method implementation. This looks at the output of ovfreader.cpp and creates
* VirtualSystemDescription instances.
* @return
*/
STDMETHODIMP Appliance::Interpret()
{
// @todo:
// - don't use COM methods but the methods directly (faster, but needs appropriate locking of that objects itself (s. HardDisk))
// - Appropriate handle errors like not supported file formats
AutoCaller autoCaller(this);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
if (!isApplianceIdle())
return E_ACCESSDENIED;
HRESULT rc = S_OK;
/* Clear any previous virtual system descriptions */
m->virtualSystemDescriptions.clear();
if (!m->pReader)
return setError(E_FAIL,
tr("Cannot interpret appliance without reading it first (call read() before interpret())"));
// Change the appliance state so we can safely leave the lock while doing time-consuming
// disk imports; also the below method calls do all kinds of locking which conflicts with
// the appliance object lock
m->state = Data::ApplianceImporting;
alock.release();
/* Try/catch so we can clean up on error */
try
{
list<ovf::VirtualSystem>::const_iterator it;
/* Iterate through all virtual systems */
for (it = m->pReader->m_llVirtualSystems.begin();
it != m->pReader->m_llVirtualSystems.end();
++it)
{
const ovf::VirtualSystem &vsysThis = *it;
ComObjPtr<VirtualSystemDescription> pNewDesc;
rc = pNewDesc.createObject();
if (FAILED(rc)) throw rc;
rc = pNewDesc->init();
if (FAILED(rc)) throw rc;
// if the virtual system in OVF had a <vbox:Machine> element, have the
// VirtualBox settings code parse that XML now
if (vsysThis.pelmVboxMachine)
pNewDesc->importVboxMachineXML(*vsysThis.pelmVboxMachine);
// Guest OS type
// This is taken from one of three places, in this order:
Utf8Str strOsTypeVBox;
Utf8StrFmt strCIMOSType("%RU32", (uint32_t)vsysThis.cimos);
// 1) If there is a <vbox:Machine>, then use the type from there.
if ( vsysThis.pelmVboxMachine
&& pNewDesc->m->pConfig->machineUserData.strOsType.isNotEmpty()
)
strOsTypeVBox = pNewDesc->m->pConfig->machineUserData.strOsType;
// 2) Otherwise, if there is OperatingSystemSection/vbox:OSType, use that one.
else if (vsysThis.strTypeVbox.isNotEmpty()) // OVFReader has found vbox:OSType
strOsTypeVBox = vsysThis.strTypeVbox;
// 3) Otherwise, make a best guess what the vbox type is from the OVF (CIM) OS type.
else
convertCIMOSType2VBoxOSType(strOsTypeVBox, vsysThis.cimos, vsysThis.strCimosDesc);
pNewDesc->addEntry(VirtualSystemDescriptionType_OS,
"",
strCIMOSType,
strOsTypeVBox);
/* VM name */
Utf8Str nameVBox;
/* If there is a <vbox:Machine>, we always prefer the setting from there. */
if ( vsysThis.pelmVboxMachine
&& pNewDesc->m->pConfig->machineUserData.strName.isNotEmpty())
nameVBox = pNewDesc->m->pConfig->machineUserData.strName;
else
nameVBox = vsysThis.strName;
/* If the there isn't any name specified create a default one out
* of the OS type */
if (nameVBox.isEmpty())
nameVBox = strOsTypeVBox;
searchUniqueVMName(nameVBox);
pNewDesc->addEntry(VirtualSystemDescriptionType_Name,
"",
vsysThis.strName,
nameVBox);
/* Based on the VM name, create a target machine path. */
Bstr bstrMachineFilename;
rc = mVirtualBox->ComposeMachineFilename(Bstr(nameVBox).raw(),
NULL,
bstrMachineFilename.asOutParam());
if (FAILED(rc)) throw rc;
/* Determine the machine folder from that */
Utf8Str strMachineFolder = Utf8Str(bstrMachineFilename).stripFilename();
/* VM Product */
if (!vsysThis.strProduct.isEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_Product,
"",
vsysThis.strProduct,
vsysThis.strProduct);
/* VM Vendor */
if (!vsysThis.strVendor.isEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_Vendor,
"",
vsysThis.strVendor,
vsysThis.strVendor);
/* VM Version */
if (!vsysThis.strVersion.isEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_Version,
"",
vsysThis.strVersion,
vsysThis.strVersion);
/* VM ProductUrl */
if (!vsysThis.strProductUrl.isEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_ProductUrl,
"",
vsysThis.strProductUrl,
vsysThis.strProductUrl);
/* VM VendorUrl */
if (!vsysThis.strVendorUrl.isEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_VendorUrl,
"",
vsysThis.strVendorUrl,
vsysThis.strVendorUrl);
/* VM description */
if (!vsysThis.strDescription.isEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_Description,
"",
vsysThis.strDescription,
vsysThis.strDescription);
/* VM license */
if (!vsysThis.strLicenseText.isEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_License,
"",
vsysThis.strLicenseText,
vsysThis.strLicenseText);
/* Now that we know the OS type, get our internal defaults based on that. */
ComPtr<IGuestOSType> pGuestOSType;
rc = mVirtualBox->GetGuestOSType(Bstr(strOsTypeVBox).raw(), pGuestOSType.asOutParam());
if (FAILED(rc)) throw rc;
/* CPU count */
ULONG cpuCountVBox;
/* If there is a <vbox:Machine>, we always prefer the setting from there. */
if ( vsysThis.pelmVboxMachine
&& pNewDesc->m->pConfig->hardwareMachine.cCPUs)
cpuCountVBox = pNewDesc->m->pConfig->hardwareMachine.cCPUs;
else
cpuCountVBox = vsysThis.cCPUs;
/* Check for the constraints */
if (cpuCountVBox > SchemaDefs::MaxCPUCount)
{
addWarning(tr("The virtual system \"%s\" claims support for %u CPU's, but VirtualBox has support for max %u CPU's only."),
vsysThis.strName.c_str(), cpuCountVBox, SchemaDefs::MaxCPUCount);
cpuCountVBox = SchemaDefs::MaxCPUCount;
}
if (vsysThis.cCPUs == 0)
cpuCountVBox = 1;
pNewDesc->addEntry(VirtualSystemDescriptionType_CPU,
"",
Utf8StrFmt("%RU32", (uint32_t)vsysThis.cCPUs),
Utf8StrFmt("%RU32", (uint32_t)cpuCountVBox));
/* RAM */
uint64_t ullMemSizeVBox;
/* If there is a <vbox:Machine>, we always prefer the setting from there. */
if ( vsysThis.pelmVboxMachine
&& pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB)
ullMemSizeVBox = pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB;
else
ullMemSizeVBox = vsysThis.ullMemorySize / _1M;
/* Check for the constraints */
if ( ullMemSizeVBox != 0
&& ( ullMemSizeVBox < MM_RAM_MIN_IN_MB
|| ullMemSizeVBox > MM_RAM_MAX_IN_MB
)
)
{
addWarning(tr("The virtual system \"%s\" claims support for %llu MB RAM size, but VirtualBox has support for min %u & max %u MB RAM size only."),
vsysThis.strName.c_str(), ullMemSizeVBox, MM_RAM_MIN_IN_MB, MM_RAM_MAX_IN_MB);
ullMemSizeVBox = RT_MIN(RT_MAX(ullMemSizeVBox, MM_RAM_MIN_IN_MB), MM_RAM_MAX_IN_MB);
}
if (vsysThis.ullMemorySize == 0)
{
/* If the RAM of the OVF is zero, use our predefined values */
ULONG memSizeVBox2;
rc = pGuestOSType->COMGETTER(RecommendedRAM)(&memSizeVBox2);
if (FAILED(rc)) throw rc;
/* VBox stores that in MByte */
ullMemSizeVBox = (uint64_t)memSizeVBox2;
}
pNewDesc->addEntry(VirtualSystemDescriptionType_Memory,
"",
Utf8StrFmt("%RU64", (uint64_t)vsysThis.ullMemorySize),
Utf8StrFmt("%RU64", (uint64_t)ullMemSizeVBox));
/* Audio */
Utf8Str strSoundCard;
Utf8Str strSoundCardOrig;
/* If there is a <vbox:Machine>, we always prefer the setting from there. */
if ( vsysThis.pelmVboxMachine
&& pNewDesc->m->pConfig->hardwareMachine.audioAdapter.fEnabled)
strSoundCard = Utf8StrFmt("%RU32", (uint32_t)pNewDesc->m->pConfig->hardwareMachine.audioAdapter.controllerType);
else if (vsysThis.strSoundCardType.isNotEmpty())
{
/* Set the AC97 always for the simple OVF case.
* @todo: figure out the hardware which could be possible */
strSoundCard = Utf8StrFmt("%RU32", (uint32_t)AudioControllerType_AC97);
strSoundCardOrig = vsysThis.strSoundCardType;
}
if (strSoundCard.isNotEmpty())
pNewDesc->addEntry(VirtualSystemDescriptionType_SoundCard,
"",
strSoundCardOrig,
strSoundCard);
#ifdef VBOX_WITH_USB
/* USB Controller */
/* If there is a <vbox:Machine>, we always prefer the setting from there. */
if ( ( vsysThis.pelmVboxMachine
&& pNewDesc->m->pConfig->hardwareMachine.usbController.fEnabled)
|| vsysThis.fHasUsbController)
pNewDesc->addEntry(VirtualSystemDescriptionType_USBController, "", "", "");
#endif /* VBOX_WITH_USB */
/* Network Controller */
/* If there is a <vbox:Machine>, we always prefer the setting from there. */
if (vsysThis.pelmVboxMachine)
{
uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(pNewDesc->m->pConfig->hardwareMachine.chipsetType);
const settings::NetworkAdaptersList &llNetworkAdapters = pNewDesc->m->pConfig->hardwareMachine.llNetworkAdapters;
/* Check for the constrains */
if (llNetworkAdapters.size() > maxNetworkAdapters)
addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox has support for max %u network adapter only."),
vsysThis.strName.c_str(), llNetworkAdapters.size(), maxNetworkAdapters);
/* Iterate through all network adapters. */
settings::NetworkAdaptersList::const_iterator it1;
size_t a = 0;
for (it1 = llNetworkAdapters.begin();
it1 != llNetworkAdapters.end() && a < maxNetworkAdapters;
++it1, ++a)
{
if (it1->fEnabled)
{
Utf8Str strMode = convertNetworkAttachmentTypeToString(it1->mode);
pNewDesc->addEntry(VirtualSystemDescriptionType_NetworkAdapter,
"", // ref
strMode, // orig
Utf8StrFmt("%RU32", (uint32_t)it1->type), // conf
0,
Utf8StrFmt("slot=%RU32;type=%s", it1->ulSlot, strMode.c_str())); // extra conf
}
}
}
/* else we use the ovf configuration. */
else if (size_t cEthernetAdapters = vsysThis.llEthernetAdapters.size() > 0)
{
uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(ChipsetType_PIIX3);
/* Check for the constrains */
if (cEthernetAdapters > maxNetworkAdapters)
addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox has support for max %u network adapter only."),
vsysThis.strName.c_str(), cEthernetAdapters, maxNetworkAdapters);
/* Get the default network adapter type for the selected guest OS */
NetworkAdapterType_T defaultAdapterVBox = NetworkAdapterType_Am79C970A;
rc = pGuestOSType->COMGETTER(AdapterType)(&defaultAdapterVBox);
if (FAILED(rc)) throw rc;
ovf::EthernetAdaptersList::const_iterator itEA;
/* Iterate through all abstract networks. Ignore network cards
* which exceed the limit of VirtualBox. */
size_t a = 0;
for (itEA = vsysThis.llEthernetAdapters.begin();
itEA != vsysThis.llEthernetAdapters.end() && a < maxNetworkAdapters;
++itEA, ++a)
{
const ovf::EthernetAdapter &ea = *itEA; // logical network to connect to
Utf8Str strNetwork = ea.strNetworkName;
// make sure it's one of these two
if ( (strNetwork.compare("Null", Utf8Str::CaseInsensitive))
&& (strNetwork.compare("NAT", Utf8Str::CaseInsensitive))
&& (strNetwork.compare("Bridged", Utf8Str::CaseInsensitive))
&& (strNetwork.compare("Internal", Utf8Str::CaseInsensitive))
&& (strNetwork.compare("HostOnly", Utf8Str::CaseInsensitive))
&& (strNetwork.compare("Generic", Utf8Str::CaseInsensitive))
)
strNetwork = "Bridged"; // VMware assumes this is the default apparently
/* Figure out the hardware type */
NetworkAdapterType_T nwAdapterVBox = defaultAdapterVBox;
if (!ea.strAdapterType.compare("PCNet32", Utf8Str::CaseInsensitive))
{
/* If the default adapter is already one of the two
* PCNet adapters use the default one. If not use the
* Am79C970A as fallback. */
if (!(defaultAdapterVBox == NetworkAdapterType_Am79C970A ||
defaultAdapterVBox == NetworkAdapterType_Am79C973))
nwAdapterVBox = NetworkAdapterType_Am79C970A;
}
#ifdef VBOX_WITH_E1000
/* VMWare accidentally write this with VirtualCenter 3.5,
so make sure in this case always to use the VMWare one */
else if (!ea.strAdapterType.compare("E10000", Utf8Str::CaseInsensitive))
nwAdapterVBox = NetworkAdapterType_I82545EM;
else if (!ea.strAdapterType.compare("E1000", Utf8Str::CaseInsensitive))
{
/* Check if this OVF was written by VirtualBox */
if (Utf8Str(vsysThis.strVirtualSystemType).contains("virtualbox", Utf8Str::CaseInsensitive))
{
/* If the default adapter is already one of the three
* E1000 adapters use the default one. If not use the
* I82545EM as fallback. */
if (!(defaultAdapterVBox == NetworkAdapterType_I82540EM ||
defaultAdapterVBox == NetworkAdapterType_I82543GC ||
defaultAdapterVBox == NetworkAdapterType_I82545EM))
nwAdapterVBox = NetworkAdapterType_I82540EM;
}
else
/* Always use this one since it's what VMware uses */
nwAdapterVBox = NetworkAdapterType_I82545EM;
}
#endif /* VBOX_WITH_E1000 */
pNewDesc->addEntry(VirtualSystemDescriptionType_NetworkAdapter,
"", // ref
ea.strNetworkName, // orig
Utf8StrFmt("%RU32", (uint32_t)nwAdapterVBox), // conf
0,
Utf8StrFmt("type=%s", strNetwork.c_str())); // extra conf
}
}
/* If there is a <vbox:Machine>, we always prefer the setting from there. */
bool fFloppy = false;
bool fDVD = false;
if (vsysThis.pelmVboxMachine)
{
settings::StorageControllersList &llControllers = pNewDesc->m->pConfig->storageMachine.llStorageControllers;
settings::StorageControllersList::iterator it3;
for (it3 = llControllers.begin();
it3 != llControllers.end();
++it3)
{
settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
settings::AttachedDevicesList::iterator it4;
for (it4 = llAttachments.begin();
it4 != llAttachments.end();
++it4)
{
fDVD |= it4->deviceType == DeviceType_DVD;
fFloppy |= it4->deviceType == DeviceType_Floppy;
if (fFloppy && fDVD)
break;
}
if (fFloppy && fDVD)
break;
}
}
else
{
fFloppy = vsysThis.fHasFloppyDrive;
fDVD = vsysThis.fHasCdromDrive;
}
/* Floppy Drive */
if (fFloppy)
pNewDesc->addEntry(VirtualSystemDescriptionType_Floppy, "", "", "");
/* CD Drive */
if (fDVD)
pNewDesc->addEntry(VirtualSystemDescriptionType_CDROM, "", "", "");
/* Hard disk Controller */
uint16_t cIDEused = 0;
uint16_t cSATAused = 0; NOREF(cSATAused);
uint16_t cSCSIused = 0; NOREF(cSCSIused);
ovf::ControllersMap::const_iterator hdcIt;
/* Iterate through all hard disk controllers */
for (hdcIt = vsysThis.mapControllers.begin();
hdcIt != vsysThis.mapControllers.end();
++hdcIt)
{
const ovf::HardDiskController &hdc = hdcIt->second;
Utf8Str strControllerID = Utf8StrFmt("%RI32", (uint32_t)hdc.idController);
switch (hdc.system)
{
case ovf::HardDiskController::IDE:
/* Check for the constrains */
if (cIDEused < 4)
{
// @todo: figure out the IDE types
/* Use PIIX4 as default */
Utf8Str strType = "PIIX4";
if (!hdc.strControllerType.compare("PIIX3", Utf8Str::CaseInsensitive))
strType = "PIIX3";
else if (!hdc.strControllerType.compare("ICH6", Utf8Str::CaseInsensitive))
strType = "ICH6";
pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskControllerIDE,
strControllerID, // strRef
hdc.strControllerType, // aOvfValue
strType); // aVboxValue
}
else
/* Warn only once */
if (cIDEused == 2)
addWarning(tr("The virtual \"%s\" system requests support for more than two IDE controller channels, but VirtualBox supports only two."),
vsysThis.strName.c_str());
++cIDEused;
break;
case ovf::HardDiskController::SATA:
/* Check for the constrains */
if (cSATAused < 1)
{
// @todo: figure out the SATA types
/* We only support a plain AHCI controller, so use them always */
pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskControllerSATA,
strControllerID,
hdc.strControllerType,
"AHCI");
}
else
{
/* Warn only once */
if (cSATAused == 1)
addWarning(tr("The virtual system \"%s\" requests support for more than one SATA controller, but VirtualBox has support for only one"),
vsysThis.strName.c_str());
}
++cSATAused;
break;
case ovf::HardDiskController::SCSI:
/* Check for the constrains */
if (cSCSIused < 1)
{
VirtualSystemDescriptionType_T vsdet = VirtualSystemDescriptionType_HardDiskControllerSCSI;
Utf8Str hdcController = "LsiLogic";
if (!hdc.strControllerType.compare("lsilogicsas", Utf8Str::CaseInsensitive))
{
// OVF considers SAS a variant of SCSI but VirtualBox considers it a class of its own
vsdet = VirtualSystemDescriptionType_HardDiskControllerSAS;
hdcController = "LsiLogicSas";
}
else if (!hdc.strControllerType.compare("BusLogic", Utf8Str::CaseInsensitive))
hdcController = "BusLogic";
pNewDesc->addEntry(vsdet,
strControllerID,
hdc.strControllerType,
hdcController);
}
else
addWarning(tr("The virtual system \"%s\" requests support for an additional SCSI controller of type \"%s\" with ID %s, but VirtualBox presently supports only one SCSI controller."),
vsysThis.strName.c_str(),
hdc.strControllerType.c_str(),
strControllerID.c_str());
++cSCSIused;
break;
}
}
/* Hard disks */
if (vsysThis.mapVirtualDisks.size() > 0)
{
ovf::VirtualDisksMap::const_iterator itVD;
/* Iterate through all hard disks ()*/
for (itVD = vsysThis.mapVirtualDisks.begin();
itVD != vsysThis.mapVirtualDisks.end();
++itVD)
{
const ovf::VirtualDisk &hd = itVD->second;
/* Get the associated disk image */
const ovf::DiskImage &di = m->pReader->m_mapDisks[hd.strDiskId];
// @todo:
// - figure out all possible vmdk formats we also support
// - figure out if there is a url specifier for vhd already
// - we need a url specifier for the vdi format
if ( di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#sparse", Utf8Str::CaseInsensitive)
|| di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#streamOptimized", Utf8Str::CaseInsensitive)
|| di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
|| di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
)
{
/* If the href is empty use the VM name as filename */
Utf8Str strFilename = di.strHref;
if (!strFilename.length())
strFilename = Utf8StrFmt("%s.vmdk", nameVBox.c_str());
Utf8Str strTargetPath = Utf8Str(strMachineFolder)
.append(RTPATH_DELIMITER)
.append(di.strHref);
searchUniqueDiskImageFilePath(strTargetPath);
/* find the description for the hard disk controller
* that has the same ID as hd.idController */
const VirtualSystemDescriptionEntry *pController;
if (!(pController = pNewDesc->findControllerFromID(hd.idController)))
throw setError(E_FAIL,
tr("Cannot find hard disk controller with OVF instance ID %RI32 to which disk \"%s\" should be attached"),
hd.idController,
di.strHref.c_str());
/* controller to attach to, and the bus within that controller */
Utf8StrFmt strExtraConfig("controller=%RI16;channel=%RI16",
pController->ulIndex,
hd.ulAddressOnParent);
pNewDesc->addEntry(VirtualSystemDescriptionType_HardDiskImage,
hd.strDiskId,
di.strHref,
strTargetPath,
di.ulSuggestedSizeMB,
strExtraConfig);
}
else
throw setError(VBOX_E_FILE_ERROR,
tr("Unsupported format for virtual disk image in OVF: \"%s\"", di.strFormat.c_str()));
}
}
m->virtualSystemDescriptions.push_back(pNewDesc);
}
}
catch (HRESULT aRC)
{
/* On error we clear the list & return */
m->virtualSystemDescriptions.clear();
rc = aRC;
}
// reset the appliance state
alock.acquire();
m->state = Data::ApplianceIdle;
return rc;
}
/**
* Public method implementation. This creates one or more new machines according to the
* VirtualSystemScription instances created by Appliance::Interpret().
* Thread implementation is in Appliance::importImpl().
* @param aProgress
* @return
*/
STDMETHODIMP Appliance::ImportMachines(ComSafeArrayIn(ImportOptions_T, options), IProgress **aProgress)
{
CheckComArgOutPointerValid(aProgress);
AutoCaller autoCaller(this);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
if (options != NULL)
m->optList = com::SafeArray<ImportOptions_T>(ComSafeArrayInArg(options)).toList();
AssertReturn(!(m->optList.contains(ImportOptions_KeepAllMACs) && m->optList.contains(ImportOptions_KeepNATMACs)), E_INVALIDARG);
AutoReadLock alock(this COMMA_LOCKVAL_SRC_POS);
// do not allow entering this method if the appliance is busy reading or writing
if (!isApplianceIdle())
return E_ACCESSDENIED;
if (!m->pReader)
return setError(E_FAIL,
tr("Cannot import machines without reading it first (call read() before importMachines())"));
ComObjPtr<Progress> progress;
HRESULT rc = S_OK;
try
{
rc = importImpl(m->locInfo, progress);
}
catch (HRESULT aRC)
{
rc = aRC;
}
if (SUCCEEDED(rc))
/* Return progress to the caller */
progress.queryInterfaceTo(aProgress);
return rc;
}
////////////////////////////////////////////////////////////////////////////////
//
// Appliance private methods
//
////////////////////////////////////////////////////////////////////////////////
/*******************************************************************************
* Read stuff
******************************************************************************/
/**
* Implementation for reading an OVF. This starts a new thread which will call
* Appliance::taskThreadImportOrExport() which will then call readFS() or readS3().
* This will then open the OVF with ovfreader.cpp.
*
* This is in a separate private method because it is used from three locations:
*
* 1) from the public Appliance::Read().
*
* 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which
* called Appliance::readFSOVA(), which called Appliance::importImpl(), which then called this again.
*
* 3) from Appliance::readS3(), which got called from a previous instance of Appliance::taskThreadImportOrExport().
*
* @param aLocInfo
* @param aProgress
* @return
*/
HRESULT Appliance::readImpl(const LocationInfo &aLocInfo, ComObjPtr<Progress> &aProgress)
{
BstrFmt bstrDesc = BstrFmt(tr("Reading appliance '%s'"),
aLocInfo.strPath.c_str());
HRESULT rc;
/* Create the progress object */
aProgress.createObject();
if (aLocInfo.storageType == VFSType_File)
/* 1 operation only */
rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
bstrDesc.raw(),
TRUE /* aCancelable */);
else
/* 4/5 is downloading, 1/5 is reading */
rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
bstrDesc.raw(),
TRUE /* aCancelable */,
2, // ULONG cOperations,
5, // ULONG ulTotalOperationsWeight,
BstrFmt(tr("Download appliance '%s'"),
aLocInfo.strPath.c_str()).raw(), // CBSTR bstrFirstOperationDescription,
4); // ULONG ulFirstOperationWeight,
if (FAILED(rc)) throw rc;
/* Initialize our worker task */
std::auto_ptr<TaskOVF> task(new TaskOVF(this, TaskOVF::Read, aLocInfo, aProgress));
rc = task->startThread();
if (FAILED(rc)) throw rc;
/* Don't destruct on success */
task.release();
return rc;
}
/**
* Actual worker code for reading an OVF from disk. This is called from Appliance::taskThreadImportOrExport()
* and therefore runs on the OVF read worker thread. This opens the OVF with ovfreader.cpp.
*
* This runs in two contexts:
*
* 1) in a first worker thread; in that case, Appliance::Read() called Appliance::readImpl();
*
* 2) in a second worker thread; in that case, Appliance::Read() called Appliance::readImpl(), which
* called Appliance::readS3(), which called Appliance::readImpl(), which then called this.
*
* @param pTask
* @return
*/
HRESULT Appliance::readFS(TaskOVF *pTask)
{
LogFlowFuncEnter();
LogFlowFunc(("Appliance %p\n", this));
AutoCaller autoCaller(this);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
HRESULT rc = S_OK;
if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
rc = readFSOVF(pTask);
else
rc = readFSOVA(pTask);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
HRESULT Appliance::readFSOVF(TaskOVF *pTask)
{
LogFlowFuncEnter();
HRESULT rc = S_OK;
PVDINTERFACEIO pSha1Io = 0;
PVDINTERFACEIO pFileIo = 0;
do
{
pSha1Io = Sha1CreateInterface();
if (!pSha1Io)
{
rc = E_OUTOFMEMORY;
break;
}
pFileIo = FileCreateInterface();
if (!pFileIo)
{
rc = E_OUTOFMEMORY;
break;
}
SHA1STORAGE storage;
RT_ZERO(storage);
int vrc = VDInterfaceAdd(&pFileIo->Core, "Appliance::IOFile",
VDINTERFACETYPE_IO, 0, sizeof(VDINTERFACEIO),
&storage.pVDImageIfaces);
if (RT_FAILURE(vrc))
{
rc = setError(VBOX_E_IPRT_ERROR, "Creation of the VD interface failed (%Rrc)", vrc);
break;
}
rc = readFSImpl(pTask, pTask->locInfo.strPath, pSha1Io, &storage);
}while(0);
/* Cleanup */
if (pSha1Io)
RTMemFree(pSha1Io);
if (pFileIo)
RTMemFree(pFileIo);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
HRESULT Appliance::readFSOVA(TaskOVF *pTask)
{
LogFlowFuncEnter();
RTTAR tar;
int vrc = RTTarOpen(&tar, pTask->locInfo.strPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, true);
if (RT_FAILURE(vrc))
return setError(VBOX_E_FILE_ERROR,
tr("Could not open OVA file '%s' (%Rrc)"),
pTask->locInfo.strPath.c_str(), vrc);
HRESULT rc = S_OK;
PVDINTERFACEIO pSha1Io = 0;
PVDINTERFACEIO pTarIo = 0;
char *pszFilename = 0;
do
{
vrc = RTTarCurrentFile(tar, &pszFilename);
if (RT_FAILURE(vrc))
{
rc = VBOX_E_FILE_ERROR;
break;
}
pSha1Io = Sha1CreateInterface();
if (!pSha1Io)
{
rc = E_OUTOFMEMORY;
break;
}
pTarIo = TarCreateInterface();
if (!pTarIo)
{
rc = E_OUTOFMEMORY;
break;
}
SHA1STORAGE storage;
RT_ZERO(storage);
vrc = VDInterfaceAdd(&pTarIo->Core, "Appliance::IOTar",
VDINTERFACETYPE_IO, tar, sizeof(VDINTERFACEIO),
&storage.pVDImageIfaces);
if (RT_FAILURE(vrc))
{
rc = setError(VBOX_E_IPRT_ERROR, "Creation of the VD interface failed (%Rrc)", vrc);
break;
}
rc = readFSImpl(pTask, pszFilename, pSha1Io, &storage);
}while(0);
RTTarClose(tar);
/* Cleanup */
if (pszFilename)
RTMemFree(pszFilename);
if (pSha1Io)
RTMemFree(pSha1Io);
if (pTarIo)
RTMemFree(pTarIo);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
HRESULT Appliance::readFSImpl(TaskOVF *pTask, const RTCString &strFilename, PVDINTERFACEIO pIfIo, PSHA1STORAGE pStorage)
{
LogFlowFuncEnter();
HRESULT rc = S_OK;
pStorage->fCreateDigest = true;
void *pvTmpBuf = 0;
try
{
/* Read the OVF into a memory buffer */
size_t cbSize = 0;
int vrc = Sha1ReadBuf(strFilename.c_str(), &pvTmpBuf, &cbSize, pIfIo, pStorage);
if ( RT_FAILURE(vrc)
|| !pvTmpBuf)
throw setError(VBOX_E_FILE_ERROR,
tr("Could not read OVF file '%s' (%Rrc)"),
RTPathFilename(strFilename.c_str()), vrc);
/* Copy the SHA1 sum of the OVF file for later validation */
m->strOVFSHA1Digest = pStorage->strDigest;
/* Read & parse the XML structure of the OVF file */
m->pReader = new ovf::OVFReader(pvTmpBuf, cbSize, pTask->locInfo.strPath);
}
catch (RTCError &x) // includes all XML exceptions
{
rc = setError(VBOX_E_FILE_ERROR,
x.what());
}
catch (HRESULT aRC)
{
rc = aRC;
}
/* Cleanup */
if (pvTmpBuf)
RTMemFree(pvTmpBuf);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
#ifdef VBOX_WITH_S3
/**
* Worker code for reading OVF from the cloud. This is called from Appliance::taskThreadImportOrExport()
* in S3 mode and therefore runs on the OVF read worker thread. This then starts a second worker
* thread to create temporary files (see Appliance::readFS()).
*
* @param pTask
* @return
*/
HRESULT Appliance::readS3(TaskOVF *pTask)
{
LogFlowFuncEnter();
LogFlowFunc(("Appliance %p\n", this));
AutoCaller autoCaller(this);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
HRESULT rc = S_OK;
int vrc = VINF_SUCCESS;
RTS3 hS3 = NIL_RTS3;
char szOSTmpDir[RTPATH_MAX];
RTPathTemp(szOSTmpDir, sizeof(szOSTmpDir));
/* The template for the temporary directory created below */
char *pszTmpDir = RTPathJoinA(szOSTmpDir, "vbox-ovf-XXXXXX");
list< pair<Utf8Str, ULONG> > filesList;
Utf8Str strTmpOvf;
try
{
/* Extract the bucket */
Utf8Str tmpPath = pTask->locInfo.strPath;
Utf8Str bucket;
parseBucket(tmpPath, bucket);
/* We need a temporary directory which we can put the OVF file & all
* disk images in */
vrc = RTDirCreateTemp(pszTmpDir);
if (RT_FAILURE(vrc))
throw setError(VBOX_E_FILE_ERROR,
tr("Cannot create temporary directory '%s'"), pszTmpDir);
/* The temporary name of the target OVF file */
strTmpOvf = Utf8StrFmt("%s/%s", pszTmpDir, RTPathFilename(tmpPath.c_str()));
/* Next we have to download the OVF */
vrc = RTS3Create(&hS3, pTask->locInfo.strUsername.c_str(), pTask->locInfo.strPassword.c_str(), pTask->locInfo.strHostname.c_str(), "virtualbox-agent/"VBOX_VERSION_STRING);
if (RT_FAILURE(vrc))
throw setError(VBOX_E_IPRT_ERROR,
tr("Cannot create S3 service handler"));
RTS3SetProgressCallback(hS3, pTask->updateProgress, &pTask);
/* Get it */
char *pszFilename = RTPathFilename(strTmpOvf.c_str());
vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strTmpOvf.c_str());
if (RT_FAILURE(vrc))
{
if (vrc == VERR_S3_CANCELED)
throw S_OK; /* todo: !!!!!!!!!!!!! */
else if (vrc == VERR_S3_ACCESS_DENIED)
throw setError(E_ACCESSDENIED,
tr("Cannot download file '%s' from S3 storage server (Access denied). Make sure that your credentials are right."
"Also check that your host clock is properly synced"),
pszFilename);
else if (vrc == VERR_S3_NOT_FOUND)
throw setError(VBOX_E_FILE_ERROR,
tr("Cannot download file '%s' from S3 storage server (File not found)"), pszFilename);
else
throw setError(VBOX_E_IPRT_ERROR,
tr("Cannot download file '%s' from S3 storage server (%Rrc)"), pszFilename, vrc);
}
/* Close the connection early */
RTS3Destroy(hS3);
hS3 = NIL_RTS3;
pTask->pProgress->SetNextOperation(Bstr(tr("Reading")).raw(), 1);
/* Prepare the temporary reading of the OVF */
ComObjPtr<Progress> progress;
LocationInfo li;
li.strPath = strTmpOvf;
/* Start the reading from the fs */
rc = readImpl(li, progress);
if (FAILED(rc)) throw rc;
/* Unlock the appliance for the reading thread */
appLock.release();
/* Wait until the reading is done, but report the progress back to the
caller */
ComPtr<IProgress> progressInt(progress);
waitForAsyncProgress(pTask->pProgress, progressInt); /* Any errors will be thrown */
/* Again lock the appliance for the next steps */
appLock.acquire();
}
catch(HRESULT aRC)
{
rc = aRC;
}
/* Cleanup */
RTS3Destroy(hS3);
/* Delete all files which where temporary created */
if (RTPathExists(strTmpOvf.c_str()))
{
vrc = RTFileDelete(strTmpOvf.c_str());
if (RT_FAILURE(vrc))
rc = setError(VBOX_E_FILE_ERROR,
tr("Cannot delete file '%s' (%Rrc)"), strTmpOvf.c_str(), vrc);
}
/* Delete the temporary directory */
if (RTPathExists(pszTmpDir))
{
vrc = RTDirRemove(pszTmpDir);
if (RT_FAILURE(vrc))
rc = setError(VBOX_E_FILE_ERROR,
tr("Cannot delete temporary directory '%s' (%Rrc)"), pszTmpDir, vrc);
}
if (pszTmpDir)
RTStrFree(pszTmpDir);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
#endif /* VBOX_WITH_S3 */
/*******************************************************************************
* Import stuff
******************************************************************************/
/**
* Implementation for importing OVF data into VirtualBox. This starts a new thread which will call
* Appliance::taskThreadImportOrExport().
*
* This creates one or more new machines according to the VirtualSystemScription instances created by
* Appliance::Interpret().
*
* This is in a separate private method because it is used from two locations:
*
* 1) from the public Appliance::ImportMachines().
* 2) from Appliance::importS3(), which got called from a previous instance of Appliance::taskThreadImportOrExport().
*
* @param aLocInfo
* @param aProgress
* @return
*/
HRESULT Appliance::importImpl(const LocationInfo &locInfo,
ComObjPtr<Progress> &progress)
{
HRESULT rc = S_OK;
SetUpProgressMode mode;
if (locInfo.storageType == VFSType_File)
mode = ImportFile;
else
mode = ImportS3;
rc = setUpProgress(progress,
BstrFmt(tr("Importing appliance '%s'"), locInfo.strPath.c_str()),
mode);
if (FAILED(rc)) throw rc;
/* Initialize our worker task */
std::auto_ptr<TaskOVF> task(new TaskOVF(this, TaskOVF::Import, locInfo, progress));
rc = task->startThread();
if (FAILED(rc)) throw rc;
/* Don't destruct on success */
task.release();
return rc;
}
/**
* Actual worker code for importing OVF data into VirtualBox. This is called from Appliance::taskThreadImportOrExport()
* and therefore runs on the OVF import worker thread. This creates one or more new machines according to the
* VirtualSystemScription instances created by Appliance::Interpret().
*
* This runs in three contexts:
*
* 1) in a first worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl();
*
* 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which
* called Appliance::importFSOVA(), which called Appliance::importImpl(), which then called this again.
*
* 3) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::importImpl(), which
* called Appliance::importS3(), which called Appliance::importImpl(), which then called this again.
*
* @param pTask
* @return
*/
HRESULT Appliance::importFS(TaskOVF *pTask)
{
LogFlowFuncEnter();
LogFlowFunc(("Appliance %p\n", this));
AutoCaller autoCaller(this);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
/* Change the appliance state so we can safely leave the lock while doing
* time-consuming disk imports; also the below method calls do all kinds of
* locking which conflicts with the appliance object lock. */
AutoWriteLock writeLock(this COMMA_LOCKVAL_SRC_POS);
/* Check if the appliance is currently busy. */
if (!isApplianceIdle())
return E_ACCESSDENIED;
/* Set the internal state to importing. */
m->state = Data::ApplianceImporting;
HRESULT rc = S_OK;
/* Clear the list of imported machines, if any */
m->llGuidsMachinesCreated.clear();
if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
rc = importFSOVF(pTask, writeLock);
else
rc = importFSOVA(pTask, writeLock);
if (FAILED(rc))
{
/* With _whatever_ error we've had, do a complete roll-back of
* machines and disks we've created */
writeLock.release();
for (list<Guid>::iterator itID = m->llGuidsMachinesCreated.begin();
itID != m->llGuidsMachinesCreated.end();
++itID)
{
Guid guid = *itID;
Bstr bstrGuid = guid.toUtf16();
ComPtr<IMachine> failedMachine;
HRESULT rc2 = mVirtualBox->FindMachine(bstrGuid.raw(), failedMachine.asOutParam());
if (SUCCEEDED(rc2))
{
SafeIfaceArray<IMedium> aMedia;
rc2 = failedMachine->Unregister(CleanupMode_DetachAllReturnHardDisksOnly, ComSafeArrayAsOutParam(aMedia));
ComPtr<IProgress> pProgress2;
rc2 = failedMachine->Delete(ComSafeArrayAsInParam(aMedia), pProgress2.asOutParam());
pProgress2->WaitForCompletion(-1);
}
}
writeLock.acquire();
}
/* Reset the state so others can call methods again */
m->state = Data::ApplianceIdle;
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
HRESULT Appliance::importFSOVF(TaskOVF *pTask, AutoWriteLockBase& writeLock)
{
LogFlowFuncEnter();
HRESULT rc = S_OK;
PVDINTERFACEIO pSha1Io = 0;
PVDINTERFACEIO pFileIo = 0;
void *pvMfBuf = 0;
writeLock.release();
try
{
/* Create the necessary file access interfaces. */
pSha1Io = Sha1CreateInterface();
if (!pSha1Io)
throw setError(E_OUTOFMEMORY);
pFileIo = FileCreateInterface();
if (!pFileIo)
throw setError(E_OUTOFMEMORY);
SHA1STORAGE storage;
RT_ZERO(storage);
storage.fCreateDigest = true;
int vrc = VDInterfaceAdd(&pFileIo->Core, "Appliance::IOFile",
VDINTERFACETYPE_IO, 0, sizeof(VDINTERFACEIO),
&storage.pVDImageIfaces);
if (RT_FAILURE(vrc))
throw setError(VBOX_E_IPRT_ERROR, "Creation of the VD interface failed (%Rrc)", vrc);
size_t cbMfSize = 0;
Utf8Str strMfFile = Utf8Str(pTask->locInfo.strPath).stripExt().append(".mf");
/* Create the import stack for the rollback on errors. */
ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress);
/* Do we need the digest information? */
storage.fCreateDigest = RTFileExists(strMfFile.c_str());
/* Now import the appliance. */
importMachines(stack, pSha1Io, &storage);
/* Read & verify the manifest file, if there is one. */
if (storage.fCreateDigest)
{
/* Add the ovf file to the digest list. */
stack.llSrcDisksDigest.push_front(STRPAIR(pTask->locInfo.strPath, m->strOVFSHA1Digest));
rc = readManifestFile(strMfFile, &pvMfBuf, &cbMfSize, pSha1Io, &storage);
if (FAILED(rc)) throw rc;
rc = verifyManifestFile(strMfFile, stack, pvMfBuf, cbMfSize);
if (FAILED(rc)) throw rc;
}
}
catch (HRESULT rc2)
{
rc = rc2;
}
writeLock.acquire();
/* Cleanup */
if (pvMfBuf)
RTMemFree(pvMfBuf);
if (pSha1Io)
RTMemFree(pSha1Io);
if (pFileIo)
RTMemFree(pFileIo);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
HRESULT Appliance::importFSOVA(TaskOVF *pTask, AutoWriteLockBase& writeLock)
{
LogFlowFuncEnter();
RTTAR tar;
int vrc = RTTarOpen(&tar, pTask->locInfo.strPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, true);
if (RT_FAILURE(vrc))
return setError(VBOX_E_FILE_ERROR,
tr("Could not open OVA file '%s' (%Rrc)"),
pTask->locInfo.strPath.c_str(), vrc);
HRESULT rc = S_OK;
PVDINTERFACEIO pSha1Io = 0;
PVDINTERFACEIO pTarIo = 0;
char *pszFilename = 0;
void *pvMfBuf = 0;
writeLock.release();
try
{
/* Create the necessary file access interfaces. */
pSha1Io = Sha1CreateInterface();
if (!pSha1Io)
throw setError(E_OUTOFMEMORY);
pTarIo = TarCreateInterface();
if (!pTarIo)
throw setError(E_OUTOFMEMORY);
SHA1STORAGE storage;
RT_ZERO(storage);
vrc = VDInterfaceAdd(&pTarIo->Core, "Appliance::IOTar",
VDINTERFACETYPE_IO, tar, sizeof(VDINTERFACEIO),
&storage.pVDImageIfaces);
if (RT_FAILURE(vrc))
throw setError(VBOX_E_IPRT_ERROR,
tr("Creation of the VD interface failed (%Rrc)"), vrc);
/* Read the file name of the first file (need to be the ovf file). This
* is how all internal files are named. */
vrc = RTTarCurrentFile(tar, &pszFilename);
if (RT_FAILURE(vrc))
throw setError(VBOX_E_IPRT_ERROR,
tr("Getting the current file within the archive failed (%Rrc)"), vrc);
/* Skip the OVF file, cause this was read in IAppliance::Read already. */
vrc = RTTarSeekNextFile(tar);
if ( RT_FAILURE(vrc)
&& vrc != VERR_TAR_END_OF_FILE)
throw setError(VBOX_E_IPRT_ERROR,
tr("Seeking within the archive failed (%Rrc)"), vrc);
PVDINTERFACEIO pCallbacks = pSha1Io;
PSHA1STORAGE pStorage = &storage;
/* We always need to create the digest, cause we didn't know if there
* is a manifest file in the stream. */
pStorage->fCreateDigest = true;
size_t cbMfSize = 0;
Utf8Str strMfFile = Utf8Str(pszFilename).stripExt().append(".mf");
/* Create the import stack for the rollback on errors. */
ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress);
/*
* Try to read the manifest file. First try.
*
* Note: This isn't fatal if the file is not found. The standard
* defines 3 cases.
* 1. no manifest file
* 2. manifest file after the OVF file
* 3. manifest file after all disk files
* If we want streaming capabilities, we can't check if it is there by
* searching for it. We have to try to open it on all possible places.
* If it fails here, we will try it again after all disks where read.
*/
rc = readTarManifestFile(tar, strMfFile, &pvMfBuf, &cbMfSize, pCallbacks, pStorage);
if (FAILED(rc)) throw rc;
/* Now import the appliance. */
importMachines(stack, pCallbacks, pStorage);
/* Try to read the manifest file. Second try. */
if (!pvMfBuf)
{
rc = readTarManifestFile(tar, strMfFile, &pvMfBuf, &cbMfSize, pCallbacks, pStorage);
if (FAILED(rc)) throw rc;
}
/* If we were able to read a manifest file we can check it now. */
if (pvMfBuf)
{
/* Add the ovf file to the digest list. */
stack.llSrcDisksDigest.push_front(STRPAIR(Utf8Str(pszFilename).stripExt().append(".ovf"), m->strOVFSHA1Digest));
rc = verifyManifestFile(strMfFile, stack, pvMfBuf, cbMfSize);
if (FAILED(rc)) throw rc;
}
}
catch (HRESULT rc2)
{
rc = rc2;
}
writeLock.acquire();
RTTarClose(tar);
/* Cleanup */
if (pszFilename)
RTMemFree(pszFilename);
if (pvMfBuf)
RTMemFree(pvMfBuf);
if (pSha1Io)
RTMemFree(pSha1Io);
if (pTarIo)
RTMemFree(pTarIo);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
#ifdef VBOX_WITH_S3
/**
* Worker code for importing OVF from the cloud. This is called from Appliance::taskThreadImportOrExport()
* in S3 mode and therefore runs on the OVF import worker thread. This then starts a second worker
* thread to import from temporary files (see Appliance::importFS()).
* @param pTask
* @return
*/
HRESULT Appliance::importS3(TaskOVF *pTask)
{
LogFlowFuncEnter();
LogFlowFunc(("Appliance %p\n", this));
AutoCaller autoCaller(this);
if (FAILED(autoCaller.rc())) return autoCaller.rc();
AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
int vrc = VINF_SUCCESS;
RTS3 hS3 = NIL_RTS3;
char szOSTmpDir[RTPATH_MAX];
RTPathTemp(szOSTmpDir, sizeof(szOSTmpDir));
/* The template for the temporary directory created below */
char *pszTmpDir = RTPathJoinA(szOSTmpDir, "vbox-ovf-XXXXXX");
list< pair<Utf8Str, ULONG> > filesList;
HRESULT rc = S_OK;
try
{
/* Extract the bucket */
Utf8Str tmpPath = pTask->locInfo.strPath;
Utf8Str bucket;
parseBucket(tmpPath, bucket);
/* We need a temporary directory which we can put the all disk images
* in */
vrc = RTDirCreateTemp(pszTmpDir);
if (RT_FAILURE(vrc))
throw setError(VBOX_E_FILE_ERROR,
tr("Cannot create temporary directory '%s' (%Rrc)"), pszTmpDir, vrc);
/* Add every disks of every virtual system to an internal list */
list< ComObjPtr<VirtualSystemDescription> >::const_iterator it;
for (it = m->virtualSystemDescriptions.begin();
it != m->virtualSystemDescriptions.end();
++it)
{
ComObjPtr<VirtualSystemDescription> vsdescThis = (*it);
std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage);
std::list<VirtualSystemDescriptionEntry*>::const_iterator itH;
for (itH = avsdeHDs.begin();
itH != avsdeHDs.end();
++itH)
{
const Utf8Str &strTargetFile = (*itH)->strOvf;
if (!strTargetFile.isEmpty())
{
/* The temporary name of the target disk file */
Utf8StrFmt strTmpDisk("%s/%s", pszTmpDir, RTPathFilename(strTargetFile.c_str()));
filesList.push_back(pair<Utf8Str, ULONG>(strTmpDisk, (*itH)->ulSizeMB));
}
}
}
/* Next we have to download the disk images */
vrc = RTS3Create(&hS3, pTask->locInfo.strUsername.c_str(), pTask->locInfo.strPassword.c_str(), pTask->locInfo.strHostname.c_str(), "virtualbox-agent/"VBOX_VERSION_STRING);
if (RT_FAILURE(vrc))
throw setError(VBOX_E_IPRT_ERROR,
tr("Cannot create S3 service handler"));
RTS3SetProgressCallback(hS3, pTask->updateProgress, &pTask);
/* Download all files */
for (list< pair<Utf8Str, ULONG> >::const_iterator it1 = filesList.begin(); it1 != filesList.end(); ++it1)
{
const pair<Utf8Str, ULONG> &s = (*it1);
const Utf8Str &strSrcFile = s.first;
/* Construct the source file name */
char *pszFilename = RTPathFilename(strSrcFile.c_str());
/* Advance to the next operation */
if (!pTask->pProgress.isNull())
pTask->pProgress->SetNextOperation(BstrFmt(tr("Downloading file '%s'"), pszFilename).raw(), s.second);
vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strSrcFile.c_str());
if (RT_FAILURE(vrc))
{
if (vrc == VERR_S3_CANCELED)
throw S_OK; /* todo: !!!!!!!!!!!!! */
else if (vrc == VERR_S3_ACCESS_DENIED)
throw setError(E_ACCESSDENIED,
tr("Cannot download file '%s' from S3 storage server (Access denied). "
"Make sure that your credentials are right. Also check that your host clock is properly synced"),
pszFilename);
else if (vrc == VERR_S3_NOT_FOUND)
throw setError(VBOX_E_FILE_ERROR,
tr("Cannot download file '%s' from S3 storage server (File not found)"),
pszFilename);
else
throw setError(VBOX_E_IPRT_ERROR,
tr("Cannot download file '%s' from S3 storage server (%Rrc)"),
pszFilename, vrc);
}
}
/* Provide a OVF file (haven't to exist) so the import routine can
* figure out where the disk images/manifest file are located. */
Utf8StrFmt strTmpOvf("%s/%s", pszTmpDir, RTPathFilename(tmpPath.c_str()));
/* Now check if there is an manifest file. This is optional. */
Utf8Str strManifestFile; //= queryManifestFileName(strTmpOvf);
// Utf8Str strManifestFile = queryManifestFileName(strTmpOvf);
char *pszFilename = RTPathFilename(strManifestFile.c_str());
if (!pTask->pProgress.isNull())
pTask->pProgress->SetNextOperation(BstrFmt(tr("Downloading file '%s'"), pszFilename).raw(), 1);
/* Try to download it. If the error is VERR_S3_NOT_FOUND, it isn't fatal. */
vrc = RTS3GetKey(hS3, bucket.c_str(), pszFilename, strManifestFile.c_str());
if (RT_SUCCESS(vrc))
filesList.push_back(pair<Utf8Str, ULONG>(strManifestFile, 0));
else if (RT_FAILURE(vrc))
{
if (vrc == VERR_S3_CANCELED)
throw S_OK; /* todo: !!!!!!!!!!!!! */
else if (vrc == VERR_S3_NOT_FOUND)
vrc = VINF_SUCCESS; /* Not found is ok */
else if (vrc == VERR_S3_ACCESS_DENIED)
throw setError(E_ACCESSDENIED,
tr("Cannot download file '%s' from S3 storage server (Access denied)."
"Make sure that your credentials are right. Also check that your host clock is properly synced"),
pszFilename);
else
throw setError(VBOX_E_IPRT_ERROR,
tr("Cannot download file '%s' from S3 storage server (%Rrc)"),
pszFilename, vrc);
}
/* Close the connection early */
RTS3Destroy(hS3);
hS3 = NIL_RTS3;
pTask->pProgress->SetNextOperation(BstrFmt(tr("Importing appliance")).raw(), m->ulWeightForXmlOperation);
ComObjPtr<Progress> progress;
/* Import the whole temporary OVF & the disk images */
LocationInfo li;
li.strPath = strTmpOvf;
rc = importImpl(li, progress);
if (FAILED(rc)) throw rc;
/* Unlock the appliance for the fs import thread */
appLock.release();
/* Wait until the import is done, but report the progress back to the
caller */
ComPtr<IProgress> progressInt(progress);
waitForAsyncProgress(pTask->pProgress, progressInt); /* Any errors will be thrown */
/* Again lock the appliance for the next steps */
appLock.acquire();
}
catch(HRESULT aRC)
{
rc = aRC;
}
/* Cleanup */
RTS3Destroy(hS3);
/* Delete all files which where temporary created */
for (list< pair<Utf8Str, ULONG> >::const_iterator it1 = filesList.begin(); it1 != filesList.end(); ++it1)
{
const char *pszFilePath = (*it1).first.c_str();
if (RTPathExists(pszFilePath))
{
vrc = RTFileDelete(pszFilePath);
if (RT_FAILURE(vrc))
rc = setError(VBOX_E_FILE_ERROR,
tr("Cannot delete file '%s' (%Rrc)"), pszFilePath, vrc);
}
}
/* Delete the temporary directory */
if (RTPathExists(pszTmpDir))
{
vrc = RTDirRemove(pszTmpDir);
if (RT_FAILURE(vrc))
rc = setError(VBOX_E_FILE_ERROR,
tr("Cannot delete temporary directory '%s' (%Rrc)"), pszTmpDir, vrc);
}
if (pszTmpDir)
RTStrFree(pszTmpDir);
LogFlowFunc(("rc=%Rhrc\n", rc));
LogFlowFuncLeave();
return rc;
}
#endif /* VBOX_WITH_S3 */
HRESULT Appliance::readManifestFile(const Utf8Str &strFile, void **ppvBuf, size_t *pcbSize, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage)
{
HRESULT rc = S_OK;
bool fOldDigest = pStorage->fCreateDigest;
pStorage->fCreateDigest = false; /* No digest for the manifest file */
int vrc = Sha1ReadBuf(strFile.c_str(), ppvBuf, pcbSize, pCallbacks, pStorage);
if ( RT_FAILURE(vrc)
&& vrc != VERR_FILE_NOT_FOUND)
rc = setError(VBOX_E_FILE_ERROR,
tr("Could not read manifest file '%s' (%Rrc)"),
RTPathFilename(strFile.c_str()), vrc);
pStorage->fCreateDigest = fOldDigest; /* Restore the old digest creation behavior again. */
return rc;
}
HRESULT Appliance::readTarManifestFile(RTTAR tar, const Utf8Str &strFile, void **ppvBuf, size_t *pcbSize, PVDINTERFACEIO pCallbacks, PSHA1STORAGE pStorage)
{
HRESULT rc = S_OK;
char *pszCurFile;
int vrc = RTTarCurrentFile(tar, &pszCurFile);
if (RT_SUCCESS(vrc))
{
if (!strcmp(pszCurFile, RTPathFilename(strFile.c_str())))
rc = readManifestFile(strFile, ppvBuf, pcbSize, pCallbacks, pStorage);
RTStrFree(pszCurFile);
}
else if (vrc != VERR_TAR_END_OF_FILE)
rc = setError(VBOX_E_IPRT_ERROR, "Seeking within the archive failed (%Rrc)", vrc);
return rc;
}
HRESULT Appliance::verifyManifestFile(const Utf8Str &strFile, ImportStack &stack, void *pvBuf, size_t cbSize)
{
HRESULT rc = S_OK;
PRTMANIFESTTEST paTests = (PRTMANIFESTTEST)RTMemAlloc(sizeof(RTMANIFESTTEST) * stack.llSrcDisksDigest.size());
if (!paTests)
return E_OUTOFMEMORY;
size_t i = 0;
list<STRPAIR>::const_iterator it1;
for (it1 = stack.llSrcDisksDigest.begin();
it1 != stack.llSrcDisksDigest.end();
++it1, ++i)
{
paTests[i].pszTestFile = (*it1).first.c_str();
paTests[i].pszTestDigest = (*it1).second.c_str();
}
size_t iFailed;
int vrc = RTManifestVerifyFilesBuf(pvBuf, cbSize, paTests, stack.llSrcDisksDigest.size(), &iFailed);
if (RT_UNLIKELY(vrc == VERR_MANIFEST_DIGEST_MISMATCH))
rc = setError(VBOX_E_FILE_ERROR,
tr("The SHA1 digest of '%s' does not match the one in '%s' (%Rrc)"),
RTPathFilename(paTests[iFailed].pszTestFile), RTPathFilename(strFile.c_str()), vrc);
else if (RT_FAILURE(vrc))
rc = setError(VBOX_E_FILE_ERROR,
tr("Could not verify the content of '%s' against the available files (%Rrc)"),
RTPathFilename(strFile.c_str()), vrc);
RTMemFree(paTests);
return rc;
}
/**
* Helper that converts VirtualSystem attachment values into VirtualBox attachment values.
* Throws HRESULT values on errors!
*
* @param hdc in: the HardDiskController structure to attach to.
* @param ulAddressOnParent in: the AddressOnParent parameter from OVF.
* @param controllerType out: the name of the hard disk controller to attach to (e.g. "IDE Controller").
* @param lControllerPort out: the channel (controller port) of the controller to attach to.
* @param lDevice out: the device number to attach to.
*/
void Appliance::convertDiskAttachmentValues(const ovf::HardDiskController &hdc,
uint32_t ulAddressOnParent,
Bstr &controllerType,
int32_t &lControllerPort,
int32_t &lDevice)
{
Log(("Appliance::convertDiskAttachmentValues: hdc.system=%d, hdc.fPrimary=%d, ulAddressOnParent=%d\n", hdc.system, hdc.fPrimary, ulAddressOnParent));
switch (hdc.system)
{
case ovf::HardDiskController::IDE:
// For the IDE bus, the port parameter can be either 0 or 1, to specify the primary
// or secondary IDE controller, respectively. For the primary controller of the IDE bus,
// the device number can be either 0 or 1, to specify the master or the slave device,
// respectively. For the secondary IDE controller, the device number is always 1 because
// the master device is reserved for the CD-ROM drive.
controllerType = Bstr("IDE Controller");
switch (ulAddressOnParent)
{
case 0: // master
if (!hdc.fPrimary)
{
// secondary master
lControllerPort = (long)1;
lDevice = (long)0;
}
else // primary master
{
lControllerPort = (long)0;
lDevice = (long)0;
}
break;
case 1: // slave
if (!hdc.fPrimary)
{
// secondary slave
lControllerPort = (long)1;
lDevice = (long)1;
}
else // primary slave
{
lControllerPort = (long)0;
lDevice = (long)1;
}
break;
// used by older VBox exports
case 2: // interpret this as secondary master
lControllerPort = (long)1;
lDevice = (long)0;
break;
// used by older VBox exports
case 3: // interpret this as secondary slave
lControllerPort = (long)1;
lDevice = (long)1;
break;
default:
throw setError(VBOX_E_NOT_SUPPORTED,
tr("Invalid channel %RI16 specified; IDE controllers support only 0, 1 or 2"),
ulAddressOnParent);
break;
}
break;
case ovf::HardDiskController::SATA:
controllerType = Bstr("SATA Controller");
lControllerPort = (long)ulAddressOnParent;
lDevice = (long)0;
break;
case ovf::HardDiskController::SCSI:
controllerType = Bstr("SCSI Controller");
lControllerPort = (long)ulAddressOnParent;
lDevice = (long)0;
break;
default: break;
}
Log(("=> lControllerPort=%d, lDevice=%d\n", lControllerPort, lDevice));
}
/**
* Imports one disk image. This is common code shared between
* -- importMachineGeneric() for the OVF case; in that case the information comes from
* the OVF virtual systems;
* -- importVBoxMachine(); in that case, the information comes from the <vbox:Machine>
* tag.
*
* Both ways of describing machines use the OVF disk references section, so in both cases
* the caller needs to pass in the ovf::DiskImage structure from ovfreader.cpp.
*
* As a result, in both cases, if di.strHref is empty, we create a new disk as per the OVF
* spec, even though this cannot really happen in the vbox:Machine case since such data
* would never have been exported.
*
* This advances stack.pProgress by one operation with the disk's weight.
*
* @param di ovfreader.cpp structure describing the disk image from the OVF that is to be imported
* @param ulSizeMB Size of the disk image (for progress reporting)
* @param strTargetPath Where to create the target image.
* @param pTargetHD out: The newly created target disk. This also gets pushed on stack.llHardDisksCreated for cleanup.
* @param stack
*/
void Appliance::importOneDiskImage(const ovf::DiskImage &di,
const Utf8Str &strTargetPath,
ComObjPtr<Medium> &pTargetHD,
ImportStack &stack,
PVDINTERFACEIO pCallbacks,
PSHA1STORAGE pStorage)
{
ComObjPtr<Progress> pProgress;
pProgress.createObject();
HRESULT rc = pProgress->init(mVirtualBox, static_cast<IAppliance*>(this), BstrFmt(tr("Creating medium '%s'"), strTargetPath.c_str()).raw(), TRUE);
if (FAILED(rc)) throw rc;
/* Get the system properties. */
SystemProperties *pSysProps = mVirtualBox->getSystemProperties();
/* First of all check if the path is an UUID. If so, the user like to
* import the disk into an existing path. This is useful for iSCSI for
* example. */
RTUUID uuid;
int vrc = RTUuidFromStr(&uuid, strTargetPath.c_str());
if (vrc == VINF_SUCCESS)
{
rc = mVirtualBox->findHardDiskById(Guid(uuid), true, &pTargetHD);
if (FAILED(rc)) throw rc;
}
else
{
Utf8Str strTrgFormat = "VMDK";
if (RTPathHaveExt(strTargetPath.c_str()))
{
char *pszExt = RTPathExt(strTargetPath.c_str());
/* Figure out which format the user like to have. Default is VMDK. */
ComObjPtr<MediumFormat> trgFormat = pSysProps->mediumFormatFromExtension(&pszExt[1]);
if (trgFormat.isNull())
throw setError(VBOX_E_NOT_SUPPORTED,
tr("Could not find a valid medium format for the target disk '%s'"),
strTargetPath.c_str());
/* Check the capabilities. We need create capabilities. */
ULONG lCabs = 0;
rc = trgFormat->COMGETTER(Capabilities)(&lCabs);
if (FAILED(rc)) throw rc;
if (!( ((lCabs & MediumFormatCapabilities_CreateFixed) == MediumFormatCapabilities_CreateFixed)
|| ((lCabs & MediumFormatCapabilities_CreateDynamic) == MediumFormatCapabilities_CreateDynamic)))
throw setError(VBOX_E_NOT_SUPPORTED,
tr("Could not find a valid medium format for the target disk '%s'"),
strTargetPath.c_str());
Bstr bstrFormatName;
rc = trgFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
if (FAILED(rc)) throw rc;
strTrgFormat = Utf8Str(bstrFormatName);
}
/* Create an IMedium object. */
pTargetHD.createObject();
rc = pTargetHD->init(mVirtualBox,
strTrgFormat,
strTargetPath,
Guid::Empty, // media registry: none yet
NULL /* llRegistriesThatNeedSaving */);
if (FAILED(rc)) throw rc;
/* Now create an empty hard disk. */
rc = mVirtualBox->CreateHardDisk(NULL,
Bstr(strTargetPath).raw(),
ComPtr<IMedium>(pTargetHD).asOutParam());
if (FAILED(rc)) throw rc;
}
const Utf8Str &strSourceOVF = di.strHref;
/* Construct source file path */
Utf8StrFmt strSrcFilePath("%s%c%s", stack.strSourceDir.c_str(), RTPATH_DELIMITER, strSourceOVF.c_str());
/* If strHref is empty we have to create a new file. */
if (strSourceOVF.isEmpty())
{
/* Create a dynamic growing disk image with the given capacity. */
rc = pTargetHD->CreateBaseStorage(di.iCapacity / _1M, MediumVariant_Standard, ComPtr<IProgress>(pProgress).asOutParam());
if (FAILED(rc)) throw rc;
/* Advance to the next operation. */
stack.pProgress->SetNextOperation(BstrFmt(tr("Creating disk image '%s'"), strTargetPath.c_str()).raw(),
di.ulSuggestedSizeMB); // operation's weight, as set up with the IProgress originally
}
else
{
/* We need a proper source format description */
ComObjPtr<MediumFormat> srcFormat;
/* Which format to use? */
Utf8Str strSrcFormat = "VDI";
if ( di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#sparse", Utf8Str::CaseInsensitive)
|| di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#streamOptimized", Utf8Str::CaseInsensitive)
|| di.strFormat.compare("http://www.vmware.com/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
|| di.strFormat.compare("http://www.vmware.com/interfaces/specifications/vmdk.html#compressed", Utf8Str::CaseInsensitive)
)
strSrcFormat = "VMDK";
srcFormat = pSysProps->mediumFormat(strSrcFormat);
if (srcFormat.isNull())
throw setError(VBOX_E_NOT_SUPPORTED,
tr("Could not find a valid medium format for the source disk '%s'"),
RTPathFilename(strSrcFilePath.c_str()));
/* Clone the source disk image */
ComObjPtr<Medium> nullParent;
rc = pTargetHD->importFile(strSrcFilePath.c_str(),
srcFormat,
MediumVariant_Standard,
pCallbacks, pStorage,
nullParent,
pProgress);
if (FAILED(rc)) throw rc;
/* Advance to the next operation. */
stack.pProgress->SetNextOperation(BstrFmt(tr("Importing virtual disk image '%s'"), RTPathFilename(strSrcFilePath.c_str())).raw(),
di.ulSuggestedSizeMB); // operation's weight, as set up with the IProgress originally);
}
/* Now wait for the background disk operation to complete; this throws
* HRESULTs on error. */
ComPtr<IProgress> pp(pProgress);
waitForAsyncProgress(stack.pProgress, pp);
/* Add the newly create disk path + a corresponding digest the our list for
* later manifest verification. */
stack.llSrcDisksDigest.push_back(STRPAIR(strSrcFilePath, pStorage->strDigest));
}
/**
* Imports one OVF virtual system (described by the given ovf::VirtualSystem and VirtualSystemDescription)
* into VirtualBox by creating an IMachine instance, which is returned.
*
* This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
* up any leftovers from this function. For this, the given ImportStack instance has received information
* about what needs cleaning up (to support rollback).
*
* @param vsysThis OVF virtual system (machine) to import.
* @param vsdescThis Matching virtual system description (machine) to import.
* @param pNewMachine out: Newly created machine.
* @param stack Cleanup stack for when this throws.
*/
void Appliance::importMachineGeneric(const ovf::VirtualSystem &vsysThis,
ComObjPtr<VirtualSystemDescription> &vsdescThis,
ComPtr<IMachine> &pNewMachine,
ImportStack &stack,
PVDINTERFACEIO pCallbacks,
PSHA1STORAGE pStorage)
{
HRESULT rc;
// Get the instance of IGuestOSType which matches our string guest OS type so we
// can use recommended defaults for the new machine where OVF doesn't provide any
ComPtr<IGuestOSType> osType;
rc = mVirtualBox->GetGuestOSType(Bstr(stack.strOsTypeVBox).raw(), osType.asOutParam());
if (FAILED(rc)) throw rc;
/* Create the machine */
rc = mVirtualBox->CreateMachine(NULL, /* machine name: use default */
Bstr(stack.strNameVBox).raw(),
Bstr(stack.strOsTypeVBox).raw(),
NULL, /* uuid */
FALSE, /* fForceOverwrite */
pNewMachine.asOutParam());
if (FAILED(rc)) throw rc;
// set the description
if (!stack.strDescription.isEmpty())
{
rc = pNewMachine->COMSETTER(Description)(Bstr(stack.strDescription).raw());
if (FAILED(rc)) throw rc;
}
// CPU count
rc = pNewMachine->COMSETTER(CPUCount)(stack.cCPUs);
if (FAILED(rc)) throw rc;
if (stack.fForceHWVirt)
{
rc = pNewMachine->SetHWVirtExProperty(HWVirtExPropertyType_Enabled, TRUE);
if (FAILED(rc)) throw rc;
}
// RAM
rc = pNewMachine->COMSETTER(MemorySize)(stack.ulMemorySizeMB);
if (FAILED(rc)) throw rc;
/* VRAM */
/* Get the recommended VRAM for this guest OS type */
ULONG vramVBox;
rc = osType->COMGETTER(RecommendedVRAM)(&vramVBox);
if (FAILED(rc)) throw rc;
/* Set the VRAM */
rc = pNewMachine->COMSETTER(VRAMSize)(vramVBox);
if (FAILED(rc)) throw rc;
// I/O APIC: Generic OVF has no setting for this. Enable it if we
// import a Windows VM because if if Windows was installed without IOAPIC,
// it will not mind finding an one later on, but if Windows was installed
// _with_ an IOAPIC, it will bluescreen if it's not found
if (!stack.fForceIOAPIC)
{
Bstr bstrFamilyId;
rc = osType->COMGETTER(FamilyId)(bstrFamilyId.asOutParam());
if (FAILED(rc)) throw rc;
if (bstrFamilyId == "Windows")
stack.fForceIOAPIC = true;
}
if (stack.fForceIOAPIC)
{
ComPtr<IBIOSSettings> pBIOSSettings;
rc = pNewMachine->COMGETTER(BIOSSettings)(pBIOSSettings.asOutParam());
if (FAILED(rc)) throw rc;
rc = pBIOSSettings->COMSETTER(IOAPICEnabled)(TRUE);
if (FAILED(rc)) throw rc;
}
if (!stack.strAudioAdapter.isEmpty())
if (stack.strAudioAdapter.compare("null", Utf8Str::CaseInsensitive) != 0)
{
uint32_t audio = RTStrToUInt32(stack.strAudioAdapter.c_str()); // should be 0 for AC97
ComPtr<IAudioAdapter> audioAdapter;
rc = pNewMachine->COMGETTER(AudioAdapter)(audioAdapter.asOutParam());
if (FAILED(rc)) throw rc;
rc = audioAdapter->COMSETTER(Enabled)(true);
if (FAILED(rc)) throw rc;
rc = audioAdapter->COMSETTER(AudioController)(static_cast<AudioControllerType_T>(audio));
if (FAILED(rc)) throw rc;
}
#ifdef VBOX_WITH_USB
/* USB Controller */
ComPtr<IUSBController> usbController;
rc = pNewMachine->COMGETTER(USBController)(usbController.asOutParam());
if (FAILED(rc)) throw rc;
rc = usbController->COMSETTER(Enabled)(stack.fUSBEnabled);
if (FAILED(rc)) throw rc;
#endif /* VBOX_WITH_USB */
/* Change the network adapters */
uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(ChipsetType_PIIX3);
std::list<VirtualSystemDescriptionEntry*> vsdeNW = vsdescThis->findByType(VirtualSystemDescriptionType_NetworkAdapter);
if (vsdeNW.size() == 0)
{
/* No network adapters, so we have to disable our default one */
ComPtr<INetworkAdapter> nwVBox;
rc = pNewMachine->GetNetworkAdapter(0, nwVBox.asOutParam());
if (FAILED(rc)) throw rc;
rc = nwVBox->COMSETTER(Enabled)(false);
if (FAILED(rc)) throw rc;
}
else if (vsdeNW.size() > maxNetworkAdapters)
throw setError(VBOX_E_FILE_ERROR,
tr("Too many network adapters: OVF requests %d network adapters, but VirtualBox only supports %d"),
vsdeNW.size(), maxNetworkAdapters);
else
{
list<VirtualSystemDescriptionEntry*>::const_iterator nwIt;
size_t a = 0;
for (nwIt = vsdeNW.begin();
nwIt != vsdeNW.end();
++nwIt, ++a)
{
const VirtualSystemDescriptionEntry* pvsys = *nwIt;
const Utf8Str &nwTypeVBox = pvsys->strVboxCurrent;
uint32_t tt1 = RTStrToUInt32(nwTypeVBox.c_str());
ComPtr<INetworkAdapter> pNetworkAdapter;
rc = pNewMachine->GetNetworkAdapter((ULONG)a, pNetworkAdapter.asOutParam());
if (FAILED(rc)) throw rc;
/* Enable the network card & set the adapter type */
rc = pNetworkAdapter->COMSETTER(Enabled)(true);
if (FAILED(rc)) throw rc;
rc = pNetworkAdapter->COMSETTER(AdapterType)(static_cast<NetworkAdapterType_T>(tt1));
if (FAILED(rc)) throw rc;
// default is NAT; change to "bridged" if extra conf says so
if (pvsys->strExtraConfigCurrent.endsWith("type=Bridged", Utf8Str::CaseInsensitive))
{
/* Attach to the right interface */
rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Bridged);
if (FAILED(rc)) throw rc;
ComPtr<IHost> host;
rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
if (FAILED(rc)) throw rc;
com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
if (FAILED(rc)) throw rc;
// We search for the first host network interface which
// is usable for bridged networking
for (size_t j = 0;
j < nwInterfaces.size();
++j)
{
HostNetworkInterfaceType_T itype;
rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
if (FAILED(rc)) throw rc;
if (itype == HostNetworkInterfaceType_Bridged)
{
Bstr name;
rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
if (FAILED(rc)) throw rc;
/* Set the interface name to attach to */
pNetworkAdapter->COMSETTER(BridgedInterface)(name.raw());
if (FAILED(rc)) throw rc;
break;
}
}
}
/* Next test for host only interfaces */
else if (pvsys->strExtraConfigCurrent.endsWith("type=HostOnly", Utf8Str::CaseInsensitive))
{
/* Attach to the right interface */
rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_HostOnly);
if (FAILED(rc)) throw rc;
ComPtr<IHost> host;
rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
if (FAILED(rc)) throw rc;
com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
if (FAILED(rc)) throw rc;
// We search for the first host network interface which
// is usable for host only networking
for (size_t j = 0;
j < nwInterfaces.size();
++j)
{
HostNetworkInterfaceType_T itype;
rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
if (FAILED(rc)) throw rc;
if (itype == HostNetworkInterfaceType_HostOnly)
{
Bstr name;
rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
if (FAILED(rc)) throw rc;
/* Set the interface name to attach to */
pNetworkAdapter->COMSETTER(HostOnlyInterface)(name.raw());
if (FAILED(rc)) throw rc;
break;
}
}
}
/* Next test for internal interfaces */
else if (pvsys->strExtraConfigCurrent.endsWith("type=Internal", Utf8Str::CaseInsensitive))
{
/* Attach to the right interface */
rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Internal);
if (FAILED(rc)) throw rc;
}
/* Next test for Generic interfaces */
else if (pvsys->strExtraConfigCurrent.endsWith("type=Generic", Utf8Str::CaseInsensitive))
{
/* Attach to the right interface */
rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Generic);
if (FAILED(rc)) throw rc;
}
}
}
// IDE Hard disk controller
std::list<VirtualSystemDescriptionEntry*> vsdeHDCIDE = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerIDE);
// In OVF (at least VMware's version of it), an IDE controller has two ports, so VirtualBox's single IDE controller
// with two channels and two ports each counts as two OVF IDE controllers -- so we accept one or two such IDE controllers
size_t cIDEControllers = vsdeHDCIDE.size();
if (cIDEControllers > 2)
throw setError(VBOX_E_FILE_ERROR,
tr("Too many IDE controllers in OVF; import facility only supports two"));
if (vsdeHDCIDE.size() > 0)
{
// one or two IDE controllers present in OVF: add one VirtualBox controller
ComPtr<IStorageController> pController;
rc = pNewMachine->AddStorageController(Bstr("IDE Controller").raw(), StorageBus_IDE, pController.asOutParam());
if (FAILED(rc)) throw rc;
const char *pcszIDEType = vsdeHDCIDE.front()->strVboxCurrent.c_str();
if (!strcmp(pcszIDEType, "PIIX3"))
rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX3);
else if (!strcmp(pcszIDEType, "PIIX4"))
rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX4);
else if (!strcmp(pcszIDEType, "ICH6"))
rc = pController->COMSETTER(ControllerType)(StorageControllerType_ICH6);
else
throw setError(VBOX_E_FILE_ERROR,
tr("Invalid IDE controller type \"%s\""),
pcszIDEType);
if (FAILED(rc)) throw rc;
}
/* Hard disk controller SATA */
std::list<VirtualSystemDescriptionEntry*> vsdeHDCSATA = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSATA);
if (vsdeHDCSATA.size() > 1)
throw setError(VBOX_E_FILE_ERROR,
tr("Too many SATA controllers in OVF; import facility only supports one"));
if (vsdeHDCSATA.size() > 0)
{
ComPtr<IStorageController> pController;
const Utf8Str &hdcVBox = vsdeHDCSATA.front()->strVboxCurrent;
if (hdcVBox == "AHCI")
{
rc = pNewMachine->AddStorageController(Bstr("SATA Controller").raw(), StorageBus_SATA, pController.asOutParam());
if (FAILED(rc)) throw rc;
}
else
throw setError(VBOX_E_FILE_ERROR,
tr("Invalid SATA controller type \"%s\""),
hdcVBox.c_str());
}
/* Hard disk controller SCSI */
std::list<VirtualSystemDescriptionEntry*> vsdeHDCSCSI = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSCSI);
if (vsdeHDCSCSI.size() > 1)
throw setError(VBOX_E_FILE_ERROR,
tr("Too many SCSI controllers in OVF; import facility only supports one"));
if (vsdeHDCSCSI.size() > 0)
{
ComPtr<IStorageController> pController;
Bstr bstrName(L"SCSI Controller");
StorageBus_T busType = StorageBus_SCSI;
StorageControllerType_T controllerType;
const Utf8Str &hdcVBox = vsdeHDCSCSI.front()->strVboxCurrent;
if (hdcVBox == "LsiLogic")
controllerType = StorageControllerType_LsiLogic;
else if (hdcVBox == "LsiLogicSas")
{
// OVF treats LsiLogicSas as a SCSI controller but VBox considers it a class of its own
bstrName = L"SAS Controller";
busType = StorageBus_SAS;
controllerType = StorageControllerType_LsiLogicSas;
}
else if (hdcVBox == "BusLogic")
controllerType = StorageControllerType_BusLogic;
else
throw setError(VBOX_E_FILE_ERROR,
tr("Invalid SCSI controller type \"%s\""),
hdcVBox.c_str());
rc = pNewMachine->AddStorageController(bstrName.raw(), busType, pController.asOutParam());
if (FAILED(rc)) throw rc;
rc = pController->COMSETTER(ControllerType)(controllerType);
if (FAILED(rc)) throw rc;
}
/* Hard disk controller SAS */
std::list<VirtualSystemDescriptionEntry*> vsdeHDCSAS = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskControllerSAS);
if (vsdeHDCSAS.size() > 1)
throw setError(VBOX_E_FILE_ERROR,
tr("Too many SAS controllers in OVF; import facility only supports one"));
if (vsdeHDCSAS.size() > 0)
{
ComPtr<IStorageController> pController;
rc = pNewMachine->AddStorageController(Bstr(L"SAS Controller").raw(), StorageBus_SAS, pController.asOutParam());
if (FAILED(rc)) throw rc;
rc = pController->COMSETTER(ControllerType)(StorageControllerType_LsiLogicSas);
if (FAILED(rc)) throw rc;
}
/* Now its time to register the machine before we add any hard disks */
rc = mVirtualBox->RegisterMachine(pNewMachine);
if (FAILED(rc)) throw rc;
// store new machine for roll-back in case of errors
Bstr bstrNewMachineId;
rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
if (FAILED(rc)) throw rc;
Guid uuidNewMachine(bstrNewMachineId);
m->llGuidsMachinesCreated.push_back(uuidNewMachine);
// Add floppies and CD-ROMs to the appropriate controllers.
std::list<VirtualSystemDescriptionEntry*> vsdeFloppy = vsdescThis->findByType(VirtualSystemDescriptionType_Floppy);
if (vsdeFloppy.size() > 1)
throw setError(VBOX_E_FILE_ERROR,
tr("Too many floppy controllers in OVF; import facility only supports one"));
std::list<VirtualSystemDescriptionEntry*> vsdeCDROM = vsdescThis->findByType(VirtualSystemDescriptionType_CDROM);
if ( (vsdeFloppy.size() > 0)
|| (vsdeCDROM.size() > 0)
)
{
// If there's an error here we need to close the session, so
// we need another try/catch block.
try
{
// to attach things we need to open a session for the new machine
rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
if (FAILED(rc)) throw rc;
stack.fSessionOpen = true;
ComPtr<IMachine> sMachine;
rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
if (FAILED(rc)) throw rc;
// floppy first
if (vsdeFloppy.size() == 1)
{
ComPtr<IStorageController> pController;
rc = sMachine->AddStorageController(Bstr("Floppy Controller").raw(), StorageBus_Floppy, pController.asOutParam());
if (FAILED(rc)) throw rc;
Bstr bstrName;
rc = pController->COMGETTER(Name)(bstrName.asOutParam());
if (FAILED(rc)) throw rc;
// this is for rollback later
MyHardDiskAttachment mhda;
mhda.pMachine = pNewMachine;
mhda.controllerType = bstrName;
mhda.lControllerPort = 0;
mhda.lDevice = 0;
Log(("Attaching floppy\n"));
rc = sMachine->AttachDevice(mhda.controllerType.raw(),
mhda.lControllerPort,
mhda.lDevice,
DeviceType_Floppy,
NULL);
if (FAILED(rc)) throw rc;
stack.llHardDiskAttachments.push_back(mhda);
}
// CD-ROMs next
for (std::list<VirtualSystemDescriptionEntry*>::const_iterator jt = vsdeCDROM.begin();
jt != vsdeCDROM.end();
++jt)
{
// for now always attach to secondary master on IDE controller;
// there seems to be no useful information in OVF where else to
// attach it (@todo test with latest versions of OVF software)
// find the IDE controller
const ovf::HardDiskController *pController = NULL;
for (ovf::ControllersMap::const_iterator kt = vsysThis.mapControllers.begin();
kt != vsysThis.mapControllers.end();
++kt)
{
if (kt->second.system == ovf::HardDiskController::IDE)
{
pController = &kt->second;
break;
}
}
if (!pController)
throw setError(VBOX_E_FILE_ERROR,
tr("OVF wants a CD-ROM drive but cannot find IDE controller, which is required in this version of VirtualBox"));
// this is for rollback later
MyHardDiskAttachment mhda;
mhda.pMachine = pNewMachine;
convertDiskAttachmentValues(*pController,
2, // interpreted as secondary master
mhda.controllerType, // Bstr
mhda.lControllerPort,
mhda.lDevice);
Log(("Attaching CD-ROM to port %d on device %d\n", mhda.lControllerPort, mhda.lDevice));
rc = sMachine->AttachDevice(mhda.controllerType.raw(),
mhda.lControllerPort,
mhda.lDevice,
DeviceType_DVD,
NULL);
if (FAILED(rc)) throw rc;
stack.llHardDiskAttachments.push_back(mhda);
} // end for (itHD = avsdeHDs.begin();
rc = sMachine->SaveSettings();
if (FAILED(rc)) throw rc;
// only now that we're done with all disks, close the session
rc = stack.pSession->UnlockMachine();
if (FAILED(rc)) throw rc;
stack.fSessionOpen = false;
}
catch(HRESULT /* aRC */)
{
if (stack.fSessionOpen)
stack.pSession->UnlockMachine();
throw;
}
}
// create the hard disks & connect them to the appropriate controllers
std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage);
if (avsdeHDs.size() > 0)
{
// If there's an error here we need to close the session, so
// we need another try/catch block.
try
{
// to attach things we need to open a session for the new machine
rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
if (FAILED(rc)) throw rc;
stack.fSessionOpen = true;
/* Iterate over all given disk images */
list<VirtualSystemDescriptionEntry*>::const_iterator itHD;
for (itHD = avsdeHDs.begin();
itHD != avsdeHDs.end();
++itHD)
{
VirtualSystemDescriptionEntry *vsdeHD = *itHD;
// vsdeHD->strRef contains the disk identifier (e.g. "vmdisk1"), which should exist
// in the virtual system's disks map under that ID and also in the global images map
ovf::VirtualDisksMap::const_iterator itVirtualDisk = vsysThis.mapVirtualDisks.find(vsdeHD->strRef);
// and find the disk from the OVF's disk list
ovf::DiskImagesMap::const_iterator itDiskImage = stack.mapDisks.find(vsdeHD->strRef);
if ( (itVirtualDisk == vsysThis.mapVirtualDisks.end())
|| (itDiskImage == stack.mapDisks.end())
)
throw setError(E_FAIL,
tr("Internal inconsistency looking up disk image '%s'"),
vsdeHD->strRef.c_str());
const ovf::DiskImage &ovfDiskImage = itDiskImage->second;
const ovf::VirtualDisk &ovfVdisk = itVirtualDisk->second;
ComObjPtr<Medium> pTargetHD;
importOneDiskImage(ovfDiskImage,
vsdeHD->strVboxCurrent,
pTargetHD,
stack,
pCallbacks,
pStorage);
// now use the new uuid to attach the disk image to our new machine
ComPtr<IMachine> sMachine;
rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
if (FAILED(rc)) throw rc;
// find the hard disk controller to which we should attach
ovf::HardDiskController hdc = (*vsysThis.mapControllers.find(ovfVdisk.idController)).second;
// this is for rollback later
MyHardDiskAttachment mhda;
mhda.pMachine = pNewMachine;
convertDiskAttachmentValues(hdc,
ovfVdisk.ulAddressOnParent,
mhda.controllerType, // Bstr
mhda.lControllerPort,
mhda.lDevice);
Log(("Attaching disk %s to port %d on device %d\n", vsdeHD->strVboxCurrent.c_str(), mhda.lControllerPort, mhda.lDevice));
rc = sMachine->AttachDevice(mhda.controllerType.raw(), // wstring name
mhda.lControllerPort, // long controllerPort
mhda.lDevice, // long device
DeviceType_HardDisk, // DeviceType_T type
pTargetHD);
if (FAILED(rc)) throw rc;
stack.llHardDiskAttachments.push_back(mhda);
rc = sMachine->SaveSettings();
if (FAILED(rc)) throw rc;
} // end for (itHD = avsdeHDs.begin();
// only now that we're done with all disks, close the session
rc = stack.pSession->UnlockMachine();
if (FAILED(rc)) throw rc;
stack.fSessionOpen = false;
}
catch(HRESULT /* aRC */)
{
if (stack.fSessionOpen)
stack.pSession->UnlockMachine();
throw;
}
}
}
/**
* Imports one OVF virtual system (described by a vbox:Machine tag represented by the given config
* structure) into VirtualBox by creating an IMachine instance, which is returned.
*
* This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
* up any leftovers from this function. For this, the given ImportStack instance has received information
* about what needs cleaning up (to support rollback).
*
* The machine config stored in the settings::MachineConfigFile structure contains the UUIDs of
* the disk attachments used by the machine when it was exported. We also add vbox:uuid attributes
* to the OVF disks sections so we can look them up. While importing these UUIDs into a second host
* will most probably work, reimporting them into the same host will cause conflicts, so we always
* generate new ones on import. This involves the following:
*
* 1) Scan the machine config for disk attachments.
*
* 2) For each disk attachment found, look up the OVF disk image from the disk references section
* and import the disk into VirtualBox, which creates a new UUID for it. In the machine config,
* replace the old UUID with the new one.
*
* 3) Change the machine config according to the OVF virtual system descriptions, in case the
* caller has modified them using setFinalValues().
*
* 4) Create the VirtualBox machine with the modfified machine config.
*
* @param config
* @param pNewMachine
* @param stack
*/
void Appliance::importVBoxMachine(ComObjPtr<VirtualSystemDescription> &vsdescThis,
ComPtr<IMachine> &pReturnNewMachine,
ImportStack &stack,
PVDINTERFACEIO pCallbacks,
PSHA1STORAGE pStorage)
{
Assert(vsdescThis->m->pConfig);
HRESULT rc = S_OK;
settings::MachineConfigFile &config = *vsdescThis->m->pConfig;
/*
*
* step 1): modify machine config according to OVF config, in case the user
* has modified them using setFinalValues()
*
*/
/* OS Type */
config.machineUserData.strOsType = stack.strOsTypeVBox;
/* Description */
config.machineUserData.strDescription = stack.strDescription;
/* CPU count & extented attributes */
config.hardwareMachine.cCPUs = stack.cCPUs;
if (stack.fForceIOAPIC)
config.hardwareMachine.fHardwareVirt = true;
if (stack.fForceIOAPIC)
config.hardwareMachine.biosSettings.fIOAPICEnabled = true;
/* RAM size */
config.hardwareMachine.ulMemorySizeMB = stack.ulMemorySizeMB;
/*
<const name="HardDiskControllerIDE" value="14" />
<const name="HardDiskControllerSATA" value="15" />
<const name="HardDiskControllerSCSI" value="16" />
<const name="HardDiskControllerSAS" value="17" />
*/
#ifdef VBOX_WITH_USB
/* USB controller */
config.hardwareMachine.usbController.fEnabled = stack.fUSBEnabled;
#endif
/* Audio adapter */
if (stack.strAudioAdapter.isNotEmpty())
{
config.hardwareMachine.audioAdapter.fEnabled = true;
config.hardwareMachine.audioAdapter.controllerType = (AudioControllerType_T)stack.strAudioAdapter.toUInt32();
}
else
config.hardwareMachine.audioAdapter.fEnabled = false;
/* Network adapter */
settings::NetworkAdaptersList &llNetworkAdapters = config.hardwareMachine.llNetworkAdapters;
/* First disable all network cards, they will be enabled below again. */
settings::NetworkAdaptersList::iterator it1;
bool fKeepAllMACs = m->optList.contains(ImportOptions_KeepAllMACs);
bool fKeepNATMACs = m->optList.contains(ImportOptions_KeepNATMACs);
for (it1 = llNetworkAdapters.begin(); it1 != llNetworkAdapters.end(); ++it1)
{
it1->fEnabled = false;
if (!( fKeepAllMACs
|| (fKeepNATMACs && it1->mode == NetworkAttachmentType_NAT)))
Host::generateMACAddress(it1->strMACAddress);
}
/* Now iterate over all network entries. */
std::list<VirtualSystemDescriptionEntry*> avsdeNWs = vsdescThis->findByType(VirtualSystemDescriptionType_NetworkAdapter);
if (avsdeNWs.size() > 0)
{
/* Iterate through all network adapter entries and search for the
* corresponding one in the machine config. If one is found, configure
* it based on the user settings. */
list<VirtualSystemDescriptionEntry*>::const_iterator itNW;
for (itNW = avsdeNWs.begin();
itNW != avsdeNWs.end();
++itNW)
{
VirtualSystemDescriptionEntry *vsdeNW = *itNW;
if ( vsdeNW->strExtraConfigCurrent.startsWith("slot=", Utf8Str::CaseInsensitive)
&& vsdeNW->strExtraConfigCurrent.length() > 6)
{
uint32_t iSlot = vsdeNW->strExtraConfigCurrent.substr(5, 1).toUInt32();
/* Iterate through all network adapters in the machine config. */
for (it1 = llNetworkAdapters.begin();
it1 != llNetworkAdapters.end();
++it1)
{
/* Compare the slots. */
if (it1->ulSlot == iSlot)
{
it1->fEnabled = true;
it1->type = (NetworkAdapterType_T)vsdeNW->strVboxCurrent.toUInt32();
break;
}
}
}
}
}
/* Floppy controller */
bool fFloppy = vsdescThis->findByType(VirtualSystemDescriptionType_Floppy).size() > 0;
/* DVD controller */
bool fDVD = vsdescThis->findByType(VirtualSystemDescriptionType_CDROM).size() > 0;
/* Iterate over all storage controller check the attachments and remove
* them when necessary. Also detect broken configs with more than one
* attachment. Old VirtualBox versions (prior to 3.2.10) had all disk
* attachments pointing to the last hard disk image, which causes import
* failures. A long fixed bug, however the OVF files are long lived. */
settings::StorageControllersList &llControllers = config.storageMachine.llStorageControllers;
Guid hdUuid;
uint32_t cHardDisks = 0;
bool fInconsistent = false;
bool fRepairDuplicate = false;
settings::StorageControllersList::iterator it3;
for (it3 = llControllers.begin();
it3 != llControllers.end();
++it3)
{
settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
settings::AttachedDevicesList::iterator it4 = llAttachments.begin();
while (it4 != llAttachments.end())
{
if ( ( !fDVD
&& it4->deviceType == DeviceType_DVD)
||
( !fFloppy
&& it4->deviceType == DeviceType_Floppy))
{
it4 = llAttachments.erase(it4);
continue;
}
else if (it4->deviceType == DeviceType_HardDisk)
{
const Guid &thisUuid = it4->uuid;
cHardDisks++;
if (cHardDisks == 1)
{
if (hdUuid.isEmpty())
hdUuid = thisUuid;
else
fInconsistent = true;
}
else
{
if (thisUuid.isEmpty())
fInconsistent = true;
else if (thisUuid == hdUuid)
fRepairDuplicate = true;
}
}
++it4;
}
}
/* paranoia... */
if (fInconsistent || cHardDisks == 1)
fRepairDuplicate = false;
/*
*
* step 2: scan the machine config for media attachments
*
*/
/* Get all hard disk descriptions. */
std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->findByType(VirtualSystemDescriptionType_HardDiskImage);
std::list<VirtualSystemDescriptionEntry*>::iterator avsdeHDsIt = avsdeHDs.begin();
/* paranoia - if there is no 1:1 match do not try to repair. */
if (cHardDisks != avsdeHDs.size())
fRepairDuplicate = false;
// for each storage controller...
for (settings::StorageControllersList::iterator sit = config.storageMachine.llStorageControllers.begin();
sit != config.storageMachine.llStorageControllers.end();
++sit)
{
settings::StorageController &sc = *sit;
// find the OVF virtual system description entry for this storage controller
switch (sc.storageBus)
{
case StorageBus_SATA:
break;
case StorageBus_SCSI:
break;
case StorageBus_IDE:
break;
case StorageBus_SAS:
break;
}
// for each medium attachment to this controller...
for (settings::AttachedDevicesList::iterator dit = sc.llAttachedDevices.begin();
dit != sc.llAttachedDevices.end();
++dit)
{
settings::AttachedDevice &d = *dit;
if (d.uuid.isEmpty())
// empty DVD and floppy media
continue;
// When repairing a broken VirtualBox xml config section (written
// by VirtualBox versions earlier than 3.2.10) assume the disks
// show up in the same order as in the OVF description.
if (fRepairDuplicate)
{
VirtualSystemDescriptionEntry *vsdeHD = *avsdeHDsIt;
ovf::DiskImagesMap::const_iterator itDiskImage = stack.mapDisks.find(vsdeHD->strRef);
if (itDiskImage != stack.mapDisks.end())
{
const ovf::DiskImage &di = itDiskImage->second;
d.uuid = Guid(di.uuidVbox);
}
++avsdeHDsIt;
}
// convert the Guid to string
Utf8Str strUuid = d.uuid.toString();
// there must be an image in the OVF disk structs with the same UUID
bool fFound = false;
for (ovf::DiskImagesMap::const_iterator oit = stack.mapDisks.begin();
oit != stack.mapDisks.end();
++oit)
{
const ovf::DiskImage &di = oit->second;
if (di.uuidVbox == strUuid)
{
VirtualSystemDescriptionEntry *vsdeTargetHD = 0;
/* Iterate over all given disk images of the virtual system
* disks description. We need to find the target disk path,
* which could be changed by the user. */
list<VirtualSystemDescriptionEntry*>::const_iterator itHD;
for (itHD = avsdeHDs.begin();
itHD != avsdeHDs.end();
++itHD)
{
VirtualSystemDescriptionEntry *vsdeHD = *itHD;
if (vsdeHD->strRef == oit->first)
{
vsdeTargetHD = vsdeHD;
break;
}
}
if (!vsdeTargetHD)
throw setError(E_FAIL,
tr("Internal inconsistency looking up disk image '%s'"),
oit->first.c_str());
/*
*
* step 3: import disk
*
*/
ComObjPtr<Medium> pTargetHD;
importOneDiskImage(di,
vsdeTargetHD->strVboxCurrent,
pTargetHD,
stack,
pCallbacks,
pStorage);
// ... and replace the old UUID in the machine config with the one of
// the imported disk that was just created
Bstr hdId;
rc = pTargetHD->COMGETTER(Id)(hdId.asOutParam());
if (FAILED(rc)) throw rc;
d.uuid = hdId;
fFound = true;
break;
}
}
// no disk with such a UUID found:
if (!fFound)
throw setError(E_FAIL,
tr("<vbox:Machine> element in OVF contains a medium attachment for the disk image %s but the OVF describes no such image"),
strUuid.c_str());
} // for (settings::AttachedDevicesList::const_iterator dit = sc.llAttachedDevices.begin();
} // for (settings::StorageControllersList::const_iterator sit = config.storageMachine.llStorageControllers.begin();
/*
*
* step 4): create the machine and have it import the config
*
*/
ComObjPtr<Machine> pNewMachine;
rc = pNewMachine.createObject();
if (FAILED(rc)) throw rc;
// this magic constructor fills the new machine object with the MachineConfig
// instance that we created from the vbox:Machine
rc = pNewMachine->init(mVirtualBox,
stack.strNameVBox, // name from OVF preparations; can be suffixed to avoid duplicates, or changed by user
config); // the whole machine config
if (FAILED(rc)) throw rc;
pReturnNewMachine = ComPtr<IMachine>(pNewMachine);
// and register it
rc = mVirtualBox->RegisterMachine(pNewMachine);
if (FAILED(rc)) throw rc;
// store new machine for roll-back in case of errors
Bstr bstrNewMachineId;
rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
if (FAILED(rc)) throw rc;
m->llGuidsMachinesCreated.push_back(Guid(bstrNewMachineId));
}
void Appliance::importMachines(ImportStack &stack,
PVDINTERFACEIO pCallbacks,
PSHA1STORAGE pStorage)
{
HRESULT rc = S_OK;
// this is safe to access because this thread only gets started
// if pReader != NULL
const ovf::OVFReader &reader = *m->pReader;
// create a session for the machine + disks we manipulate below
rc = stack.pSession.createInprocObject(CLSID_Session);
if (FAILED(rc)) throw rc;
list<ovf::VirtualSystem>::const_iterator it;
list< ComObjPtr<VirtualSystemDescription> >::const_iterator it1;
/* Iterate through all virtual systems of that appliance */
size_t i = 0;
for (it = reader.m_llVirtualSystems.begin(),
it1 = m->virtualSystemDescriptions.begin();
it != reader.m_llVirtualSystems.end();
++it, ++it1, ++i)
{
const ovf::VirtualSystem &vsysThis = *it;
ComObjPtr<VirtualSystemDescription> vsdescThis = (*it1);
ComPtr<IMachine> pNewMachine;
// there are two ways in which we can create a vbox machine from OVF:
// -- either this OVF was written by vbox 3.2 or later, in which case there is a <vbox:Machine> element
// in the <VirtualSystem>; then the VirtualSystemDescription::Data has a settings::MachineConfigFile
// with all the machine config pretty-parsed;
// -- or this is an OVF from an older vbox or an external source, and then we need to translate the
// VirtualSystemDescriptionEntry and do import work
// Even for the vbox:Machine case, there are a number of configuration items that will be taken from
// the OVF because otherwise the "override import parameters" mechanism in the GUI won't work.
// VM name
std::list<VirtualSystemDescriptionEntry*> vsdeName = vsdescThis->findByType(VirtualSystemDescriptionType_Name);
if (vsdeName.size() < 1)
throw setError(VBOX_E_FILE_ERROR,
tr("Missing VM name"));
stack.strNameVBox = vsdeName.front()->strVboxCurrent;
// have VirtualBox suggest where the filename would be placed so we can
// put the disk images in the same directory
Bstr bstrMachineFilename;
rc = mVirtualBox->ComposeMachineFilename(Bstr(stack.strNameVBox).raw(),
NULL,
bstrMachineFilename.asOutParam());
if (FAILED(rc)) throw rc;
// and determine the machine folder from that
stack.strMachineFolder = bstrMachineFilename;
stack.strMachineFolder.stripFilename();
// guest OS type
std::list<VirtualSystemDescriptionEntry*> vsdeOS;
vsdeOS = vsdescThis->findByType(VirtualSystemDescriptionType_OS);
if (vsdeOS.size() < 1)
throw setError(VBOX_E_FILE_ERROR,
tr("Missing guest OS type"));
stack.strOsTypeVBox = vsdeOS.front()->strVboxCurrent;
// CPU count
std::list<VirtualSystemDescriptionEntry*> vsdeCPU = vsdescThis->findByType(VirtualSystemDescriptionType_CPU);
if (vsdeCPU.size() != 1)
throw setError(VBOX_E_FILE_ERROR, tr("CPU count missing"));
stack.cCPUs = vsdeCPU.front()->strVboxCurrent.toUInt32();
// We need HWVirt & IO-APIC if more than one CPU is requested
if (stack.cCPUs > 1)
{
stack.fForceHWVirt = true;
stack.fForceIOAPIC = true;
}
// RAM
std::list<VirtualSystemDescriptionEntry*> vsdeRAM = vsdescThis->findByType(VirtualSystemDescriptionType_Memory);
if (vsdeRAM.size() != 1)
throw setError(VBOX_E_FILE_ERROR, tr("RAM size missing"));
stack.ulMemorySizeMB = (ULONG)vsdeRAM.front()->strVboxCurrent.toUInt64();
#ifdef VBOX_WITH_USB
// USB controller
std::list<VirtualSystemDescriptionEntry*> vsdeUSBController = vsdescThis->findByType(VirtualSystemDescriptionType_USBController);
// USB support is enabled if there's at least one such entry; to disable USB support,
// the type of the USB item would have been changed to "ignore"
stack.fUSBEnabled = vsdeUSBController.size() > 0;
#endif
// audio adapter
std::list<VirtualSystemDescriptionEntry*> vsdeAudioAdapter = vsdescThis->findByType(VirtualSystemDescriptionType_SoundCard);
/* @todo: we support one audio adapter only */
if (vsdeAudioAdapter.size() > 0)
stack.strAudioAdapter = vsdeAudioAdapter.front()->strVboxCurrent;
// for the description of the new machine, always use the OVF entry, the user may have changed it in the import config
std::list<VirtualSystemDescriptionEntry*> vsdeDescription = vsdescThis->findByType(VirtualSystemDescriptionType_Description);
if (vsdeDescription.size())
stack.strDescription = vsdeDescription.front()->strVboxCurrent;
// import vbox:machine or OVF now
if (vsdescThis->m->pConfig)
// vbox:Machine config
importVBoxMachine(vsdescThis, pNewMachine, stack, pCallbacks, pStorage);
else
// generic OVF config
importMachineGeneric(vsysThis, vsdescThis, pNewMachine, stack, pCallbacks, pStorage);
} // for (it = pAppliance->m->llVirtualSystems.begin() ...
}