DisasmReg.cpp revision 8e2451f7a9a8e6e722d2065fe0eeb5df93799c7a
/* $Id$ */
/** @file
* VBox disassembler- Register Info Helpers.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DIS
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <VBox/vmm/cpum.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/stdarg.h>
#include "DisasmInternal.h"
#include "DisasmTables.h"
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/**
* Array for accessing 64-bit general registers in VMMREGFRAME structure
* by register's index from disasm.
*/
static const unsigned g_aReg64Index[] =
{
RT_OFFSETOF(CPUMCTXCORE, rax), /* USE_REG_RAX */
RT_OFFSETOF(CPUMCTXCORE, rcx), /* USE_REG_RCX */
RT_OFFSETOF(CPUMCTXCORE, rdx), /* USE_REG_RDX */
RT_OFFSETOF(CPUMCTXCORE, rbx), /* USE_REG_RBX */
RT_OFFSETOF(CPUMCTXCORE, rsp), /* USE_REG_RSP */
RT_OFFSETOF(CPUMCTXCORE, rbp), /* USE_REG_RBP */
RT_OFFSETOF(CPUMCTXCORE, rsi), /* USE_REG_RSI */
RT_OFFSETOF(CPUMCTXCORE, rdi), /* USE_REG_RDI */
RT_OFFSETOF(CPUMCTXCORE, r8), /* USE_REG_R8 */
RT_OFFSETOF(CPUMCTXCORE, r9), /* USE_REG_R9 */
RT_OFFSETOF(CPUMCTXCORE, r10), /* USE_REG_R10 */
RT_OFFSETOF(CPUMCTXCORE, r11), /* USE_REG_R11 */
RT_OFFSETOF(CPUMCTXCORE, r12), /* USE_REG_R12 */
RT_OFFSETOF(CPUMCTXCORE, r13), /* USE_REG_R13 */
RT_OFFSETOF(CPUMCTXCORE, r14), /* USE_REG_R14 */
RT_OFFSETOF(CPUMCTXCORE, r15) /* USE_REG_R15 */
};
/**
* Macro for accessing 64-bit general purpose registers in CPUMCTXCORE structure.
*/
#define DIS_READ_REG64(p, idx) (*(uint64_t *)((char *)(p) + g_aReg64Index[idx]))
#define DIS_WRITE_REG64(p, idx, val) (*(uint64_t *)((char *)(p) + g_aReg64Index[idx]) = val)
#define DIS_PTR_REG64(p, idx) ( (uint64_t *)((char *)(p) + g_aReg64Index[idx]))
/**
* Array for accessing 32-bit general registers in VMMREGFRAME structure
* by register's index from disasm.
*/
static const unsigned g_aReg32Index[] =
{
RT_OFFSETOF(CPUMCTXCORE, eax), /* USE_REG_EAX */
RT_OFFSETOF(CPUMCTXCORE, ecx), /* USE_REG_ECX */
RT_OFFSETOF(CPUMCTXCORE, edx), /* USE_REG_EDX */
RT_OFFSETOF(CPUMCTXCORE, ebx), /* USE_REG_EBX */
RT_OFFSETOF(CPUMCTXCORE, esp), /* USE_REG_ESP */
RT_OFFSETOF(CPUMCTXCORE, ebp), /* USE_REG_EBP */
RT_OFFSETOF(CPUMCTXCORE, esi), /* USE_REG_ESI */
RT_OFFSETOF(CPUMCTXCORE, edi), /* USE_REG_EDI */
RT_OFFSETOF(CPUMCTXCORE, r8), /* USE_REG_R8D */
RT_OFFSETOF(CPUMCTXCORE, r9), /* USE_REG_R9D */
RT_OFFSETOF(CPUMCTXCORE, r10), /* USE_REG_R10D */
RT_OFFSETOF(CPUMCTXCORE, r11), /* USE_REG_R11D */
RT_OFFSETOF(CPUMCTXCORE, r12), /* USE_REG_R12D */
RT_OFFSETOF(CPUMCTXCORE, r13), /* USE_REG_R13D */
RT_OFFSETOF(CPUMCTXCORE, r14), /* USE_REG_R14D */
RT_OFFSETOF(CPUMCTXCORE, r15) /* USE_REG_R15D */
};
/**
* Macro for accessing 32-bit general purpose registers in CPUMCTXCORE structure.
*/
#define DIS_READ_REG32(p, idx) (*(uint32_t *)((char *)(p) + g_aReg32Index[idx]))
/* From http://www.cs.cmu.edu/~fp/courses/15213-s06/misc/asm64-handout.pdf:
* ``Perhaps unexpectedly, instructions that move or generate 32-bit register
* values also set the upper 32 bits of the register to zero. Consequently
* there is no need for an instruction movzlq.''
*/
#define DIS_WRITE_REG32(p, idx, val) (*(uint64_t *)((char *)(p) + g_aReg32Index[idx]) = (uint32_t)val)
#define DIS_PTR_REG32(p, idx) ( (uint32_t *)((char *)(p) + g_aReg32Index[idx]))
/**
* Array for accessing 16-bit general registers in CPUMCTXCORE structure
* by register's index from disasm.
*/
static const unsigned g_aReg16Index[] =
{
RT_OFFSETOF(CPUMCTXCORE, eax), /* USE_REG_AX */
RT_OFFSETOF(CPUMCTXCORE, ecx), /* USE_REG_CX */
RT_OFFSETOF(CPUMCTXCORE, edx), /* USE_REG_DX */
RT_OFFSETOF(CPUMCTXCORE, ebx), /* USE_REG_BX */
RT_OFFSETOF(CPUMCTXCORE, esp), /* USE_REG_SP */
RT_OFFSETOF(CPUMCTXCORE, ebp), /* USE_REG_BP */
RT_OFFSETOF(CPUMCTXCORE, esi), /* USE_REG_SI */
RT_OFFSETOF(CPUMCTXCORE, edi), /* USE_REG_DI */
RT_OFFSETOF(CPUMCTXCORE, r8), /* USE_REG_R8W */
RT_OFFSETOF(CPUMCTXCORE, r9), /* USE_REG_R9W */
RT_OFFSETOF(CPUMCTXCORE, r10), /* USE_REG_R10W */
RT_OFFSETOF(CPUMCTXCORE, r11), /* USE_REG_R11W */
RT_OFFSETOF(CPUMCTXCORE, r12), /* USE_REG_R12W */
RT_OFFSETOF(CPUMCTXCORE, r13), /* USE_REG_R13W */
RT_OFFSETOF(CPUMCTXCORE, r14), /* USE_REG_R14W */
RT_OFFSETOF(CPUMCTXCORE, r15) /* USE_REG_R15W */
};
/**
* Macro for accessing 16-bit general purpose registers in CPUMCTXCORE structure.
*/
#define DIS_READ_REG16(p, idx) (*(uint16_t *)((char *)(p) + g_aReg16Index[idx]))
#define DIS_WRITE_REG16(p, idx, val) (*(uint16_t *)((char *)(p) + g_aReg16Index[idx]) = val)
#define DIS_PTR_REG16(p, idx) ( (uint16_t *)((char *)(p) + g_aReg16Index[idx]))
/**
* Array for accessing 8-bit general registers in CPUMCTXCORE structure
* by register's index from disasm.
*/
static const unsigned g_aReg8Index[] =
{
RT_OFFSETOF(CPUMCTXCORE, eax), /* USE_REG_AL */
RT_OFFSETOF(CPUMCTXCORE, ecx), /* USE_REG_CL */
RT_OFFSETOF(CPUMCTXCORE, edx), /* USE_REG_DL */
RT_OFFSETOF(CPUMCTXCORE, ebx), /* USE_REG_BL */
RT_OFFSETOF_ADD(CPUMCTXCORE, eax, 1), /* USE_REG_AH */
RT_OFFSETOF_ADD(CPUMCTXCORE, ecx, 1), /* USE_REG_CH */
RT_OFFSETOF_ADD(CPUMCTXCORE, edx, 1), /* USE_REG_DH */
RT_OFFSETOF_ADD(CPUMCTXCORE, ebx, 1), /* USE_REG_BH */
RT_OFFSETOF(CPUMCTXCORE, r8), /* USE_REG_R8B */
RT_OFFSETOF(CPUMCTXCORE, r9), /* USE_REG_R9B */
RT_OFFSETOF(CPUMCTXCORE, r10), /* USE_REG_R10B*/
RT_OFFSETOF(CPUMCTXCORE, r11), /* USE_REG_R11B */
RT_OFFSETOF(CPUMCTXCORE, r12), /* USE_REG_R12B */
RT_OFFSETOF(CPUMCTXCORE, r13), /* USE_REG_R13B */
RT_OFFSETOF(CPUMCTXCORE, r14), /* USE_REG_R14B */
RT_OFFSETOF(CPUMCTXCORE, r15), /* USE_REG_R15B */
RT_OFFSETOF(CPUMCTXCORE, esp), /* USE_REG_SPL; with REX prefix only */
RT_OFFSETOF(CPUMCTXCORE, ebp), /* USE_REG_BPL; with REX prefix only */
RT_OFFSETOF(CPUMCTXCORE, esi), /* USE_REG_SIL; with REX prefix only */
RT_OFFSETOF(CPUMCTXCORE, edi) /* USE_REG_DIL; with REX prefix only */
};
/**
* Macro for accessing 8-bit general purpose registers in CPUMCTXCORE structure.
*/
#define DIS_READ_REG8(p, idx) (*(uint8_t *)((char *)(p) + g_aReg8Index[idx]))
#define DIS_WRITE_REG8(p, idx, val) (*(uint8_t *)((char *)(p) + g_aReg8Index[idx]) = val)
#define DIS_PTR_REG8(p, idx) ( (uint8_t *)((char *)(p) + g_aReg8Index[idx]))
/**
* Array for accessing segment registers in CPUMCTXCORE structure
* by register's index from disasm.
*/
static const unsigned g_aRegSegIndex[] =
{
RT_OFFSETOF(CPUMCTXCORE, es), /* DIS_SELREG_ES */
RT_OFFSETOF(CPUMCTXCORE, cs), /* DIS_SELREG_CS */
RT_OFFSETOF(CPUMCTXCORE, ss), /* DIS_SELREG_SS */
RT_OFFSETOF(CPUMCTXCORE, ds), /* DIS_SELREG_DS */
RT_OFFSETOF(CPUMCTXCORE, fs), /* DIS_SELREG_FS */
RT_OFFSETOF(CPUMCTXCORE, gs) /* DIS_SELREG_GS */
};
static const unsigned g_aRegHidSegIndex[] =
{
RT_OFFSETOF(CPUMCTXCORE, esHid), /* DIS_SELREG_ES */
RT_OFFSETOF(CPUMCTXCORE, csHid), /* DIS_SELREG_CS */
RT_OFFSETOF(CPUMCTXCORE, ssHid), /* DIS_SELREG_SS */
RT_OFFSETOF(CPUMCTXCORE, dsHid), /* DIS_SELREG_DS */
RT_OFFSETOF(CPUMCTXCORE, fsHid), /* DIS_SELREG_FS */
RT_OFFSETOF(CPUMCTXCORE, gsHid) /* DIS_SELREG_GS */
};
/**
* Macro for accessing segment registers in CPUMCTXCORE structure.
*/
#define DIS_READ_REGSEG(p, idx) (*((uint16_t *)((char *)(p) + g_aRegSegIndex[idx])))
#define DIS_WRITE_REGSEG(p, idx, val) (*((uint16_t *)((char *)(p) + g_aRegSegIndex[idx])) = val)
//*****************************************************************************
//*****************************************************************************
DISDECL(int) DISGetParamSize(PDISCPUSTATE pCpu, POP_PARAMETER pParam)
{
int subtype = OP_PARM_VSUBTYPE(pParam->param);
if (subtype == OP_PARM_v)
{
switch(pCpu->opmode)
{
case DISCPUMODE_32BIT:
subtype = OP_PARM_d;
break;
case DISCPUMODE_64BIT:
subtype = OP_PARM_q;
break;
case DISCPUMODE_16BIT:
subtype = OP_PARM_w;
break;
default:
/* make gcc happy */
break;
}
}
switch(subtype)
{
case OP_PARM_b:
return 1;
case OP_PARM_w:
return 2;
case OP_PARM_d:
return 4;
case OP_PARM_q:
case OP_PARM_dq:
return 8;
case OP_PARM_p: /* far pointer */
if (pCpu->addrmode == DISCPUMODE_32BIT)
return 6; /* 16:32 */
else
if (pCpu->addrmode == DISCPUMODE_64BIT)
return 12; /* 16:64 */
else
return 4; /* 16:16 */
default:
if (pParam->cb)
return pParam->cb;
else //@todo dangerous!!!
return 4;
}
}
//*****************************************************************************
//*****************************************************************************
DISDECL(DIS_SELREG) DISDetectSegReg(PDISCPUSTATE pCpu, POP_PARAMETER pParam)
{
if (pCpu->prefix & DISPREFIX_SEG)
{
/* Use specified SEG: prefix. */
return pCpu->enmPrefixSeg;
}
else
{
/* Guess segment register by parameter type. */
if (pParam->fUse & (DISUSE_REG_GEN32|DISUSE_REG_GEN64|DISUSE_REG_GEN16))
{
AssertCompile(USE_REG_ESP == USE_REG_RSP);
AssertCompile(USE_REG_EBP == USE_REG_RBP);
AssertCompile(USE_REG_ESP == USE_REG_SP);
AssertCompile(USE_REG_EBP == USE_REG_BP);
if (pParam->base.reg_gen == USE_REG_ESP || pParam->base.reg_gen == USE_REG_EBP)
return DIS_SELREG_SS;
}
/* Default is use DS: for data access. */
return DIS_SELREG_DS;
}
}
//*****************************************************************************
//*****************************************************************************
DISDECL(uint8_t) DISQuerySegPrefixByte(PDISCPUSTATE pCpu)
{
Assert(pCpu->prefix & DISPREFIX_SEG);
switch(pCpu->enmPrefixSeg)
{
case DIS_SELREG_ES:
return 0x26;
case DIS_SELREG_CS:
return 0x2E;
case DIS_SELREG_SS:
return 0x36;
case DIS_SELREG_DS:
return 0x3E;
case DIS_SELREG_FS:
return 0x64;
case DIS_SELREG_GS:
return 0x65;
default:
AssertFailed();
return 0;
}
}
/**
* Returns the value of the specified 8 bits general purpose register
*
*/
DISDECL(int) DISFetchReg8(PCCPUMCTXCORE pCtx, unsigned reg8, uint8_t *pVal)
{
AssertReturn(reg8 < RT_ELEMENTS(g_aReg8Index), VERR_INVALID_PARAMETER);
*pVal = DIS_READ_REG8(pCtx, reg8);
return VINF_SUCCESS;
}
/**
* Returns the value of the specified 16 bits general purpose register
*
*/
DISDECL(int) DISFetchReg16(PCCPUMCTXCORE pCtx, unsigned reg16, uint16_t *pVal)
{
AssertReturn(reg16 < RT_ELEMENTS(g_aReg16Index), VERR_INVALID_PARAMETER);
*pVal = DIS_READ_REG16(pCtx, reg16);
return VINF_SUCCESS;
}
/**
* Returns the value of the specified 32 bits general purpose register
*
*/
DISDECL(int) DISFetchReg32(PCCPUMCTXCORE pCtx, unsigned reg32, uint32_t *pVal)
{
AssertReturn(reg32 < RT_ELEMENTS(g_aReg32Index), VERR_INVALID_PARAMETER);
*pVal = DIS_READ_REG32(pCtx, reg32);
return VINF_SUCCESS;
}
/**
* Returns the value of the specified 64 bits general purpose register
*
*/
DISDECL(int) DISFetchReg64(PCCPUMCTXCORE pCtx, unsigned reg64, uint64_t *pVal)
{
AssertReturn(reg64 < RT_ELEMENTS(g_aReg64Index), VERR_INVALID_PARAMETER);
*pVal = DIS_READ_REG64(pCtx, reg64);
return VINF_SUCCESS;
}
/**
* Returns the pointer to the specified 8 bits general purpose register
*
*/
DISDECL(int) DISPtrReg8(PCPUMCTXCORE pCtx, unsigned reg8, uint8_t **ppReg)
{
AssertReturn(reg8 < RT_ELEMENTS(g_aReg8Index), VERR_INVALID_PARAMETER);
*ppReg = DIS_PTR_REG8(pCtx, reg8);
return VINF_SUCCESS;
}
/**
* Returns the pointer to the specified 16 bits general purpose register
*
*/
DISDECL(int) DISPtrReg16(PCPUMCTXCORE pCtx, unsigned reg16, uint16_t **ppReg)
{
AssertReturn(reg16 < RT_ELEMENTS(g_aReg16Index), VERR_INVALID_PARAMETER);
*ppReg = DIS_PTR_REG16(pCtx, reg16);
return VINF_SUCCESS;
}
/**
* Returns the pointer to the specified 32 bits general purpose register
*
*/
DISDECL(int) DISPtrReg32(PCPUMCTXCORE pCtx, unsigned reg32, uint32_t **ppReg)
{
AssertReturn(reg32 < RT_ELEMENTS(g_aReg32Index), VERR_INVALID_PARAMETER);
*ppReg = DIS_PTR_REG32(pCtx, reg32);
return VINF_SUCCESS;
}
/**
* Returns the pointer to the specified 64 bits general purpose register
*
*/
DISDECL(int) DISPtrReg64(PCPUMCTXCORE pCtx, unsigned reg64, uint64_t **ppReg)
{
AssertReturn(reg64 < RT_ELEMENTS(g_aReg64Index), VERR_INVALID_PARAMETER);
*ppReg = DIS_PTR_REG64(pCtx, reg64);
return VINF_SUCCESS;
}
/**
* Returns the value of the specified segment register
*
*/
DISDECL(int) DISFetchRegSeg(PCCPUMCTXCORE pCtx, DIS_SELREG sel, RTSEL *pVal)
{
AssertReturn((unsigned)sel < RT_ELEMENTS(g_aRegSegIndex), VERR_INVALID_PARAMETER);
AssertCompile(sizeof(uint16_t) == sizeof(RTSEL));
*pVal = DIS_READ_REGSEG(pCtx, sel);
return VINF_SUCCESS;
}
/**
* Returns the value of the specified segment register including a pointer to the hidden register in the supplied cpu context
*
*/
DISDECL(int) DISFetchRegSegEx(PCCPUMCTXCORE pCtx, DIS_SELREG sel, RTSEL *pVal, CPUMSELREGHID **ppSelHidReg)
{
AssertReturn((unsigned)sel < RT_ELEMENTS(g_aRegSegIndex), VERR_INVALID_PARAMETER);
AssertCompile(sizeof(uint16_t) == sizeof(RTSEL));
*pVal = DIS_READ_REGSEG(pCtx, sel);
*ppSelHidReg = (CPUMSELREGHID *)((char *)pCtx + g_aRegHidSegIndex[sel]);
return VINF_SUCCESS;
}
/**
* Updates the value of the specified 64 bits general purpose register
*
*/
DISDECL(int) DISWriteReg64(PCPUMCTXCORE pRegFrame, unsigned reg64, uint64_t val64)
{
AssertReturn(reg64 < RT_ELEMENTS(g_aReg64Index), VERR_INVALID_PARAMETER);
DIS_WRITE_REG64(pRegFrame, reg64, val64);
return VINF_SUCCESS;
}
/**
* Updates the value of the specified 32 bits general purpose register
*
*/
DISDECL(int) DISWriteReg32(PCPUMCTXCORE pRegFrame, unsigned reg32, uint32_t val32)
{
AssertReturn(reg32 < RT_ELEMENTS(g_aReg32Index), VERR_INVALID_PARAMETER);
DIS_WRITE_REG32(pRegFrame, reg32, val32);
return VINF_SUCCESS;
}
/**
* Updates the value of the specified 16 bits general purpose register
*
*/
DISDECL(int) DISWriteReg16(PCPUMCTXCORE pRegFrame, unsigned reg16, uint16_t val16)
{
AssertReturn(reg16 < RT_ELEMENTS(g_aReg16Index), VERR_INVALID_PARAMETER);
DIS_WRITE_REG16(pRegFrame, reg16, val16);
return VINF_SUCCESS;
}
/**
* Updates the specified 8 bits general purpose register
*
*/
DISDECL(int) DISWriteReg8(PCPUMCTXCORE pRegFrame, unsigned reg8, uint8_t val8)
{
AssertReturn(reg8 < RT_ELEMENTS(g_aReg8Index), VERR_INVALID_PARAMETER);
DIS_WRITE_REG8(pRegFrame, reg8, val8);
return VINF_SUCCESS;
}
/**
* Updates the specified segment register
*
*/
DISDECL(int) DISWriteRegSeg(PCPUMCTXCORE pCtx, DIS_SELREG sel, RTSEL val)
{
AssertReturn((unsigned)sel < RT_ELEMENTS(g_aRegSegIndex), VERR_INVALID_PARAMETER);
AssertCompile(sizeof(uint16_t) == sizeof(RTSEL));
DIS_WRITE_REGSEG(pCtx, sel, val);
return VINF_SUCCESS;
}
/**
* Returns the value of the parameter in pParam
*
* @returns VBox error code
* @param pCtx CPU context structure pointer
* @param pCpu Pointer to cpu structure which have DISCPUSTATE::mode
* set correctly.
* @param pParam Pointer to the parameter to parse
* @param pParamVal Pointer to parameter value (OUT)
* @param parmtype Parameter type
*
* @note Currently doesn't handle FPU/XMM/MMX/3DNow! parameters correctly!!
*
*/
DISDECL(int) DISQueryParamVal(PCPUMCTXCORE pCtx, PDISCPUSTATE pCpu, POP_PARAMETER pParam, POP_PARAMVAL pParamVal, PARAM_TYPE parmtype)
{
memset(pParamVal, 0, sizeof(*pParamVal));
if (DISUSE_IS_EFFECTIVE_ADDR(pParam->fUse))
{
// Effective address
pParamVal->type = PARMTYPE_ADDRESS;
pParamVal->size = pParam->cb;
if (pParam->fUse & DISUSE_BASE)
{
if (pParam->fUse & DISUSE_REG_GEN8)
{
pParamVal->flags |= PARAM_VAL8;
if (RT_FAILURE(DISFetchReg8(pCtx, pParam->base.reg_gen, &pParamVal->val.val8))) return VERR_INVALID_PARAMETER;
}
else
if (pParam->fUse & DISUSE_REG_GEN16)
{
pParamVal->flags |= PARAM_VAL16;
if (RT_FAILURE(DISFetchReg16(pCtx, pParam->base.reg_gen, &pParamVal->val.val16))) return VERR_INVALID_PARAMETER;
}
else
if (pParam->fUse & DISUSE_REG_GEN32)
{
pParamVal->flags |= PARAM_VAL32;
if (RT_FAILURE(DISFetchReg32(pCtx, pParam->base.reg_gen, &pParamVal->val.val32))) return VERR_INVALID_PARAMETER;
}
else
if (pParam->fUse & DISUSE_REG_GEN64)
{
pParamVal->flags |= PARAM_VAL64;
if (RT_FAILURE(DISFetchReg64(pCtx, pParam->base.reg_gen, &pParamVal->val.val64))) return VERR_INVALID_PARAMETER;
}
else
{
AssertFailed();
return VERR_INVALID_PARAMETER;
}
}
// Note that scale implies index (SIB byte)
if (pParam->fUse & DISUSE_INDEX)
{
if (pParam->fUse & DISUSE_REG_GEN16)
{
uint16_t val16;
pParamVal->flags |= PARAM_VAL16;
if (RT_FAILURE(DISFetchReg16(pCtx, pParam->index.reg_gen, &val16))) return VERR_INVALID_PARAMETER;
Assert(!(pParam->fUse & DISUSE_SCALE)); /* shouldn't be possible in 16 bits mode */
pParamVal->val.val16 += val16;
}
else
if (pParam->fUse & DISUSE_REG_GEN32)
{
uint32_t val32;
pParamVal->flags |= PARAM_VAL32;
if (RT_FAILURE(DISFetchReg32(pCtx, pParam->index.reg_gen, &val32))) return VERR_INVALID_PARAMETER;
if (pParam->fUse & DISUSE_SCALE)
val32 *= pParam->scale;
pParamVal->val.val32 += val32;
}
else
if (pParam->fUse & DISUSE_REG_GEN64)
{
uint64_t val64;
pParamVal->flags |= PARAM_VAL64;
if (RT_FAILURE(DISFetchReg64(pCtx, pParam->index.reg_gen, &val64))) return VERR_INVALID_PARAMETER;
if (pParam->fUse & DISUSE_SCALE)
val64 *= pParam->scale;
pParamVal->val.val64 += val64;
}
else
AssertFailed();
}
if (pParam->fUse & DISUSE_DISPLACEMENT8)
{
if (pCpu->mode == DISCPUMODE_32BIT)
pParamVal->val.val32 += (int32_t)pParam->uDisp.i8;
else
if (pCpu->mode == DISCPUMODE_64BIT)
pParamVal->val.val64 += (int64_t)pParam->uDisp.i8;
else
pParamVal->val.val16 += (int16_t)pParam->uDisp.i8;
}
else
if (pParam->fUse & DISUSE_DISPLACEMENT16)
{
if (pCpu->mode == DISCPUMODE_32BIT)
pParamVal->val.val32 += (int32_t)pParam->uDisp.i16;
else
if (pCpu->mode == DISCPUMODE_64BIT)
pParamVal->val.val64 += (int64_t)pParam->uDisp.i16;
else
pParamVal->val.val16 += pParam->uDisp.i16;
}
else
if (pParam->fUse & DISUSE_DISPLACEMENT32)
{
if (pCpu->mode == DISCPUMODE_32BIT)
pParamVal->val.val32 += pParam->uDisp.i32;
else
pParamVal->val.val64 += pParam->uDisp.i32;
}
else
if (pParam->fUse & DISUSE_DISPLACEMENT64)
{
Assert(pCpu->mode == DISCPUMODE_64BIT);
pParamVal->val.val64 += pParam->uDisp.i64;
}
else
if (pParam->fUse & DISUSE_RIPDISPLACEMENT32)
{
Assert(pCpu->mode == DISCPUMODE_64BIT);
/* Relative to the RIP of the next instruction. */
pParamVal->val.val64 += pParam->uDisp.i32 + pCtx->rip + pCpu->opsize;
}
return VINF_SUCCESS;
}
if (pParam->fUse & (DISUSE_REG_GEN8|DISUSE_REG_GEN16|DISUSE_REG_GEN32|DISUSE_REG_GEN64|DISUSE_REG_FP|DISUSE_REG_MMX|DISUSE_REG_XMM|DISUSE_REG_CR|DISUSE_REG_DBG|DISUSE_REG_SEG|DISUSE_REG_TEST))
{
if (parmtype == PARAM_DEST)
{
// Caller needs to interpret the register according to the instruction (source/target, special value etc)
pParamVal->type = PARMTYPE_REGISTER;
pParamVal->size = pParam->cb;
return VINF_SUCCESS;
}
//else PARAM_SOURCE
pParamVal->type = PARMTYPE_IMMEDIATE;
if (pParam->fUse & DISUSE_REG_GEN8)
{
pParamVal->flags |= PARAM_VAL8;
pParamVal->size = sizeof(uint8_t);
if (RT_FAILURE(DISFetchReg8(pCtx, pParam->base.reg_gen, &pParamVal->val.val8))) return VERR_INVALID_PARAMETER;
}
else
if (pParam->fUse & DISUSE_REG_GEN16)
{
pParamVal->flags |= PARAM_VAL16;
pParamVal->size = sizeof(uint16_t);
if (RT_FAILURE(DISFetchReg16(pCtx, pParam->base.reg_gen, &pParamVal->val.val16))) return VERR_INVALID_PARAMETER;
}
else
if (pParam->fUse & DISUSE_REG_GEN32)
{
pParamVal->flags |= PARAM_VAL32;
pParamVal->size = sizeof(uint32_t);
if (RT_FAILURE(DISFetchReg32(pCtx, pParam->base.reg_gen, &pParamVal->val.val32))) return VERR_INVALID_PARAMETER;
}
else
if (pParam->fUse & DISUSE_REG_GEN64)
{
pParamVal->flags |= PARAM_VAL64;
pParamVal->size = sizeof(uint64_t);
if (RT_FAILURE(DISFetchReg64(pCtx, pParam->base.reg_gen, &pParamVal->val.val64))) return VERR_INVALID_PARAMETER;
}
else
{
// Caller needs to interpret the register according to the instruction (source/target, special value etc)
pParamVal->type = PARMTYPE_REGISTER;
}
Assert(!(pParam->fUse & DISUSE_IMMEDIATE));
return VINF_SUCCESS;
}
if (pParam->fUse & DISUSE_IMMEDIATE)
{
pParamVal->type = PARMTYPE_IMMEDIATE;
if (pParam->fUse & (DISUSE_IMMEDIATE8|DISUSE_IMMEDIATE8_REL))
{
pParamVal->flags |= PARAM_VAL8;
if (pParam->cb == 2)
{
pParamVal->size = sizeof(uint16_t);
pParamVal->val.val16 = (uint8_t)pParam->parval;
}
else
{
pParamVal->size = sizeof(uint8_t);
pParamVal->val.val8 = (uint8_t)pParam->parval;
}
}
else
if (pParam->fUse & (DISUSE_IMMEDIATE16|DISUSE_IMMEDIATE16_REL|DISUSE_IMMEDIATE_ADDR_0_16|DISUSE_IMMEDIATE16_SX8))
{
pParamVal->flags |= PARAM_VAL16;
pParamVal->size = sizeof(uint16_t);
pParamVal->val.val16 = (uint16_t)pParam->parval;
AssertMsg(pParamVal->size == pParam->cb || ((pParam->cb == 1) && (pParam->fUse & DISUSE_IMMEDIATE16_SX8)), ("pParamVal->size %d vs %d EIP=%RX32\n", pParamVal->size, pParam->cb, pCtx->eip) );
}
else
if (pParam->fUse & (DISUSE_IMMEDIATE32|DISUSE_IMMEDIATE32_REL|DISUSE_IMMEDIATE_ADDR_0_32|DISUSE_IMMEDIATE32_SX8))
{
pParamVal->flags |= PARAM_VAL32;
pParamVal->size = sizeof(uint32_t);
pParamVal->val.val32 = (uint32_t)pParam->parval;
Assert(pParamVal->size == pParam->cb || ((pParam->cb == 1) && (pParam->fUse & DISUSE_IMMEDIATE32_SX8)) );
}
else
if (pParam->fUse & (DISUSE_IMMEDIATE64 | DISUSE_IMMEDIATE64_REL | DISUSE_IMMEDIATE64_SX8))
{
pParamVal->flags |= PARAM_VAL64;
pParamVal->size = sizeof(uint64_t);
pParamVal->val.val64 = pParam->parval;
Assert(pParamVal->size == pParam->cb || ((pParam->cb == 1) && (pParam->fUse & DISUSE_IMMEDIATE64_SX8)) );
}
else
if (pParam->fUse & (DISUSE_IMMEDIATE_ADDR_16_16))
{
pParamVal->flags |= PARAM_VALFARPTR16;
pParamVal->size = sizeof(uint16_t)*2;
pParamVal->val.farptr.sel = (uint16_t)RT_LOWORD(pParam->parval >> 16);
pParamVal->val.farptr.offset = (uint32_t)RT_LOWORD(pParam->parval);
Assert(pParamVal->size == pParam->cb);
}
else
if (pParam->fUse & (DISUSE_IMMEDIATE_ADDR_16_32))
{
pParamVal->flags |= PARAM_VALFARPTR32;
pParamVal->size = sizeof(uint16_t) + sizeof(uint32_t);
pParamVal->val.farptr.sel = (uint16_t)RT_LOWORD(pParam->parval >> 32);
pParamVal->val.farptr.offset = (uint32_t)(pParam->parval & 0xFFFFFFFF);
Assert(pParam->cb == 8);
}
}
return VINF_SUCCESS;
}
/**
* Returns the pointer to a register of the parameter in pParam. We need this
* pointer when an interpreted instruction updates a register as a side effect.
* In CMPXCHG we know that only [r/e]ax is updated, but with XADD this could
* be every register.
*
* @returns VBox error code
* @param pCtx CPU context structure pointer
* @param pCpu Pointer to cpu structure which have DISCPUSTATE::mode
* set correctly.
* @param pParam Pointer to the parameter to parse
* @param pReg Pointer to parameter value (OUT)
* @param cbsize Parameter size (OUT)
*
* @note Currently doesn't handle FPU/XMM/MMX/3DNow! parameters correctly!!
*
*/
DISDECL(int) DISQueryParamRegPtr(PCPUMCTXCORE pCtx, PDISCPUSTATE pCpu, POP_PARAMETER pParam, void **ppReg, size_t *pcbSize)
{
NOREF(pCpu);
if (pParam->fUse & (DISUSE_REG_GEN8|DISUSE_REG_GEN16|DISUSE_REG_GEN32|DISUSE_REG_FP|DISUSE_REG_MMX|DISUSE_REG_XMM|DISUSE_REG_CR|DISUSE_REG_DBG|DISUSE_REG_SEG|DISUSE_REG_TEST))
{
if (pParam->fUse & DISUSE_REG_GEN8)
{
uint8_t *pu8Reg;
if (RT_SUCCESS(DISPtrReg8(pCtx, pParam->base.reg_gen, &pu8Reg)))
{
*pcbSize = sizeof(uint8_t);
*ppReg = (void *)pu8Reg;
return VINF_SUCCESS;
}
}
else
if (pParam->fUse & DISUSE_REG_GEN16)
{
uint16_t *pu16Reg;
if (RT_SUCCESS(DISPtrReg16(pCtx, pParam->base.reg_gen, &pu16Reg)))
{
*pcbSize = sizeof(uint16_t);
*ppReg = (void *)pu16Reg;
return VINF_SUCCESS;
}
}
else
if (pParam->fUse & DISUSE_REG_GEN32)
{
uint32_t *pu32Reg;
if (RT_SUCCESS(DISPtrReg32(pCtx, pParam->base.reg_gen, &pu32Reg)))
{
*pcbSize = sizeof(uint32_t);
*ppReg = (void *)pu32Reg;
return VINF_SUCCESS;
}
}
else
if (pParam->fUse & DISUSE_REG_GEN64)
{
uint64_t *pu64Reg;
if (RT_SUCCESS(DISPtrReg64(pCtx, pParam->base.reg_gen, &pu64Reg)))
{
*pcbSize = sizeof(uint64_t);
*ppReg = (void *)pu64Reg;
return VINF_SUCCESS;
}
}
}
return VERR_INVALID_PARAMETER;
}