EbmlWriter.cpp revision cb702d6d593134e47854c00a7fa1156fe48a14cc
/* $Id$ */
/** @file
* EbmlWriter.cpp - EBML writer + WebM container
*/
/*
* Copyright (C) 2013-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*
* This code is based on:
*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <list>
#include <stack>
#include <iprt/string.h>
#include <iprt/file.h>
#include <iprt/asm.h>
#include <iprt/cdefs.h>
#include <iprt/err.h>
#include <VBox/log.h>
#include "EbmlWriter.h"
/* Matroska EBML Class IDs supported by WebM */
enum Mkv
{
EBML = 0x1A45DFA3,
EBMLVersion = 0x4286,
EBMLReadVersion = 0x42F7,
EBMLMaxIDLength = 0x42F2,
EBMLMaxSizeLength = 0x42F3,
DocType = 0x4282,
DocTypeVersion = 0x4287,
DocTypeReadVersion = 0x4285,
// CRC_32 = 0xBF,
Void = 0xEC,
SignatureSlot = 0x1B538667,
SignatureAlgo = 0x7E8A,
SignatureHash = 0x7E9A,
SignaturePublicKey = 0x7EA5,
Signature = 0x7EB5,
SignatureElements = 0x7E5B,
SignatureElementList = 0x7E7B,
SignedElement = 0x6532,
//segment
Segment = 0x18538067,
//Meta Seek Information
SeekHead = 0x114D9B74,
Seek = 0x4DBB,
SeekID = 0x53AB,
SeekPosition = 0x53AC,
//Segment Information
Info = 0x1549A966,
// SegmentUID = 0x73A4,
// SegmentFilename = 0x7384,
// PrevUID = 0x3CB923,
// PrevFilename = 0x3C83AB,
// NextUID = 0x3EB923,
// NextFilename = 0x3E83BB,
// SegmentFamily = 0x4444,
// ChapterTranslate = 0x6924,
// ChapterTranslateEditionUID = 0x69FC,
// ChapterTranslateCodec = 0x69BF,
// ChapterTranslateID = 0x69A5,
TimecodeScale = 0x2AD7B1,
Segment_Duration = 0x4489,
DateUTC = 0x4461,
// Title = 0x7BA9,
MuxingApp = 0x4D80,
WritingApp = 0x5741,
//Cluster
Cluster = 0x1F43B675,
Timecode = 0xE7,
// SilentTracks = 0x5854,
// SilentTrackNumber = 0x58D7,
// Position = 0xA7,
PrevSize = 0xAB,
BlockGroup = 0xA0,
Block = 0xA1,
// BlockVirtual = 0xA2,
// BlockAdditions = 0x75A1,
// BlockMore = 0xA6,
// BlockAddID = 0xEE,
// BlockAdditional = 0xA5,
BlockDuration = 0x9B,
// ReferencePriority = 0xFA,
ReferenceBlock = 0xFB,
// ReferenceVirtual = 0xFD,
// CodecState = 0xA4,
// Slices = 0x8E,
// TimeSlice = 0xE8,
LaceNumber = 0xCC,
// FrameNumber = 0xCD,
// BlockAdditionID = 0xCB,
// MkvDelay = 0xCE,
// Cluster_Duration = 0xCF,
SimpleBlock = 0xA3,
// EncryptedBlock = 0xAF,
//Track
Tracks = 0x1654AE6B,
TrackEntry = 0xAE,
TrackNumber = 0xD7,
TrackUID = 0x73C5,
TrackType = 0x83,
FlagEnabled = 0xB9,
FlagDefault = 0x88,
FlagForced = 0x55AA,
FlagLacing = 0x9C,
// MinCache = 0x6DE7,
// MaxCache = 0x6DF8,
DefaultDuration = 0x23E383,
// TrackTimecodeScale = 0x23314F,
// TrackOffset = 0x537F,
// MaxBlockAdditionID = 0x55EE,
Name = 0x536E,
Language = 0x22B59C,
CodecID = 0x86,
CodecPrivate = 0x63A2,
CodecName = 0x258688,
// AttachmentLink = 0x7446,
// CodecSettings = 0x3A9697,
// CodecInfoURL = 0x3B4040,
// CodecDownloadURL = 0x26B240,
// CodecDecodeAll = 0xAA,
// TrackOverlay = 0x6FAB,
// TrackTranslate = 0x6624,
// TrackTranslateEditionUID = 0x66FC,
// TrackTranslateCodec = 0x66BF,
// TrackTranslateTrackID = 0x66A5,
//video
Video = 0xE0,
FlagInterlaced = 0x9A,
// StereoMode = 0x53B8,
PixelWidth = 0xB0,
PixelHeight = 0xBA,
PixelCropBottom = 0x54AA,
PixelCropTop = 0x54BB,
PixelCropLeft = 0x54CC,
PixelCropRight = 0x54DD,
DisplayWidth = 0x54B0,
DisplayHeight = 0x54BA,
DisplayUnit = 0x54B2,
AspectRatioType = 0x54B3,
// ColourSpace = 0x2EB524,
// GammaValue = 0x2FB523,
FrameRate = 0x2383E3,
//end video
//audio
Audio = 0xE1,
SamplingFrequency = 0xB5,
OutputSamplingFrequency = 0x78B5,
Channels = 0x9F,
// ChannelPositions = 0x7D7B,
BitDepth = 0x6264,
//end audio
//content encoding
// ContentEncodings = 0x6d80,
// ContentEncoding = 0x6240,
// ContentEncodingOrder = 0x5031,
// ContentEncodingScope = 0x5032,
// ContentEncodingType = 0x5033,
// ContentCompression = 0x5034,
// ContentCompAlgo = 0x4254,
// ContentCompSettings = 0x4255,
// ContentEncryption = 0x5035,
// ContentEncAlgo = 0x47e1,
// ContentEncKeyID = 0x47e2,
// ContentSignature = 0x47e3,
// ContentSigKeyID = 0x47e4,
// ContentSigAlgo = 0x47e5,
// ContentSigHashAlgo = 0x47e6,
//end content encoding
//Cueing Data
Cues = 0x1C53BB6B,
CuePoint = 0xBB,
CueTime = 0xB3,
CueTrackPositions = 0xB7,
CueTrack = 0xF7,
CueClusterPosition = 0xF1,
CueBlockNumber = 0x5378
// CueCodecState = 0xEA,
// CueReference = 0xDB,
// CueRefTime = 0x96,
// CueRefCluster = 0x97,
// CueRefNumber = 0x535F,
// CueRefCodecState = 0xEB,
//Attachment
// Attachments = 0x1941A469,
// AttachedFile = 0x61A7,
// FileDescription = 0x467E,
// FileName = 0x466E,
// FileMimeType = 0x4660,
// FileData = 0x465C,
// FileUID = 0x46AE,
// FileReferral = 0x4675,
//Chapters
// Chapters = 0x1043A770,
// EditionEntry = 0x45B9,
// EditionUID = 0x45BC,
// EditionFlagHidden = 0x45BD,
// EditionFlagDefault = 0x45DB,
// EditionFlagOrdered = 0x45DD,
// ChapterAtom = 0xB6,
// ChapterUID = 0x73C4,
// ChapterTimeStart = 0x91,
// ChapterTimeEnd = 0x92,
// ChapterFlagHidden = 0x98,
// ChapterFlagEnabled = 0x4598,
// ChapterSegmentUID = 0x6E67,
// ChapterSegmentEditionUID = 0x6EBC,
// ChapterPhysicalEquiv = 0x63C3,
// ChapterTrack = 0x8F,
// ChapterTrackNumber = 0x89,
// ChapterDisplay = 0x80,
// ChapString = 0x85,
// ChapLanguage = 0x437C,
// ChapCountry = 0x437E,
// ChapProcess = 0x6944,
// ChapProcessCodecID = 0x6955,
// ChapProcessPrivate = 0x450D,
// ChapProcessCommand = 0x6911,
// ChapProcessTime = 0x6922,
// ChapProcessData = 0x6933,
//Tagging
// Tags = 0x1254C367,
// Tag = 0x7373,
// Targets = 0x63C0,
// TargetTypeValue = 0x68CA,
// TargetType = 0x63CA,
// Tagging_TrackUID = 0x63C5,
// Tagging_EditionUID = 0x63C9,
// Tagging_ChapterUID = 0x63C4,
// AttachmentUID = 0x63C6,
// SimpleTag = 0x67C8,
// TagName = 0x45A3,
// TagLanguage = 0x447A,
// TagDefault = 0x4484,
// TagString = 0x4487,
// TagBinary = 0x4485,
};
class Ebml
{
public:
typedef uint32_t EbmlClassId;
private:
struct EbmlSubElement
{
uint64_t offset;
EbmlClassId classId;
EbmlSubElement(uint64_t offs, EbmlClassId cid) : offset(offs), classId(cid) {}
};
std::stack<EbmlSubElement> m_Elements;
RTFILE m_File;
public:
/* Creates EBML output file. */
inline int create(const char *a_pszFilename)
{
return RTFileOpen(&m_File, a_pszFilename, RTFILE_O_CREATE | RTFILE_O_WRITE | RTFILE_O_DENY_NONE);
}
/* Returns file size. */
inline uint64_t getFileSize()
{
return RTFileTell(m_File);
}
/* Get reference to file descriptor */
inline const RTFILE &getFile()
{
return m_File;
}
/* Returns available space on storage. */
inline uint64_t getAvailableSpace()
{
RTFOFF pcbFree;
int rc = RTFileQueryFsSizes(m_File, NULL, &pcbFree, 0, 0);
return (RT_SUCCESS(rc)? (uint64_t)pcbFree : UINT64_MAX);
}
/* Closes the file. */
inline void close()
{
RTFileClose(m_File);
}
/* Starts an EBML sub-element. */
inline Ebml &subStart(EbmlClassId classId)
{
writeClassId(classId);
/* store the current file offset. */
m_Elements.push(EbmlSubElement(RTFileTell(m_File), classId));
/* Indicates that size of the element
* is unkown (as according to EBML specs).
*/
writeUnsignedInteger(UINT64_C(0x01FFFFFFFFFFFFFF));
return *this;
}
/* Ends an EBML sub-element. */
inline Ebml &subEnd(EbmlClassId classId)
{
/* Class ID on the top of the stack should match the class ID passed
* to the function. Otherwise it may mean that we have a bug in the code.
*/
if(m_Elements.empty() || m_Elements.top().classId != classId) throw VERR_INTERNAL_ERROR;
uint64_t uPos = RTFileTell(m_File);
uint64_t uSize = uPos - m_Elements.top().offset - 8;
RTFileSeek(m_File, m_Elements.top().offset, RTFILE_SEEK_BEGIN, NULL);
/* make sure that size will be serialized as uint64 */
writeUnsignedInteger(uSize | UINT64_C(0x0100000000000000));
RTFileSeek(m_File, uPos, RTFILE_SEEK_BEGIN, NULL);
m_Elements.pop();
return *this;
}
/* Serializes a null-terminated string. */
inline Ebml &serializeString(EbmlClassId classId, const char *str)
{
writeClassId(classId);
uint64_t size = strlen(str);
writeSize(size);
write(str, size);
return *this;
}
/* Serializes an UNSIGNED integer
* If size is zero then it will be detected automatically. */
inline Ebml &serializeUnsignedInteger(EbmlClassId classId, uint64_t parm, size_t size = 0)
{
writeClassId(classId);
if (!size) size = getSizeOfUInt(parm);
writeSize(size);
writeUnsignedInteger(parm, size);
return *this;
}
/* Serializes a floating point value.
* Only 8-bytes double precision values are supported
* by this function.
*/
inline Ebml &serializeFloat(EbmlClassId classId, double value)
{
writeClassId(classId);
writeSize(sizeof(double));
writeUnsignedInteger(*reinterpret_cast<uint64_t*>(&value));
return *this;
}
/* Writes raw data to file. */
inline void write(const void *data, size_t size)
{
int rc = RTFileWrite(m_File, data, size, NULL);
if (!RT_SUCCESS(rc)) throw rc;
}
/* Writes an unsigned integer of variable of fixed size. */
inline void writeUnsignedInteger(uint64_t value, size_t size = sizeof(uint64_t))
{
/* convert to big-endian */
value = RT_H2BE_U64(value);
write(reinterpret_cast<uint8_t*>(&value) + sizeof(value) - size, size);
}
/* Writes EBML class ID to file.
* EBML ID already has a UTF8-like represenation
* so getSizeOfUInt is used to determine
* the number of its bytes.
*/
inline void writeClassId(EbmlClassId parm)
{
writeUnsignedInteger(parm, getSizeOfUInt(parm));
}
/* Writes data size value. */
inline void writeSize(uint64_t parm)
{
/* The following expression defines the size of the value that will be serialized
* as an EBML UTF-8 like integer (with trailing bits represeting its size):
1xxx xxxx - value 0 to 2^7-2
01xx xxxx xxxx xxxx - value 0 to 2^14-2
001x xxxx xxxx xxxx xxxx xxxx - value 0 to 2^21-2
0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx - value 0 to 2^28-2
0000 1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx - value 0 to 2^35-2
0000 01xx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx - value 0 to 2^42-2
0000 001x xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx - value 0 to 2^49-2
0000 0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx - value 0 to 2^56-2
*/
size_t size = 8 - ! (parm & (UINT64_MAX << 49)) - ! (parm & (UINT64_MAX << 42)) -
! (parm & (UINT64_MAX << 35)) - ! (parm & (UINT64_MAX << 28)) -
! (parm & (UINT64_MAX << 21)) - ! (parm & (UINT64_MAX << 14)) -
! (parm & (UINT64_MAX << 7));
/* One is subtracted in order to avoid loosing significant bit when size = 8. */
uint64_t mask = RT_BIT_64(size * 8 - 1);
writeUnsignedInteger((parm & (((mask << 1) - 1) >> size)) | (mask >> (size - 1)), size);
}
/* Size calculation for variable size UNSIGNED integer.
* The function defines the size of the number by trimming
* consequent trailing zero bytes starting from the most significant.
* The following statement is always true:
* 1 <= getSizeOfUInt(arg) <= 8.
*
* Every !(arg & (UINT64_MAX << X)) expression gives one
* if an only if all the bits from X to 63 are set to zero.
*/
static inline size_t getSizeOfUInt(uint64_t arg)
{
return 8 - ! (arg & (UINT64_MAX << 56)) - ! (arg & (UINT64_MAX << 48)) -
! (arg & (UINT64_MAX << 40)) - ! (arg & (UINT64_MAX << 32)) -
! (arg & (UINT64_MAX << 24)) - ! (arg & (UINT64_MAX << 16)) -
! (arg & (UINT64_MAX << 8));
}
private:
void operator=(const Ebml &);
};
class WebMWriter_Impl
{
struct CueEntry
{
uint32_t time;
uint64_t loc;
CueEntry(uint32_t t, uint64_t l) : time(t), loc(l) {}
};
bool m_bDebug;
int64_t m_iLastPtsMs;
int64_t m_iInitialPtsMs;
vpx_rational_t m_Framerate;
uint64_t m_uPositionReference;
uint64_t m_uSeekInfoPos;
uint64_t m_uSegmentInfoPos;
uint64_t m_uTrackPos;
uint64_t m_uCuePos;
uint64_t m_uClusterPos;
uint64_t m_uTrackIdPos;
uint64_t m_uStartSegment;
uint32_t m_uClusterTimecode;
bool m_bClusterOpen;
std::list<CueEntry> m_CueList;
Ebml m_Ebml;
public:
WebMWriter_Impl() :
m_bDebug(false),
m_iLastPtsMs(-1),
m_iInitialPtsMs(-1),
m_Framerate(),
m_uPositionReference(0),
m_uSeekInfoPos(0),
m_uSegmentInfoPos(0),
m_uTrackPos(0),
m_uCuePos(0),
m_uClusterPos(0),
m_uTrackIdPos(0),
m_uStartSegment(0),
m_uClusterTimecode(0),
m_bClusterOpen(false) {}
void writeHeader(const vpx_codec_enc_cfg_t *a_pCfg,
const struct vpx_rational *a_pFps)
{
m_Ebml.subStart(EBML)
.serializeUnsignedInteger(EBMLVersion, 1)
.serializeUnsignedInteger(EBMLReadVersion, 1)
.serializeUnsignedInteger(EBMLMaxIDLength, 4)
.serializeUnsignedInteger(EBMLMaxSizeLength, 8)
.serializeString(DocType, "webm")
.serializeUnsignedInteger(DocTypeVersion, 2)
.serializeUnsignedInteger(DocTypeReadVersion, 2)
.subEnd(EBML);
m_Ebml.subStart(Segment);
m_uPositionReference = RTFileTell(m_Ebml.getFile());
m_Framerate = *a_pFps;
writeSeekInfo();
m_uTrackPos = RTFileTell(m_Ebml.getFile());
m_Ebml.subStart(Tracks)
.subStart(TrackEntry)
.serializeUnsignedInteger(TrackNumber, 1);
m_uTrackIdPos = RTFileTell(m_Ebml.getFile());
m_Ebml.serializeUnsignedInteger(TrackUID, 0, 4)
.serializeUnsignedInteger(TrackType, 1)
.serializeString(CodecID, "V_VP8")
.subStart(Video)
.serializeUnsignedInteger(PixelWidth, a_pCfg->g_w)
.serializeUnsignedInteger(PixelHeight, a_pCfg->g_h)
.serializeFloat(FrameRate, (double) a_pFps->num / a_pFps->den)
.subEnd(Video)
.subEnd(TrackEntry)
.subEnd(Tracks);
}
void writeBlock(const vpx_codec_enc_cfg_t *a_pCfg,
const vpx_codec_cx_pkt_t *a_pPkt)
{
uint16_t uBlockTimecode = 0;
int64_t iPtsMs;
bool bStartCluster = false;
/* Calculate the PTS of this frame in milliseconds */
iPtsMs = a_pPkt->data.frame.pts * 1000
* (uint64_t) a_pCfg->g_timebase.num / a_pCfg->g_timebase.den;
if (iPtsMs <= m_iLastPtsMs)
iPtsMs = m_iLastPtsMs + 1;
m_iLastPtsMs = iPtsMs;
if (m_iInitialPtsMs < 0)
m_iInitialPtsMs = m_iLastPtsMs;
/* Calculate the relative time of this block */
if (iPtsMs - m_uClusterTimecode > 65536)
bStartCluster = 1;
else
uBlockTimecode = static_cast<uint16_t>(iPtsMs - m_uClusterTimecode);
int fKeyframe = (a_pPkt->data.frame.flags & VPX_FRAME_IS_KEY);
if (bStartCluster || fKeyframe)
{
if (m_bClusterOpen)
m_Ebml.subEnd(Cluster);
/* Open a new cluster */
uBlockTimecode = 0;
m_bClusterOpen = true;
m_uClusterTimecode = (uint32_t)iPtsMs;
m_uClusterPos = RTFileTell(m_Ebml.getFile());
m_Ebml.subStart(Cluster)
.serializeUnsignedInteger(Timecode, m_uClusterTimecode);
/* Save a cue point if this is a keyframe. */
if (fKeyframe)
{
CueEntry cue(m_uClusterTimecode, m_uClusterPos);
m_CueList.push_back(cue);
}
}
/* Write a Simple Block */
m_Ebml.writeClassId(SimpleBlock);
m_Ebml.writeUnsignedInteger(0x10000000u | (4 + a_pPkt->data.frame.sz), 4);
m_Ebml.writeSize(1);
m_Ebml.writeUnsignedInteger(uBlockTimecode, 2);
m_Ebml.writeUnsignedInteger((fKeyframe ? 0x80 : 0) | (a_pPkt->data.frame.flags & VPX_FRAME_IS_INVISIBLE ? 0x08 : 0), 1);
m_Ebml.write(a_pPkt->data.frame.buf, a_pPkt->data.frame.sz);
}
void writeFooter(uint32_t a_u64Hash)
{
if (m_bClusterOpen)
m_Ebml.subEnd(Cluster);
m_uCuePos = RTFileTell(m_Ebml.getFile());
m_Ebml.subStart(Cues);
for (std::list<CueEntry>::iterator it = m_CueList.begin(); it != m_CueList.end(); ++it)
{
m_Ebml.subStart(CuePoint)
.serializeUnsignedInteger(CueTime, it->time)
.subStart(CueTrackPositions)
.serializeUnsignedInteger(CueTrack, 1)
.serializeUnsignedInteger(CueClusterPosition, it->loc - m_uPositionReference, 8)
.subEnd(CueTrackPositions)
.subEnd(CuePoint);
}
m_Ebml.subEnd(Cues)
.subEnd(Segment);
writeSeekInfo();
int rc = RTFileSeek(m_Ebml.getFile(), m_uTrackIdPos, RTFILE_SEEK_BEGIN, NULL);
if (!RT_SUCCESS(rc)) throw rc;
m_Ebml.serializeUnsignedInteger(TrackUID, (m_bDebug ? 0xDEADBEEF : a_u64Hash), 4);
rc = RTFileSeek(m_Ebml.getFile(), 0, RTFILE_SEEK_END, NULL);
if (!RT_SUCCESS(rc)) throw rc;
}
friend class WebMWriter;
private:
void writeSeekInfo()
{
uint64_t uPos = RTFileTell(m_Ebml.getFile());
if (m_uSeekInfoPos)
RTFileSeek(m_Ebml.getFile(), m_uSeekInfoPos, RTFILE_SEEK_BEGIN, NULL);
else
m_uSeekInfoPos = uPos;
m_Ebml.subStart(SeekHead)
.subStart(Seek)
.serializeUnsignedInteger(SeekID, Tracks)
.serializeUnsignedInteger(SeekPosition, m_uTrackPos - m_uPositionReference, 8)
.subEnd(Seek)
.subStart(Seek)
.serializeUnsignedInteger(SeekID, Cues)
.serializeUnsignedInteger(SeekPosition, m_uCuePos - m_uPositionReference, 8)
.subEnd(Seek)
.subStart(Seek)
.serializeUnsignedInteger(SeekID, Info)
.serializeUnsignedInteger(SeekPosition, m_uSegmentInfoPos - m_uPositionReference, 8)
.subEnd(Seek)
.subEnd(SeekHead);
int64_t iFrameTime = (int64_t)1000 * m_Framerate.den / m_Framerate.num;
m_uSegmentInfoPos = RTFileTell(m_Ebml.getFile());
char szVersion[64];
RTStrPrintf(szVersion, sizeof(szVersion), "vpxenc%s",
m_bDebug ? "" : vpx_codec_version_str());
m_Ebml.subStart(Info)
.serializeUnsignedInteger(TimecodeScale, 1000000)
.serializeFloat(Segment_Duration, m_iLastPtsMs + iFrameTime - m_iInitialPtsMs)
.serializeString(MuxingApp, szVersion)
.serializeString(WritingApp, szVersion)
.subEnd(Info);
}
};
WebMWriter::WebMWriter() : m_Impl(new WebMWriter_Impl()) {}
WebMWriter::~WebMWriter()
{
delete m_Impl;
}
int WebMWriter::create(const char *a_pszFilename)
{
return m_Impl->m_Ebml.create(a_pszFilename);
}
void WebMWriter::close()
{
m_Impl->m_Ebml.close();
}
int WebMWriter::writeHeader(const vpx_codec_enc_cfg_t *a_pCfg, const vpx_rational *a_pFps)
{
try
{
m_Impl->writeHeader(a_pCfg, a_pFps);
}
catch(int rc)
{
return rc;
}
return VINF_SUCCESS;
}
int WebMWriter::writeBlock(const vpx_codec_enc_cfg_t *a_pCfg, const vpx_codec_cx_pkt_t *a_pPkt)
{
try
{
m_Impl->writeBlock(a_pCfg, a_pPkt);
}
catch(int rc)
{
return rc;
}
return VINF_SUCCESS;
}
int WebMWriter::writeFooter(uint32_t a_u64Hash)
{
try
{
m_Impl->writeFooter(a_u64Hash);
}
catch(int rc)
{
return rc;
}
return VINF_SUCCESS;
}
uint64_t WebMWriter::getFileSize()
{
return m_Impl->m_Ebml.getFileSize();
}
uint64_t WebMWriter::getAvailableSpace()
{
return m_Impl->m_Ebml.getAvailableSpace();
}