DisasmCore.cpp revision a0892a0a33b8ffaa8ff2f252411176f63e8d9f18
/* $Id$ */
/** @file
* VBox Disassembler - Core Components.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DIS
#ifdef USING_VISUAL_STUDIO
# include <stdafx.h>
#endif
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/stdarg.h>
#include "DisasmInternal.h"
#include "DisasmTables.h"
#if !defined(DIS_CORE_ONLY) && defined(LOG_ENABLED)
# include <stdlib.h>
# include <stdio.h>
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static int disCoreParseInstr(PDISCPUSTATE pCpu, RTUINTPTR uInstrAddr, const OPCODE *paOneByteMap,
unsigned *pcbInstruction);
#if !defined(DIS_CORE_ONLY) && defined(LOG_ENABLED)
static void disasmAddString(char *psz, const char *pszString);
static void disasmAddStringF(char *psz, const char *pszFormat, ...);
static void disasmAddChar(char *psz, char ch);
# define disasmAddStringF1(psz, pszFmt, a1) disasmAddStringF(psz, pszFmt, a1)
# define disasmAddStringF2(psz, pszFmt, a1, a2) disasmAddStringF(psz, pszFmt, a1, a2)
# define disasmAddStringF3(psz, pszFmt, a1, a2, a3) disasmAddStringF(psz, pszFmt, a1, a2, a3)
#else
# define disasmAddString(psz, pszString) do {} while (0)
# define disasmAddStringF1(psz, pszFmt, a1) do {} while (0)
# define disasmAddStringF2(psz, pszFmt, a1, a2) do {} while (0)
# define disasmAddStringF3(psz, pszFmt, a1, a2, a3) do {} while (0)
# define disasmAddChar(psz, ch) do {} while (0)
#endif
static unsigned QueryModRM(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu, unsigned *pSibInc = NULL);
static unsigned QueryModRM_SizeOnly(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu, unsigned *pSibInc = NULL);
static void UseSIB(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu);
static unsigned ParseSIB_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
PFNDISPARSE pfnFullDisasm[IDX_ParseMax] =
{
ParseIllegal,
ParseModRM,
UseModRM,
ParseImmByte,
ParseImmBRel,
ParseImmUshort,
ParseImmV,
ParseImmVRel,
ParseImmAddr,
ParseFixedReg,
ParseImmUlong,
ParseImmQword,
ParseTwoByteEsc,
ParseImmGrpl,
ParseShiftGrp2,
ParseGrp3,
ParseGrp4,
ParseGrp5,
Parse3DNow,
ParseGrp6,
ParseGrp7,
ParseGrp8,
ParseGrp9,
ParseGrp10,
ParseGrp12,
ParseGrp13,
ParseGrp14,
ParseGrp15,
ParseGrp16,
ParseModFence,
ParseYv,
ParseYb,
ParseXv,
ParseXb,
ParseEscFP,
ParseNopPause,
ParseImmByteSX,
ParseImmZ,
ParseThreeByteEsc4,
ParseThreeByteEsc5,
ParseImmAddrF
};
PFNDISPARSE pfnCalcSize[IDX_ParseMax] =
{
ParseIllegal,
ParseModRM_SizeOnly,
UseModRM,
ParseImmByte_SizeOnly,
ParseImmBRel_SizeOnly,
ParseImmUshort_SizeOnly,
ParseImmV_SizeOnly,
ParseImmVRel_SizeOnly,
ParseImmAddr_SizeOnly,
ParseFixedReg,
ParseImmUlong_SizeOnly,
ParseImmQword_SizeOnly,
ParseTwoByteEsc,
ParseImmGrpl,
ParseShiftGrp2,
ParseGrp3,
ParseGrp4,
ParseGrp5,
Parse3DNow,
ParseGrp6,
ParseGrp7,
ParseGrp8,
ParseGrp9,
ParseGrp10,
ParseGrp12,
ParseGrp13,
ParseGrp14,
ParseGrp15,
ParseGrp16,
ParseModFence,
ParseYv,
ParseYb,
ParseXv,
ParseXb,
ParseEscFP,
ParseNopPause,
ParseImmByteSX_SizeOnly,
ParseImmZ_SizeOnly,
ParseThreeByteEsc4,
ParseThreeByteEsc5,
ParseImmAddrF_SizeOnly
};
/**
* Parses one guest instruction.
* The result is found in pCpu and pcbInstruction.
*
* @returns VBox status code.
* @param uInstrAddr Address of the instruction to decode. What this means
* is left to the pfnReadBytes function.
* @param enmCpuMode The CPU mode. CPUMODE_32BIT, CPUMODE_16BIT, or CPUMODE_64BIT.
* @param pfnReadBytes Callback for reading instruction bytes.
* @param pvUser User argument for the instruction reader. (Ends up in apvUserData[0].)
* @param pCpu Pointer to cpu structure. Will be initialized.
* @param pcbInstruction Where to store the size of the instruction.
* NULL is allowed.
*/
DISDECL(int) DISCoreOneEx(RTUINTPTR uInstrAddr, DISCPUMODE enmCpuMode, PFNDISREADBYTES pfnReadBytes, void *pvUser,
PDISCPUSTATE pCpu, unsigned *pcbInstruction)
{
const OPCODE *paOneByteMap;
/*
* Initialize the CPU state.
* Note! The RT_BZERO make ASSUMPTIONS about the placement of apvUserData.
*/
RT_BZERO(pCpu, RT_OFFSETOF(DISCPUSTATE, apvUserData));
pCpu->mode = enmCpuMode;
if (enmCpuMode == CPUMODE_64BIT)
{
paOneByteMap = g_aOneByteMapX64;
pCpu->addrmode = CPUMODE_64BIT;
pCpu->opmode = CPUMODE_32BIT;
}
else
{
paOneByteMap = g_aOneByteMapX86;
pCpu->addrmode = enmCpuMode;
pCpu->opmode = enmCpuMode;
}
pCpu->prefix = PREFIX_NONE;
pCpu->enmPrefixSeg = DIS_SELREG_DS;
pCpu->uInstrAddr = uInstrAddr;
pCpu->pfnDisasmFnTable = pfnFullDisasm;
pCpu->uFilter = OPTYPE_ALL;
pCpu->rc = VINF_SUCCESS;
pCpu->pfnReadBytes = pfnReadBytes ? pfnReadBytes : disReadBytesDefault;
pCpu->apvUserData[0] = pvUser;
return disCoreParseInstr(pCpu, uInstrAddr, paOneByteMap, pcbInstruction);
}
/**
* Internal worker for DISCoreOne and DISCoreOneEx.
*
* @returns VBox status code.
* @param pCpu Initialized cpu state.
* @param paOneByteMap The one byte opcode map to use.
* @param uInstrAddr Instruction address.
* @param pcbInstruction Where to store the instruction size. Can be NULL.
*/
static int disCoreParseInstr(PDISCPUSTATE pCpu, RTUINTPTR uInstrAddr, const OPCODE *paOneByteMap, unsigned *pcbInstruction)
{
/*
* Parse byte by byte.
*/
unsigned iByte = 0;
unsigned cbInc;
for (;;)
{
uint8_t codebyte = DISReadByte(pCpu, uInstrAddr+iByte);
uint8_t opcode = paOneByteMap[codebyte].opcode;
/* Hardcoded assumption about OP_* values!! */
if (opcode <= OP_LAST_PREFIX)
{
/* The REX prefix must precede the opcode byte(s). Any other placement is ignored. */
if (opcode != OP_REX)
{
/** Last prefix byte (for SSE2 extension tables); don't include the REX prefix */
pCpu->lastprefix = opcode;
pCpu->prefix &= ~PREFIX_REX;
}
switch (opcode)
{
case OP_INVALID:
if (pcbInstruction)
*pcbInstruction = iByte + 1;
return pCpu->rc = VERR_DIS_INVALID_OPCODE;
// segment override prefix byte
case OP_SEG:
pCpu->enmPrefixSeg = (DIS_SELREG)(paOneByteMap[codebyte].param1 - OP_PARM_REG_SEG_START);
/* Segment prefixes for CS, DS, ES and SS are ignored in long mode. */
if ( pCpu->mode != CPUMODE_64BIT
|| pCpu->enmPrefixSeg >= DIS_SELREG_FS)
{
pCpu->prefix |= PREFIX_SEG;
}
iByte += sizeof(uint8_t);
continue; //fetch the next byte
// lock prefix byte
case OP_LOCK:
pCpu->prefix |= PREFIX_LOCK;
iByte += sizeof(uint8_t);
continue; //fetch the next byte
// address size override prefix byte
case OP_ADDRSIZE:
pCpu->prefix |= PREFIX_ADDRSIZE;
if (pCpu->mode == CPUMODE_16BIT)
pCpu->addrmode = CPUMODE_32BIT;
else
if (pCpu->mode == CPUMODE_32BIT)
pCpu->addrmode = CPUMODE_16BIT;
else
pCpu->addrmode = CPUMODE_32BIT; /* 64 bits */
iByte += sizeof(uint8_t);
continue; //fetch the next byte
// operand size override prefix byte
case OP_OPSIZE:
pCpu->prefix |= PREFIX_OPSIZE;
if (pCpu->mode == CPUMODE_16BIT)
pCpu->opmode = CPUMODE_32BIT;
else
pCpu->opmode = CPUMODE_16BIT; /* for 32 and 64 bits mode (there is no 32 bits operand size override prefix) */
iByte += sizeof(uint8_t);
continue; //fetch the next byte
// rep and repne are not really prefixes, but we'll treat them as such
case OP_REPE:
pCpu->prefix |= PREFIX_REP;
iByte += sizeof(uint8_t);
continue; //fetch the next byte
case OP_REPNE:
pCpu->prefix |= PREFIX_REPNE;
iByte += sizeof(uint8_t);
continue; //fetch the next byte
case OP_REX:
Assert(pCpu->mode == CPUMODE_64BIT);
/* REX prefix byte */
pCpu->prefix |= PREFIX_REX;
pCpu->prefix_rex = PREFIX_REX_OP_2_FLAGS(paOneByteMap[codebyte].param1);
iByte += sizeof(uint8_t);
if (pCpu->prefix_rex & PREFIX_REX_FLAGS_W)
pCpu->opmode = CPUMODE_64BIT; /* overrides size prefix byte */
continue; //fetch the next byte
}
}
unsigned uIdx = iByte;
iByte += sizeof(uint8_t); //first opcode byte
pCpu->opaddr = uInstrAddr;
pCpu->opcode = codebyte;
cbInc = ParseInstruction(uInstrAddr + iByte, &paOneByteMap[pCpu->opcode], pCpu);
iByte += cbInc;
break;
}
AssertMsg(pCpu->opsize == iByte || RT_FAILURE_NP(pCpu->rc), ("%u %u\n", pCpu->opsize, iByte));
pCpu->opsize = iByte;
if (pcbInstruction)
*pcbInstruction = iByte;
if (pCpu->prefix & PREFIX_LOCK)
disValidateLockSequence(pCpu);
return pCpu->rc;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseInstruction(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, PDISCPUSTATE pCpu)
{
int size = 0;
bool fFiltered = false;
Assert(lpszCodeBlock && pOp && pCpu);
// Store the opcode format string for disasmPrintf
#ifndef DIS_CORE_ONLY
pCpu->pszOpcode = pOp->pszOpcode;
#endif
pCpu->pCurInstr = pOp;
/*
* Apply filter to instruction type to determine if a full disassembly is required.
* @note Multibyte opcodes are always marked harmless until the final byte.
*/
if ((pOp->optype & pCpu->uFilter) == 0)
{
fFiltered = true;
pCpu->pfnDisasmFnTable = pfnCalcSize;
}
else
{
/* Not filtered out -> full disassembly */
pCpu->pfnDisasmFnTable = pfnFullDisasm;
}
// Should contain the parameter type on input
pCpu->param1.param = pOp->param1;
pCpu->param2.param = pOp->param2;
pCpu->param3.param = pOp->param3;
/* Correct the operand size if the instruction is marked as forced or default 64 bits */
if (pCpu->mode == CPUMODE_64BIT)
{
if (pOp->optype & OPTYPE_FORCED_64_OP_SIZE)
pCpu->opmode = CPUMODE_64BIT;
else
if ( (pOp->optype & OPTYPE_DEFAULT_64_OP_SIZE)
&& !(pCpu->prefix & PREFIX_OPSIZE))
pCpu->opmode = CPUMODE_64BIT;
}
else
if (pOp->optype & OPTYPE_FORCED_32_OP_SIZE_X86)
{
/* Forced 32 bits operand size for certain instructions (mov crx, mov drx). */
Assert(pCpu->mode != CPUMODE_64BIT);
pCpu->opmode = CPUMODE_32BIT;
}
if (pOp->idxParse1 != IDX_ParseNop)
{
size += pCpu->pfnDisasmFnTable[pOp->idxParse1](lpszCodeBlock, pOp, &pCpu->param1, pCpu);
if (fFiltered == false) pCpu->param1.size = DISGetParamSize(pCpu, &pCpu->param1);
}
if (pOp->idxParse2 != IDX_ParseNop)
{
size += pCpu->pfnDisasmFnTable[pOp->idxParse2](lpszCodeBlock+size, pOp, &pCpu->param2, pCpu);
if (fFiltered == false) pCpu->param2.size = DISGetParamSize(pCpu, &pCpu->param2);
}
if (pOp->idxParse3 != IDX_ParseNop)
{
size += pCpu->pfnDisasmFnTable[pOp->idxParse3](lpszCodeBlock+size, pOp, &pCpu->param3, pCpu);
if (fFiltered == false) pCpu->param3.size = DISGetParamSize(pCpu, &pCpu->param3);
}
// else simple one byte instruction
return size;
}
//*****************************************************************************
/* Floating point opcode parsing */
//*****************************************************************************
unsigned ParseEscFP(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
int index;
const OPCODE *fpop;
unsigned size = 0;
unsigned ModRM;
NOREF(pOp);
ModRM = DISReadByte(pCpu, lpszCodeBlock);
index = pCpu->opcode - 0xD8;
if (ModRM <= 0xBF)
{
fpop = &(g_paMapX86_FP_Low[index])[MODRM_REG(ModRM)];
pCpu->pCurInstr = (PCOPCODE)fpop;
// Should contain the parameter type on input
pCpu->param1.param = fpop->param1;
pCpu->param2.param = fpop->param2;
}
else
{
fpop = &(g_paMapX86_FP_High[index])[ModRM - 0xC0];
pCpu->pCurInstr = (PCOPCODE)fpop;
}
/*
* Apply filter to instruction type to determine if a full disassembly is required.
* @note Multibyte opcodes are always marked harmless until the final byte.
*/
if ((fpop->optype & pCpu->uFilter) == 0)
{
pCpu->pfnDisasmFnTable = pfnCalcSize;
}
else
{
/* Not filtered out -> full disassembly */
pCpu->pfnDisasmFnTable = pfnFullDisasm;
}
/* Correct the operand size if the instruction is marked as forced or default 64 bits */
if (pCpu->mode == CPUMODE_64BIT)
{
/* Note: redundant, but just in case this ever changes */
if (fpop->optype & OPTYPE_FORCED_64_OP_SIZE)
pCpu->opmode = CPUMODE_64BIT;
else
if ( (fpop->optype & OPTYPE_DEFAULT_64_OP_SIZE)
&& !(pCpu->prefix & PREFIX_OPSIZE))
pCpu->opmode = CPUMODE_64BIT;
}
// Little hack to make sure the ModRM byte is included in the returned size
if (fpop->idxParse1 != IDX_ParseModRM && fpop->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
if (fpop->idxParse1 != IDX_ParseNop)
size += pCpu->pfnDisasmFnTable[fpop->idxParse1](lpszCodeBlock+size, (PCOPCODE)fpop, pParam, pCpu);
if (fpop->idxParse2 != IDX_ParseNop)
size += pCpu->pfnDisasmFnTable[fpop->idxParse2](lpszCodeBlock+size, (PCOPCODE)fpop, pParam, pCpu);
// Store the opcode format string for disasmPrintf
#ifndef DIS_CORE_ONLY
pCpu->pszOpcode = fpop->pszOpcode;
#endif
return size;
}
//*****************************************************************************
// SIB byte: (32 bits mode only)
// 7 - 6 5 - 3 2-0
// Scale Index Base
//*****************************************************************************
static const char *szSIBBaseReg[8] = {"EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI"};
static const char *szSIBIndexReg[8] = {"EAX", "ECX", "EDX", "EBX", NULL, "EBP", "ESI", "EDI"};
static const char *szSIBBaseReg64[16] = {"RAX", "RCX", "RDX", "RBX", "RSP", "RBP", "RSI", "RDI", "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15"};
static const char *szSIBIndexReg64[16]= {"RAX", "RCX", "RDX", "RBX", NULL, "RBP", "RSI", "RDI", "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15"};
#if !defined(DIS_CORE_ONLY) && defined(LOG_ENABLED) || defined(_MSC_VER)
static const char *szSIBScale[4] = {"", "*2", "*4", "*8"};
#endif
//*****************************************************************************
void UseSIB(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned scale, base, index, regtype;
const char **ppszSIBIndexReg;
const char **ppszSIBBaseReg;
NOREF(lpszCodeBlock); NOREF(pOp);
scale = pCpu->SIB.Bits.Scale;
base = pCpu->SIB.Bits.Base;
index = pCpu->SIB.Bits.Index;
if (pCpu->addrmode == CPUMODE_32BIT)
{
ppszSIBIndexReg = szSIBIndexReg;
ppszSIBBaseReg = szSIBBaseReg;
regtype = USE_REG_GEN32;
}
else
{
ppszSIBIndexReg = szSIBIndexReg64;
ppszSIBBaseReg = szSIBBaseReg64;
regtype = USE_REG_GEN64;
}
if (ppszSIBIndexReg[index])
{
pParam->flags |= USE_INDEX | regtype;
pParam->index.reg_gen = index;
if (scale != 0)
{
pParam->flags |= USE_SCALE;
pParam->scale = (1<<scale);
}
if (base == 5 && pCpu->ModRM.Bits.Mod == 0)
disasmAddStringF2(pParam->szParam, "%s%s", ppszSIBIndexReg[index], szSIBScale[scale]);
else
disasmAddStringF3(pParam->szParam, "%s+%s%s", ppszSIBBaseReg[base], ppszSIBIndexReg[index], szSIBScale[scale]);
}
else
{
if (base != 5 || pCpu->ModRM.Bits.Mod != 0)
disasmAddStringF1(pParam->szParam, "%s", ppszSIBBaseReg[base]);
}
if (base == 5 && pCpu->ModRM.Bits.Mod == 0)
{
// [scaled index] + disp32
if (pCpu->addrmode == CPUMODE_32BIT)
{
pParam->flags |= USE_DISPLACEMENT32;
pParam->uDisp.i32 = pCpu->i32SibDisp;
disasmAddChar(pParam->szParam, '+');
disasmPrintDisp32(pParam);
}
else
{ /* sign-extend to 64 bits */
pParam->flags |= USE_DISPLACEMENT64;
pParam->uDisp.i64 = pCpu->i32SibDisp;
disasmAddChar(pParam->szParam, '+');
disasmPrintDisp64(pParam);
}
}
else
{
pParam->flags |= USE_BASE | regtype;
pParam->base.reg_gen = base;
}
return; /* Already fetched everything in ParseSIB; no size returned */
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseSIB(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = sizeof(uint8_t);
unsigned SIB;
NOREF(pOp); NOREF(pParam);
SIB = DISReadByte(pCpu, lpszCodeBlock);
lpszCodeBlock += size;
pCpu->SIB.Bits.Base = SIB_BASE(SIB);
pCpu->SIB.Bits.Index = SIB_INDEX(SIB);
pCpu->SIB.Bits.Scale = SIB_SCALE(SIB);
if (pCpu->prefix & PREFIX_REX)
{
/* REX.B extends the Base field if not scaled index + disp32 */
if (!(pCpu->SIB.Bits.Base == 5 && pCpu->ModRM.Bits.Mod == 0))
pCpu->SIB.Bits.Base |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_B)) << 3);
pCpu->SIB.Bits.Index |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_X)) << 3);
}
if ( pCpu->SIB.Bits.Base == 5
&& pCpu->ModRM.Bits.Mod == 0)
{
/* Additional 32 bits displacement. No change in long mode. */
pCpu->i32SibDisp = DISReadDWord(pCpu, lpszCodeBlock);
size += sizeof(int32_t);
}
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseSIB_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = sizeof(uint8_t);
unsigned SIB;
NOREF(pOp); NOREF(pParam);
SIB = DISReadByte(pCpu, lpszCodeBlock);
lpszCodeBlock += size;
pCpu->SIB.Bits.Base = SIB_BASE(SIB);
pCpu->SIB.Bits.Index = SIB_INDEX(SIB);
pCpu->SIB.Bits.Scale = SIB_SCALE(SIB);
if (pCpu->prefix & PREFIX_REX)
{
/* REX.B extends the Base field. */
pCpu->SIB.Bits.Base |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_B)) << 3);
/* REX.X extends the Index field. */
pCpu->SIB.Bits.Index |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_X)) << 3);
}
if ( pCpu->SIB.Bits.Base == 5
&& pCpu->ModRM.Bits.Mod == 0)
{
/* Additional 32 bits displacement. No change in long mode. */
size += sizeof(int32_t);
}
return size;
}
//*****************************************************************************
// ModR/M byte:
// 7 - 6 5 - 3 2-0
// Mod Reg/Opcode R/M
//*****************************************************************************
unsigned UseModRM(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
int vtype = OP_PARM_VTYPE(pParam->param);
unsigned reg = pCpu->ModRM.Bits.Reg;
unsigned mod = pCpu->ModRM.Bits.Mod;
unsigned rm = pCpu->ModRM.Bits.Rm;
switch (vtype)
{
case OP_PARM_G: //general purpose register
disasmModRMReg(pCpu, pOp, reg, pParam, 0);
return 0;
default:
if (IS_OP_PARM_RARE(vtype))
{
switch (vtype)
{
case OP_PARM_C: //control register
pParam->flags |= USE_REG_CR;
if ( pCpu->pCurInstr->opcode == OP_MOV_CR
&& pCpu->opmode == CPUMODE_32BIT
&& (pCpu->prefix & PREFIX_LOCK))
{
pCpu->prefix &= ~PREFIX_LOCK;
pParam->base.reg_ctrl = USE_REG_CR8;
}
else
pParam->base.reg_ctrl = reg;
disasmAddStringF1(pParam->szParam, "CR%d", pParam->base.reg_ctrl);
return 0;
case OP_PARM_D: //debug register
disasmAddStringF1(pParam->szParam, "DR%d", reg);
pParam->flags |= USE_REG_DBG;
pParam->base.reg_dbg = reg;
return 0;
case OP_PARM_P: //MMX register
reg &= 7; /* REX.R has no effect here */
disasmAddStringF1(pParam->szParam, "MM%d", reg);
pParam->flags |= USE_REG_MMX;
pParam->base.reg_mmx = reg;
return 0;
case OP_PARM_S: //segment register
reg &= 7; /* REX.R has no effect here */
disasmModRMSReg(pCpu, pOp, reg, pParam);
pParam->flags |= USE_REG_SEG;
return 0;
case OP_PARM_T: //test register
reg &= 7; /* REX.R has no effect here */
disasmAddStringF1(pParam->szParam, "TR%d", reg);
pParam->flags |= USE_REG_TEST;
pParam->base.reg_test = reg;
return 0;
case OP_PARM_W: //XMM register or memory operand
if (mod != 3)
break; /* memory operand */
reg = rm; /* the RM field specifies the xmm register */
/* else no break */
case OP_PARM_V: //XMM register
disasmAddStringF1(pParam->szParam, "XMM%d", reg);
pParam->flags |= USE_REG_XMM;
pParam->base.reg_xmm = reg;
return 0;
}
}
}
/* @todo bound */
if (pCpu->addrmode != CPUMODE_16BIT)
{
Assert(pCpu->addrmode == CPUMODE_32BIT || pCpu->addrmode == CPUMODE_64BIT);
/*
* Note: displacements in long mode are 8 or 32 bits and sign-extended to 64 bits
*/
switch (mod)
{
case 0: //effective address
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddChar(pParam->szParam, '[');
if (rm == 4)
{ /* SIB byte follows ModRM */
UseSIB(lpszCodeBlock, pOp, pParam, pCpu);
}
else
if (rm == 5)
{
/* 32 bits displacement */
if (pCpu->mode != CPUMODE_64BIT)
{
pParam->flags |= USE_DISPLACEMENT32;
pParam->uDisp.i32 = pCpu->i32SibDisp;
disasmPrintDisp32(pParam);
}
else
{
pParam->flags |= USE_RIPDISPLACEMENT32;
pParam->uDisp.i32 = pCpu->i32SibDisp;
disasmAddString(pParam->szParam, "RIP+");
disasmPrintDisp32(pParam);
}
}
else
{ //register address
pParam->flags |= USE_BASE;
disasmModRMReg(pCpu, pOp, rm, pParam, 1);
}
disasmAddChar(pParam->szParam, ']');
break;
case 1: //effective address + 8 bits displacement
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddChar(pParam->szParam, '[');
if (rm == 4) {//SIB byte follows ModRM
UseSIB(lpszCodeBlock, pOp, pParam, pCpu);
}
else
{
pParam->flags |= USE_BASE;
disasmModRMReg(pCpu, pOp, rm, pParam, 1);
}
pParam->uDisp.i8 = pCpu->i32SibDisp;
pParam->flags |= USE_DISPLACEMENT8;
if (pParam->uDisp.i8 != 0)
{
if (pParam->uDisp.i8 > 0)
disasmAddChar(pParam->szParam, '+');
disasmPrintDisp8(pParam);
}
disasmAddChar(pParam->szParam, ']');
break;
case 2: //effective address + 32 bits displacement
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddChar(pParam->szParam, '[');
if (rm == 4) {//SIB byte follows ModRM
UseSIB(lpszCodeBlock, pOp, pParam, pCpu);
}
else
{
pParam->flags |= USE_BASE;
disasmModRMReg(pCpu, pOp, rm, pParam, 1);
}
pParam->uDisp.i32 = pCpu->i32SibDisp;
pParam->flags |= USE_DISPLACEMENT32;
if (pParam->uDisp.i32 != 0)
{
disasmAddChar(pParam->szParam, '+');
disasmPrintDisp32(pParam);
}
disasmAddChar(pParam->szParam, ']');
break;
case 3: //registers
disasmModRMReg(pCpu, pOp, rm, pParam, 0);
break;
}
}
else
{//16 bits addressing mode
switch (mod)
{
case 0: //effective address
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddChar(pParam->szParam, '[');
if (rm == 6)
{//16 bits displacement
pParam->uDisp.i16 = pCpu->i32SibDisp;
pParam->flags |= USE_DISPLACEMENT16;
disasmPrintDisp16(pParam);
}
else
{
pParam->flags |= USE_BASE;
disasmModRMReg16(pCpu, pOp, rm, pParam);
}
disasmAddChar(pParam->szParam, ']');
break;
case 1: //effective address + 8 bits displacement
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddChar(pParam->szParam, '[');
disasmModRMReg16(pCpu, pOp, rm, pParam);
pParam->uDisp.i8 = pCpu->i32SibDisp;
pParam->flags |= USE_BASE | USE_DISPLACEMENT8;
if (pParam->uDisp.i8 != 0)
{
if (pParam->uDisp.i8 > 0)
disasmAddChar(pParam->szParam, '+');
disasmPrintDisp8(pParam);
}
disasmAddChar(pParam->szParam, ']');
break;
case 2: //effective address + 16 bits displacement
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddChar(pParam->szParam, '[');
disasmModRMReg16(pCpu, pOp, rm, pParam);
pParam->uDisp.i16 = pCpu->i32SibDisp;
pParam->flags |= USE_BASE | USE_DISPLACEMENT16;
if (pParam->uDisp.i16 != 0)
{
disasmAddChar(pParam->szParam, '+');
disasmPrintDisp16(pParam);
}
disasmAddChar(pParam->szParam, ']');
break;
case 3: //registers
disasmModRMReg(pCpu, pOp, rm, pParam, 0);
break;
}
}
return 0; //everything was already fetched in ParseModRM
}
//*****************************************************************************
// Query the size of the ModRM parameters and fetch the immediate data (if any)
//*****************************************************************************
unsigned QueryModRM(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu, unsigned *pSibInc)
{
unsigned sibinc;
unsigned size = 0;
// unsigned reg = pCpu->ModRM.Bits.Reg;
unsigned mod = pCpu->ModRM.Bits.Mod;
unsigned rm = pCpu->ModRM.Bits.Rm;
if (!pSibInc)
pSibInc = &sibinc;
*pSibInc = 0;
if (pCpu->addrmode != CPUMODE_16BIT)
{
Assert(pCpu->addrmode == CPUMODE_32BIT || pCpu->addrmode == CPUMODE_64BIT);
/*
* Note: displacements in long mode are 8 or 32 bits and sign-extended to 64 bits
*/
if (mod != 3 && rm == 4)
{ /* SIB byte follows ModRM */
*pSibInc = ParseSIB(lpszCodeBlock, pOp, pParam, pCpu);
lpszCodeBlock += *pSibInc;
size += *pSibInc;
}
switch (mod)
{
case 0: /* Effective address */
if (rm == 5) { /* 32 bits displacement */
pCpu->i32SibDisp = DISReadDWord(pCpu, lpszCodeBlock);
size += sizeof(int32_t);
}
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
pCpu->i32SibDisp = (int8_t)DISReadByte(pCpu, lpszCodeBlock);
size += sizeof(char);
break;
case 2: /* Effective address + 32 bits displacement */
pCpu->i32SibDisp = DISReadDWord(pCpu, lpszCodeBlock);
size += sizeof(int32_t);
break;
case 3: /* registers */
break;
}
}
else
{
/* 16 bits mode */
switch (mod)
{
case 0: /* Effective address */
if (rm == 6) {
pCpu->i32SibDisp = DISReadWord(pCpu, lpszCodeBlock);
size += sizeof(uint16_t);
}
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
pCpu->i32SibDisp = (int8_t)DISReadByte(pCpu, lpszCodeBlock);
size += sizeof(char);
break;
case 2: /* Effective address + 32 bits displacement */
pCpu->i32SibDisp = (int16_t)DISReadWord(pCpu, lpszCodeBlock);
size += sizeof(uint16_t);
break;
case 3: /* registers */
break;
}
}
return size;
}
//*****************************************************************************
// Query the size of the ModRM parameters and fetch the immediate data (if any)
//*****************************************************************************
unsigned QueryModRM_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu, unsigned *pSibInc)
{
unsigned sibinc;
unsigned size = 0;
// unsigned reg = pCpu->ModRM.Bits.Reg;
unsigned mod = pCpu->ModRM.Bits.Mod;
unsigned rm = pCpu->ModRM.Bits.Rm;
if (!pSibInc)
pSibInc = &sibinc;
*pSibInc = 0;
if (pCpu->addrmode != CPUMODE_16BIT)
{
Assert(pCpu->addrmode == CPUMODE_32BIT || pCpu->addrmode == CPUMODE_64BIT);
/*
* Note: displacements in long mode are 8 or 32 bits and sign-extended to 64 bits
*/
if (mod != 3 && rm == 4)
{ /* SIB byte follows ModRM */
*pSibInc = ParseSIB_SizeOnly(lpszCodeBlock, pOp, pParam, pCpu);
lpszCodeBlock += *pSibInc;
size += *pSibInc;
}
switch (mod)
{
case 0: //effective address
if (rm == 5) { /* 32 bits displacement */
size += sizeof(int32_t);
}
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
size += sizeof(char);
break;
case 2: /* Effective address + 32 bits displacement */
size += sizeof(int32_t);
break;
case 3: /* registers */
break;
}
}
else
{
/* 16 bits mode */
switch (mod)
{
case 0: //effective address
if (rm == 6) {
size += sizeof(uint16_t);
}
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
size += sizeof(char);
break;
case 2: /* Effective address + 32 bits displacement */
size += sizeof(uint16_t);
break;
case 3: /* registers */
break;
}
}
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseIllegal(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
AssertFailed();
return 0;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseModRM(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = sizeof(uint8_t); //ModRM byte
unsigned sibinc, ModRM;
ModRM = DISReadByte(pCpu, lpszCodeBlock);
lpszCodeBlock += sizeof(uint8_t);
pCpu->ModRM.Bits.Rm = MODRM_RM(ModRM);
pCpu->ModRM.Bits.Mod = MODRM_MOD(ModRM);
pCpu->ModRM.Bits.Reg = MODRM_REG(ModRM);
/* Disregard the mod bits for certain instructions (mov crx, mov drx).
*
* From the AMD manual:
* This instruction is always treated as a register-to-register (MOD = 11) instruction, regardless of the
* encoding of the MOD field in the MODR/M byte.
*/
if (pOp->optype & OPTYPE_MOD_FIXED_11)
pCpu->ModRM.Bits.Mod = 3;
if (pCpu->prefix & PREFIX_REX)
{
Assert(pCpu->mode == CPUMODE_64BIT);
/* REX.R extends the Reg field. */
pCpu->ModRM.Bits.Reg |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_R)) << 3);
/* REX.B extends the Rm field if there is no SIB byte nor a 32 bits displacement */
if (!( pCpu->ModRM.Bits.Mod != 3
&& pCpu->ModRM.Bits.Rm == 4)
&&
!( pCpu->ModRM.Bits.Mod == 0
&& pCpu->ModRM.Bits.Rm == 5))
{
pCpu->ModRM.Bits.Rm |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_B)) << 3);
}
}
size += QueryModRM(lpszCodeBlock, pOp, pParam, pCpu, &sibinc);
lpszCodeBlock += sibinc;
UseModRM(lpszCodeBlock, pOp, pParam, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseModRM_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = sizeof(uint8_t); //ModRM byte
unsigned sibinc, ModRM;
ModRM = DISReadByte(pCpu, lpszCodeBlock);
lpszCodeBlock += sizeof(uint8_t);
pCpu->ModRM.Bits.Rm = MODRM_RM(ModRM);
pCpu->ModRM.Bits.Mod = MODRM_MOD(ModRM);
pCpu->ModRM.Bits.Reg = MODRM_REG(ModRM);
/* Disregard the mod bits for certain instructions (mov crx, mov drx).
*
* From the AMD manual:
* This instruction is always treated as a register-to-register (MOD = 11) instruction, regardless of the
* encoding of the MOD field in the MODR/M byte.
*/
if (pOp->optype & OPTYPE_MOD_FIXED_11)
pCpu->ModRM.Bits.Mod = 3;
if (pCpu->prefix & PREFIX_REX)
{
Assert(pCpu->mode == CPUMODE_64BIT);
/* REX.R extends the Reg field. */
pCpu->ModRM.Bits.Reg |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_R)) << 3);
/* REX.B extends the Rm field if there is no SIB byte nor a 32 bits displacement */
if (!( pCpu->ModRM.Bits.Mod != 3
&& pCpu->ModRM.Bits.Rm == 4)
&&
!( pCpu->ModRM.Bits.Mod == 0
&& pCpu->ModRM.Bits.Rm == 5))
{
pCpu->ModRM.Bits.Rm |= ((!!(pCpu->prefix_rex & PREFIX_REX_FLAGS_B)) << 3);
}
}
size += QueryModRM_SizeOnly(lpszCodeBlock, pOp, pParam, pCpu, &sibinc);
lpszCodeBlock += sibinc;
/* UseModRM is not necessary here; we're only interested in the opcode size */
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseModFence(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
////AssertMsgFailed(("??\n"));
//nothing to do apparently
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
return 0;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmByte(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
pParam->parval = DISReadByte(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE8;
pParam->size = sizeof(uint8_t);
disasmAddStringF1(pParam->szParam, "0%02Xh", (uint32_t)pParam->parval);
return sizeof(uint8_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmByte_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
return sizeof(uint8_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmByteSX(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
if (pCpu->opmode == CPUMODE_32BIT)
{
pParam->parval = (uint32_t)(int8_t)DISReadByte(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE32_SX8;
pParam->size = sizeof(uint32_t);
disasmAddStringF1(pParam->szParam, "0%08Xh", (uint32_t)pParam->parval);
}
else
if (pCpu->opmode == CPUMODE_64BIT)
{
pParam->parval = (uint64_t)(int8_t)DISReadByte(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE64_SX8;
pParam->size = sizeof(uint64_t);
disasmAddStringF1(pParam->szParam, "0%016RX64h", pParam->parval);
}
else
{
pParam->parval = (uint16_t)(int8_t)DISReadByte(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE16_SX8;
pParam->size = sizeof(uint16_t);
disasmAddStringF1(pParam->szParam, "0%04Xh", (uint16_t)pParam->parval);
}
return sizeof(uint8_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmByteSX_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
return sizeof(uint8_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmUshort(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
pParam->parval = DISReadWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE16;
pParam->size = sizeof(uint16_t);
disasmAddStringF1(pParam->szParam, "0%04Xh", (uint16_t)pParam->parval);
return sizeof(uint16_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmUshort_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
return sizeof(uint16_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmUlong(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE32;
pParam->size = sizeof(uint32_t);
disasmAddStringF1(pParam->szParam, "0%08Xh", (uint32_t)pParam->parval);
return sizeof(uint32_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmUlong_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
return sizeof(uint32_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmQword(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
pParam->parval = DISReadQWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE64;
pParam->size = sizeof(uint64_t);
disasmAddStringF2(pParam->szParam, "0%08X%08Xh",
(uint32_t)pParam->parval, (uint32_t)(pParam->parval >> 32));
return sizeof(uint64_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmQword_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
return sizeof(uint64_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmV(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
if (pCpu->opmode == CPUMODE_32BIT)
{
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE32;
pParam->size = sizeof(uint32_t);
disasmAddStringF1(pParam->szParam, "0%08Xh", (uint32_t)pParam->parval);
return sizeof(uint32_t);
}
else
if (pCpu->opmode == CPUMODE_64BIT)
{
pParam->parval = DISReadQWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE64;
pParam->size = sizeof(uint64_t);
disasmAddStringF1(pParam->szParam, "0%RX64h", pParam->parval);
return sizeof(uint64_t);
}
else
{
pParam->parval = DISReadWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE16;
pParam->size = sizeof(uint16_t);
disasmAddStringF1(pParam->szParam, "0%04Xh", (uint32_t)pParam->parval);
return sizeof(uint16_t);
}
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmV_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam);
if (pCpu->opmode == CPUMODE_32BIT)
return sizeof(uint32_t);
if (pCpu->opmode == CPUMODE_64BIT)
return sizeof(uint64_t);
return sizeof(uint16_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmZ(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
/* Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size. */
if (pCpu->opmode == CPUMODE_16BIT)
{
pParam->parval = DISReadWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE16;
pParam->size = sizeof(uint16_t);
disasmAddStringF1(pParam->szParam, "0%04Xh", (uint32_t)pParam->parval);
return sizeof(uint16_t);
}
else
{
/* 64 bits op mode means *sign* extend to 64 bits. */
if (pCpu->opmode == CPUMODE_64BIT)
{
pParam->parval = (uint64_t)(int32_t)DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE64;
pParam->size = sizeof(uint64_t);
disasmAddStringF1(pParam->szParam, "0%RX64h", pParam->parval);
}
else
{
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE32;
pParam->size = sizeof(uint32_t);
disasmAddStringF1(pParam->szParam, "0%08Xh", (uint32_t)pParam->parval);
}
return sizeof(uint32_t);
}
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmZ_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam);
/* Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size. */
if (pCpu->opmode == CPUMODE_16BIT)
return sizeof(uint16_t);
return sizeof(uint32_t);
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
unsigned ParseImmBRel(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
pParam->parval = DISReadByte(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE8_REL;
pParam->size = sizeof(uint8_t);
disasmAddStringF1(pParam->szParam, " (0%02Xh)", (uint32_t)pParam->parval);
return sizeof(char);
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
unsigned ParseImmBRel_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam); NOREF(pCpu);
return sizeof(char);
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
unsigned ParseImmVRel(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pOp);
if (pCpu->opmode == CPUMODE_32BIT)
{
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE32_REL;
pParam->size = sizeof(int32_t);
disasmAddStringF1(pParam->szParam, " (0%08Xh)", (uint32_t)pParam->parval);
return sizeof(int32_t);
}
else
if (pCpu->opmode == CPUMODE_64BIT)
{
/* 32 bits relative immediate sign extended to 64 bits. */
pParam->parval = (uint64_t)(int32_t)DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE64_REL;
pParam->size = sizeof(int64_t);
disasmAddStringF1(pParam->szParam, " (0%RX64h)", pParam->parval);
return sizeof(int32_t);
}
else
{
pParam->parval = DISReadWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE16_REL;
pParam->size = sizeof(int16_t);
disasmAddStringF1(pParam->szParam, " (0%04Xh)", (uint32_t)pParam->parval);
return sizeof(int16_t);
}
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
unsigned ParseImmVRel_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp); NOREF(pParam);
if (pCpu->opmode == CPUMODE_16BIT)
return sizeof(int16_t);
/* Both 32 & 64 bits mode use 32 bits relative immediates. */
return sizeof(int32_t);
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmAddr(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
disasmGetPtrString(pCpu, pOp, pParam);
if (pCpu->addrmode == CPUMODE_32BIT)
{
if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_p)
{// far 16:32 pointer
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
*((uint32_t*)&pParam->parval+1) = DISReadWord(pCpu, lpszCodeBlock+sizeof(uint32_t));
pParam->flags |= USE_IMMEDIATE_ADDR_16_32;
pParam->size = sizeof(uint16_t) + sizeof(uint32_t);
disasmAddStringF2(pParam->szParam, "0%04X:0%08Xh", (uint32_t)(pParam->parval>>32), (uint32_t)pParam->parval);
return sizeof(uint32_t) + sizeof(uint16_t);
}
else
{// near 32 bits pointer
/*
* Note: used only in "mov al|ax|eax, [Addr]" and "mov [Addr], al|ax|eax"
* so we treat it like displacement.
*/
pParam->uDisp.i32 = DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_DISPLACEMENT32;
pParam->size = sizeof(uint32_t);
disasmAddStringF1(pParam->szParam, "[0%08Xh]", pParam->uDisp.i32);
return sizeof(uint32_t);
}
}
else
if (pCpu->addrmode == CPUMODE_64BIT)
{
Assert(OP_PARM_VSUBTYPE(pParam->param) != OP_PARM_p);
/* near 64 bits pointer */
/*
* Note: used only in "mov al|ax|eax, [Addr]" and "mov [Addr], al|ax|eax"
* so we treat it like displacement.
*/
pParam->uDisp.i64 = DISReadQWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_DISPLACEMENT64;
pParam->size = sizeof(uint64_t);
disasmAddStringF2(pParam->szParam, "[0%08X%08Xh]", (uint32_t)(pParam->uDisp.i64 >> 32), (uint32_t)pParam->uDisp.i64);
return sizeof(uint64_t);
}
else
{
if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_p)
{// far 16:16 pointer
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE_ADDR_16_16;
pParam->size = 2*sizeof(uint16_t);
disasmAddStringF2(pParam->szParam, "0%04X:0%04Xh", (uint32_t)(pParam->parval>>16), (uint16_t)pParam->parval );
return sizeof(uint32_t);
}
else
{// near 16 bits pointer
/*
* Note: used only in "mov al|ax|eax, [Addr]" and "mov [Addr], al|ax|eax"
* so we treat it like displacement.
*/
pParam->uDisp.i16 = DISReadWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_DISPLACEMENT16;
pParam->size = sizeof(uint16_t);
disasmAddStringF1(pParam->szParam, "[0%04Xh]", (uint32_t)pParam->uDisp.i16);
return sizeof(uint16_t);
}
}
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmAddr_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp);
if (pCpu->addrmode == CPUMODE_32BIT)
{
if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_p)
{// far 16:32 pointer
return sizeof(uint32_t) + sizeof(uint16_t);
}
else
{// near 32 bits pointer
return sizeof(uint32_t);
}
}
if (pCpu->addrmode == CPUMODE_64BIT)
{
Assert(OP_PARM_VSUBTYPE(pParam->param) != OP_PARM_p);
return sizeof(uint64_t);
}
else
{
if (OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_p)
{// far 16:16 pointer
return sizeof(uint32_t);
}
else
{// near 16 bits pointer
return sizeof(uint16_t);
}
}
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmAddrF(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
disasmGetPtrString(pCpu, pOp, pParam);
// immediate far pointers - only 16:16 or 16:32; determined by operand, *not* address size!
Assert(pCpu->opmode == CPUMODE_16BIT || pCpu->opmode == CPUMODE_32BIT);
Assert(OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_p);
if (pCpu->opmode == CPUMODE_32BIT)
{
// far 16:32 pointer
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
*((uint32_t*)&pParam->parval+1) = DISReadWord(pCpu, lpszCodeBlock+sizeof(uint32_t));
pParam->flags |= USE_IMMEDIATE_ADDR_16_32;
pParam->size = sizeof(uint16_t) + sizeof(uint32_t);
disasmAddStringF2(pParam->szParam, "0%04X:0%08Xh", (uint32_t)(pParam->parval>>32), (uint32_t)pParam->parval);
return sizeof(uint32_t) + sizeof(uint16_t);
}
else
{
// far 16:16 pointer
pParam->parval = DISReadDWord(pCpu, lpszCodeBlock);
pParam->flags |= USE_IMMEDIATE_ADDR_16_16;
pParam->size = 2*sizeof(uint16_t);
disasmAddStringF2(pParam->szParam, "0%04X:0%04Xh", (uint32_t)(pParam->parval>>16), (uint16_t)pParam->parval );
return sizeof(uint32_t);
}
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmAddrF_SizeOnly(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock); NOREF(pOp);
// immediate far pointers - only 16:16 or 16:32
Assert(pCpu->opmode == CPUMODE_16BIT || pCpu->opmode == CPUMODE_32BIT);
Assert(OP_PARM_VSUBTYPE(pParam->param) == OP_PARM_p);
if (pCpu->opmode == CPUMODE_32BIT)
{
// far 16:32 pointer
return sizeof(uint32_t) + sizeof(uint16_t);
}
else
{
// far 16:16 pointer
return sizeof(uint32_t);
}
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseFixedReg(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(lpszCodeBlock);
/*
* Sets up flags for stored in OPC fixed registers.
*/
if (pParam->param == OP_PARM_NONE)
{
/* No parameter at all. */
return 0;
}
AssertCompile(OP_PARM_REG_GEN32_END < OP_PARM_REG_SEG_END);
AssertCompile(OP_PARM_REG_SEG_END < OP_PARM_REG_GEN16_END);
AssertCompile(OP_PARM_REG_GEN16_END < OP_PARM_REG_GEN8_END);
AssertCompile(OP_PARM_REG_GEN8_END < OP_PARM_REG_FP_END);
if (pParam->param <= OP_PARM_REG_GEN32_END)
{
/* 32-bit EAX..EDI registers. */
if (pCpu->opmode == CPUMODE_32BIT)
{
/* Use 32-bit registers. */
pParam->base.reg_gen = pParam->param - OP_PARM_REG_GEN32_START;
pParam->flags |= USE_REG_GEN32;
pParam->size = 4;
}
else
if (pCpu->opmode == CPUMODE_64BIT)
{
/* Use 64-bit registers. */
pParam->base.reg_gen = pParam->param - OP_PARM_REG_GEN32_START;
if ( (pOp->optype & OPTYPE_REXB_EXTENDS_OPREG)
&& pParam == &pCpu->param1 /* ugly assumption that it only applies to the first parameter */
&& (pCpu->prefix & PREFIX_REX)
&& (pCpu->prefix_rex & PREFIX_REX_FLAGS))
pParam->base.reg_gen += 8;
pParam->flags |= USE_REG_GEN64;
pParam->size = 8;
}
else
{
/* Use 16-bit registers. */
pParam->base.reg_gen = pParam->param - OP_PARM_REG_GEN32_START;
pParam->flags |= USE_REG_GEN16;
pParam->size = 2;
pParam->param = pParam->param - OP_PARM_REG_GEN32_START + OP_PARM_REG_GEN16_START;
}
}
else
if (pParam->param <= OP_PARM_REG_SEG_END)
{
/* Segment ES..GS registers. */
pParam->base.reg_seg = (DIS_SELREG)(pParam->param - OP_PARM_REG_SEG_START);
pParam->flags |= USE_REG_SEG;
pParam->size = 2;
}
else
if (pParam->param <= OP_PARM_REG_GEN16_END)
{
/* 16-bit AX..DI registers. */
pParam->base.reg_gen = pParam->param - OP_PARM_REG_GEN16_START;
pParam->flags |= USE_REG_GEN16;
pParam->size = 2;
}
else
if (pParam->param <= OP_PARM_REG_GEN8_END)
{
/* 8-bit AL..DL, AH..DH registers. */
pParam->base.reg_gen = pParam->param - OP_PARM_REG_GEN8_START;
pParam->flags |= USE_REG_GEN8;
pParam->size = 1;
if (pCpu->opmode == CPUMODE_64BIT)
{
if ( (pOp->optype & OPTYPE_REXB_EXTENDS_OPREG)
&& pParam == &pCpu->param1 /* ugly assumption that it only applies to the first parameter */
&& (pCpu->prefix & PREFIX_REX)
&& (pCpu->prefix_rex & PREFIX_REX_FLAGS))
pParam->base.reg_gen += 8; /* least significant byte of R8-R15 */
}
}
else
if (pParam->param <= OP_PARM_REG_FP_END)
{
/* FPU registers. */
pParam->base.reg_fp = pParam->param - OP_PARM_REG_FP_START;
pParam->flags |= USE_REG_FP;
pParam->size = 10;
}
Assert(!(pParam->param >= OP_PARM_REG_GEN64_START && pParam->param <= OP_PARM_REG_GEN64_END));
/* else - not supported for now registers. */
return 0;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseXv(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pu8CodeBlock);
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddString(pParam->szParam, (pCpu->addrmode == CPUMODE_32BIT) ? "DS:ESI" : "DS:SI");
pParam->flags |= USE_POINTER_DS_BASED;
if (pCpu->addrmode == CPUMODE_32BIT)
{
pParam->base.reg_gen = USE_REG_ESI;
pParam->flags |= USE_REG_GEN32;
}
else
if (pCpu->addrmode == CPUMODE_64BIT)
{
pParam->base.reg_gen = USE_REG_RSI;
pParam->flags |= USE_REG_GEN64;
}
else
{
pParam->base.reg_gen = USE_REG_SI;
pParam->flags |= USE_REG_GEN16;
}
return 0; //no additional opcode bytes
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseXb(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pu8CodeBlock); NOREF(pOp);
disasmAddString(pParam->szParam, (pCpu->addrmode == CPUMODE_32BIT) ? "DS:ESI" : "DS:SI");
pParam->flags |= USE_POINTER_DS_BASED;
if (pCpu->addrmode == CPUMODE_32BIT)
{
pParam->base.reg_gen = USE_REG_ESI;
pParam->flags |= USE_REG_GEN32;
}
else
if (pCpu->addrmode == CPUMODE_64BIT)
{
pParam->base.reg_gen = USE_REG_RSI;
pParam->flags |= USE_REG_GEN64;
}
else
{
pParam->base.reg_gen = USE_REG_SI;
pParam->flags |= USE_REG_GEN16;
}
return 0; //no additional opcode bytes
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseYv(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pu8CodeBlock);
disasmGetPtrString(pCpu, pOp, pParam);
disasmAddString(pParam->szParam, (pCpu->addrmode == CPUMODE_32BIT) ? "ES:EDI" : "ES:DI");
pParam->flags |= USE_POINTER_ES_BASED;
if (pCpu->addrmode == CPUMODE_32BIT)
{
pParam->base.reg_gen = USE_REG_EDI;
pParam->flags |= USE_REG_GEN32;
}
else
if (pCpu->addrmode == CPUMODE_64BIT)
{
pParam->base.reg_gen = USE_REG_RDI;
pParam->flags |= USE_REG_GEN64;
}
else
{
pParam->base.reg_gen = USE_REG_DI;
pParam->flags |= USE_REG_GEN16;
}
return 0; //no additional opcode bytes
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseYb(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
NOREF(pu8CodeBlock); NOREF(pOp);
disasmAddString(pParam->szParam, (pCpu->addrmode == CPUMODE_32BIT) ? "ES:EDI" : "ES:DI");
pParam->flags |= USE_POINTER_ES_BASED;
if (pCpu->addrmode == CPUMODE_32BIT)
{
pParam->base.reg_gen = USE_REG_EDI;
pParam->flags |= USE_REG_GEN32;
}
else
if (pCpu->addrmode == CPUMODE_64BIT)
{
pParam->base.reg_gen = USE_REG_RDI;
pParam->flags |= USE_REG_GEN64;
}
else
{
pParam->base.reg_gen = USE_REG_DI;
pParam->flags |= USE_REG_GEN16;
}
return 0; //no additional opcode bytes
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseTwoByteEsc(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
const OPCODE *pOpcode;
int size = sizeof(uint8_t);
NOREF(pOp); NOREF(pParam);
/* 2nd byte */
pCpu->opcode = DISReadByte(pCpu, lpszCodeBlock);
/* default to the non-prefixed table. */
pOpcode = &g_aTwoByteMapX86[pCpu->opcode];
/* Handle opcode table extensions that rely on the address, repe or repne prefix byte. */
/** @todo Should we take the first or last prefix byte in case of multiple prefix bytes??? */
if (pCpu->lastprefix)
{
switch (pCpu->lastprefix)
{
case OP_OPSIZE: /* 0x66 */
if (g_aTwoByteMapX86_PF66[pCpu->opcode].opcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
pOpcode = &g_aTwoByteMapX86_PF66[pCpu->opcode];
/* Cancel prefix changes. */
pCpu->prefix &= ~PREFIX_OPSIZE;
pCpu->opmode = pCpu->mode;
}
break;
case OP_REPNE: /* 0xF2 */
if (g_aTwoByteMapX86_PFF2[pCpu->opcode].opcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
pOpcode = &g_aTwoByteMapX86_PFF2[pCpu->opcode];
/* Cancel prefix changes. */
pCpu->prefix &= ~PREFIX_REPNE;
}
break;
case OP_REPE: /* 0xF3 */
if (g_aTwoByteMapX86_PFF3[pCpu->opcode].opcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
pOpcode = &g_aTwoByteMapX86_PFF3[pCpu->opcode];
/* Cancel prefix changes. */
pCpu->prefix &= ~PREFIX_REP;
}
break;
}
}
size += ParseInstruction(lpszCodeBlock+size, pOpcode, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseThreeByteEsc4(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
const OPCODE *pOpcode;
int size = sizeof(uint8_t);
NOREF(pOp); NOREF(pParam);
/* 3rd byte */
pCpu->opcode = DISReadByte(pCpu, lpszCodeBlock);
/* default to the non-prefixed table. */
if (g_apThreeByteMapX86_0F38[pCpu->opcode >> 4])
{
pOpcode = g_apThreeByteMapX86_0F38[pCpu->opcode >> 4];
pOpcode = &pOpcode[pCpu->opcode & 0xf];
}
else
pOpcode = &g_InvalidOpcode[0];
/* Handle opcode table extensions that rely on the address, repne prefix byte. */
/** @todo Should we take the first or last prefix byte in case of multiple prefix bytes??? */
switch (pCpu->lastprefix)
{
case OP_OPSIZE: /* 0x66 */
if (g_apThreeByteMapX86_660F38[pCpu->opcode >> 4])
{
pOpcode = g_apThreeByteMapX86_660F38[pCpu->opcode >> 4];
pOpcode = &pOpcode[pCpu->opcode & 0xf];
if (pOpcode->opcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
/* Cancel prefix changes. */
pCpu->prefix &= ~PREFIX_OPSIZE;
pCpu->opmode = pCpu->mode;
}
}
break;
case OP_REPNE: /* 0xF2 */
if (g_apThreeByteMapX86_F20F38[pCpu->opcode >> 4])
{
pOpcode = g_apThreeByteMapX86_F20F38[pCpu->opcode >> 4];
pOpcode = &pOpcode[pCpu->opcode & 0xf];
if (pOpcode->opcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
/* Cancel prefix changes. */
pCpu->prefix &= ~PREFIX_REPNE;
}
}
break;
}
size += ParseInstruction(lpszCodeBlock+size, pOpcode, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseThreeByteEsc5(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
const OPCODE *pOpcode;
int size = sizeof(uint8_t);
NOREF(pOp); NOREF(pParam);
/* 3rd byte */
pCpu->opcode = DISReadByte(pCpu, lpszCodeBlock);
/** @todo Should we take the first or last prefix byte in case of multiple prefix bytes??? */
Assert(pCpu->lastprefix == OP_OPSIZE);
/* default to the non-prefixed table. */
if (g_apThreeByteMapX86_660F3A[pCpu->opcode >> 4])
{
pOpcode = g_apThreeByteMapX86_660F3A[pCpu->opcode >> 4];
pOpcode = &pOpcode[pCpu->opcode & 0xf];
if (pOpcode->opcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
/* Cancel prefix changes. */
pCpu->prefix &= ~PREFIX_OPSIZE;
pCpu->opmode = pCpu->mode;
}
}
else
pOpcode = &g_InvalidOpcode[0];
size += ParseInstruction(lpszCodeBlock+size, pOpcode, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseNopPause(RTUINTPTR pu8CodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0;
NOREF(pParam);
if (pCpu->prefix & PREFIX_REP)
{
pOp = &g_aMapX86_NopPause[1]; /* PAUSE */
pCpu->prefix &= ~PREFIX_REP;
}
else
pOp = &g_aMapX86_NopPause[0]; /* NOP */
size += ParseInstruction(pu8CodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseImmGrpl(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
int idx = (pCpu->opcode - 0x80) * 8;
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group1[idx+reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseShiftGrp2(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
int idx;
unsigned size = 0, modrm, reg;
NOREF(pParam);
switch (pCpu->opcode)
{
case 0xC0:
case 0xC1:
idx = (pCpu->opcode - 0xC0)*8;
break;
case 0xD0:
case 0xD1:
case 0xD2:
case 0xD3:
idx = (pCpu->opcode - 0xD0 + 2)*8;
break;
default:
AssertMsgFailed(("Oops\n"));
return sizeof(uint8_t);
}
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group2[idx+reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp3(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
int idx = (pCpu->opcode - 0xF6) * 8;
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group3[idx+reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp4(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group4[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp5(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group5[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
// 0xF 0xF [ModRM] [SIB] [displacement] imm8_opcode
// It would appear the ModRM byte must always be present. How else can you
// determine the offset of the imm8_opcode byte otherwise?
//
//*****************************************************************************
unsigned Parse3DNow(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrmsize;
#ifdef DEBUG_Sander
//needs testing
AssertMsgFailed(("Test me\n"));
#endif
unsigned ModRM = DISReadByte(pCpu, lpszCodeBlock);
pCpu->ModRM.Bits.Rm = MODRM_RM(ModRM);
pCpu->ModRM.Bits.Mod = MODRM_MOD(ModRM);
pCpu->ModRM.Bits.Reg = MODRM_REG(ModRM);
modrmsize = QueryModRM(lpszCodeBlock+sizeof(uint8_t), pOp, pParam, pCpu);
uint8_t opcode = DISReadByte(pCpu, lpszCodeBlock+sizeof(uint8_t)+modrmsize);
pOp = (PCOPCODE)&g_aTwoByteMapX86_3DNow[opcode];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
{
#ifdef DEBUG_Sander /* bird, 2005-06-28: Alex is getting this during full installation of win2ksp4. */
AssertMsgFailed(("Oops!\n")); //shouldn't happen!
#endif
size = sizeof(uint8_t); //ModRM byte
}
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
size += sizeof(uint8_t); //imm8_opcode uint8_t
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp6(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group6[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp7(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg, rm, mod;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
mod = MODRM_MOD(modrm);
reg = MODRM_REG(modrm);
rm = MODRM_RM(modrm);
if (mod == 3 && rm == 0)
pOp = (PCOPCODE)&g_aMapX86_Group7_mod11_rm000[reg];
else
if (mod == 3 && rm == 1)
pOp = (PCOPCODE)&g_aMapX86_Group7_mod11_rm001[reg];
else
pOp = (PCOPCODE)&g_aMapX86_Group7_mem[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp8(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group8[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp9(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group9[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp10(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group10[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp12(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
if (pCpu->prefix & PREFIX_OPSIZE)
reg += 8; //2nd table
pOp = (PCOPCODE)&g_aMapX86_Group12[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp13(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
if (pCpu->prefix & PREFIX_OPSIZE)
reg += 8; //2nd table
pOp = (PCOPCODE)&g_aMapX86_Group13[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp14(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
if (pCpu->prefix & PREFIX_OPSIZE)
reg += 8; //2nd table
pOp = (PCOPCODE)&g_aMapX86_Group14[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp15(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg, mod, rm;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
mod = MODRM_MOD(modrm);
reg = MODRM_REG(modrm);
rm = MODRM_RM(modrm);
if (mod == 3 && rm == 0)
pOp = (PCOPCODE)&g_aMapX86_Group15_mod11_rm000[reg];
else
pOp = (PCOPCODE)&g_aMapX86_Group15_mem[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
//*****************************************************************************
unsigned ParseGrp16(RTUINTPTR lpszCodeBlock, PCOPCODE pOp, POP_PARAMETER pParam, PDISCPUSTATE pCpu)
{
unsigned size = 0, modrm, reg;
NOREF(pParam);
modrm = DISReadByte(pCpu, lpszCodeBlock);
reg = MODRM_REG(modrm);
pOp = (PCOPCODE)&g_aMapX86_Group16[reg];
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
size = sizeof(uint8_t); //ModRM byte
size += ParseInstruction(lpszCodeBlock, pOp, pCpu);
return size;
}
//*****************************************************************************
#if !defined(DIS_CORE_ONLY) && defined(LOG_ENABLED)
static const char *szModRMReg8[] = {"AL", "CL", "DL", "BL", "AH", "CH", "DH", "BH", "R8B", "R9B", "R10B", "R11B", "R12B", "R13B", "R14B", "R15B", "SPL", "BPL", "SIL", "DIL"};
static const char *szModRMReg16[] = {"AX", "CX", "DX", "BX", "SP", "BP", "SI", "DI", "R8W", "R9W", "R10W", "R11W", "R12W", "R13W", "R14W", "R15W"};
static const char *szModRMReg32[] = {"EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI", "R8D", "R9D", "R10D", "R11D", "R12D", "R13D", "R14D", "R15D"};
static const char *szModRMReg64[] = {"RAX", "RCX", "RDX", "RBX", "RSP", "RBP", "RSI", "RDI", "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15"};
static const char *szModRMReg1616[8] = {"BX+SI", "BX+DI", "BP+SI", "BP+DI", "SI", "DI", "BP", "BX"};
#endif
static const char *szModRMSegReg[6] = {"ES", "CS", "SS", "DS", "FS", "GS"};
static const int BaseModRMReg16[8] = { USE_REG_BX, USE_REG_BX, USE_REG_BP, USE_REG_BP, USE_REG_SI, USE_REG_DI, USE_REG_BP, USE_REG_BX};
static const int IndexModRMReg16[4] = { USE_REG_SI, USE_REG_DI, USE_REG_SI, USE_REG_DI};
//*****************************************************************************
void disasmModRMReg(PDISCPUSTATE pCpu, PCOPCODE pOp, unsigned idx, POP_PARAMETER pParam, int fRegAddr)
{
int subtype, type, mod;
NOREF(pOp); NOREF(pCpu);
mod = pCpu->ModRM.Bits.Mod;
type = OP_PARM_VTYPE(pParam->param);
subtype = OP_PARM_VSUBTYPE(pParam->param);
if (fRegAddr)
subtype = (pCpu->addrmode == CPUMODE_64BIT) ? OP_PARM_q : OP_PARM_d;
else
if (subtype == OP_PARM_v || subtype == OP_PARM_NONE)
{
switch(pCpu->opmode)
{
case CPUMODE_32BIT:
subtype = OP_PARM_d;
break;
case CPUMODE_64BIT:
subtype = OP_PARM_q;
break;
case CPUMODE_16BIT:
subtype = OP_PARM_w;
break;
default:
/* make gcc happy */
break;
}
}
switch (subtype)
{
case OP_PARM_b:
Assert(idx < (pCpu->prefix & PREFIX_REX) ? 16 : 8);
/* AH, BH, CH & DH map to DIL, SIL, EBL & SPL when a rex prefix is present. */
/* Intel� 64 and IA-32 Architectures Software Developer�s Manual: 3.4.1.1 */
if ( (pCpu->prefix & PREFIX_REX)
&& idx >= USE_REG_AH
&& idx <= USE_REG_BH)
{
idx += (USE_REG_SPL - USE_REG_AH);
}
disasmAddString(pParam->szParam, szModRMReg8[idx]);
pParam->flags |= USE_REG_GEN8;
pParam->base.reg_gen = idx;
break;
case OP_PARM_w:
disasmAddString(pParam->szParam, szModRMReg16[idx]);
Assert(idx < (pCpu->prefix & PREFIX_REX) ? 16 : 8);
pParam->flags |= USE_REG_GEN16;
pParam->base.reg_gen = idx;
break;
case OP_PARM_d:
disasmAddString(pParam->szParam, szModRMReg32[idx]);
Assert(idx < (pCpu->prefix & PREFIX_REX) ? 16 : 8);
pParam->flags |= USE_REG_GEN32;
pParam->base.reg_gen = idx;
break;
case OP_PARM_q:
disasmAddString(pParam->szParam, szModRMReg64[idx]);
pParam->flags |= USE_REG_GEN64;
pParam->base.reg_gen = idx;
break;
default:
Log(("disasmModRMReg %x:%x failed!!\n", type, subtype));
pCpu->rc = VERR_DIS_INVALID_MODRM;
break;
}
}
//*****************************************************************************
//*****************************************************************************
void disasmModRMReg16(PDISCPUSTATE pCpu, PCOPCODE pOp, unsigned idx, POP_PARAMETER pParam)
{
NOREF(pCpu); NOREF(pOp);
disasmAddString(pParam->szParam, szModRMReg1616[idx]);
pParam->flags |= USE_REG_GEN16;
pParam->base.reg_gen = BaseModRMReg16[idx];
if (idx < 4)
{
pParam->flags |= USE_INDEX;
pParam->index.reg_gen = IndexModRMReg16[idx];
}
}
//*****************************************************************************
//*****************************************************************************
void disasmModRMSReg(PDISCPUSTATE pCpu, PCOPCODE pOp, unsigned idx, POP_PARAMETER pParam)
{
NOREF(pOp);
if (idx >= RT_ELEMENTS(szModRMSegReg))
{
Log(("disasmModRMSReg %d failed!!\n", idx));
pCpu->rc = VERR_DIS_INVALID_PARAMETER;
return;
}
disasmAddString(pParam->szParam, szModRMSegReg[idx]);
pParam->flags |= USE_REG_SEG;
pParam->base.reg_seg = (DIS_SELREG)idx;
}
//*****************************************************************************
//*****************************************************************************
void disasmPrintAbs32(POP_PARAMETER pParam)
{
disasmAddStringF1(pParam->szParam, "%08Xh", pParam->uDisp.i32); NOREF(pParam);
}
//*****************************************************************************
//*****************************************************************************
void disasmPrintDisp32(POP_PARAMETER pParam)
{
disasmAddStringF1(pParam->szParam, "%08Xh", pParam->uDisp.i32); NOREF(pParam);
}
//*****************************************************************************
//*****************************************************************************
void disasmPrintDisp64(POP_PARAMETER pParam)
{
disasmAddStringF1(pParam->szParam, "%16RX64h", pParam->uDisp.i64); NOREF(pParam);
}
//*****************************************************************************
//*****************************************************************************
void disasmPrintDisp8(POP_PARAMETER pParam)
{
disasmAddStringF1(pParam->szParam, "%d", pParam->uDisp.i8); NOREF(pParam);
}
//*****************************************************************************
//*****************************************************************************
void disasmPrintDisp16(POP_PARAMETER pParam)
{
disasmAddStringF1(pParam->szParam, "%04Xh", pParam->uDisp.i16); NOREF(pParam);
}
//*****************************************************************************
//*****************************************************************************
void disasmGetPtrString(PDISCPUSTATE pCpu, PCOPCODE pOp, POP_PARAMETER pParam)
{
int subtype = OP_PARM_VSUBTYPE(pParam->param);
NOREF(pOp);
if (subtype == OP_PARM_v)
{
switch(pCpu->opmode)
{
case CPUMODE_32BIT:
subtype = OP_PARM_d;
break;
case CPUMODE_64BIT:
subtype = OP_PARM_q;
break;
case CPUMODE_16BIT:
subtype = OP_PARM_w;
break;
default:
/* make gcc happy */
break;
}
}
switch (subtype)
{
case OP_PARM_a: //two words or dwords depending on operand size (bound only)
break;
case OP_PARM_b:
disasmAddString(pParam->szParam, "byte ptr ");
break;
case OP_PARM_w:
disasmAddString(pParam->szParam, "word ptr ");
break;
case OP_PARM_d:
disasmAddString(pParam->szParam, "dword ptr ");
break;
case OP_PARM_q:
case OP_PARM_dq:
disasmAddString(pParam->szParam, "qword ptr ");
break;
case OP_PARM_p:
disasmAddString(pParam->szParam, "far ptr ");
break;
case OP_PARM_s:
break; //??
case OP_PARM_z:
break;
default:
break; //no pointer type specified/necessary
}
if (pCpu->prefix & PREFIX_SEG)
disasmAddStringF1(pParam->szParam, "%s:", szModRMSegReg[pCpu->enmPrefixSeg]);
}
/**
* Slow path for storing instruction bytes.
*
* @param pCpu The disassembler state.
* @param uAddress The address.
* @param pbSrc The bytes.
* @param cbSrc The number of bytes.
*/
DECL_NO_INLINE(static, void)
disStoreInstrBytesSlow(PDISCPUSTATE pCpu, RTUINTPTR uAddress, const uint8_t *pbSrc, size_t cbSrc)
{
/*
* Figure out which case it is.
*/
uint32_t cbInstr = pCpu->opsize;
RTUINTPTR off = uAddress - pCpu->uInstrAddr;
if (off < cbInstr)
{
if (off + cbSrc <= cbInstr)
{
AssertMsg(memcmp(&pCpu->abInstr[off], pbSrc, cbSrc) == 0,
("%RTptr LB %zx off=%RTptr (%.*Rhxs)", uAddress, cbSrc, off, cbInstr, pCpu->abInstr));
return; /* fully re-reading old stuff. */
}
/* Only partially re-reading stuff, skip ahead and add the rest. */
uint32_t cbAlreadyRead = cbInstr - (uint32_t)off;
Assert(memcmp(&pCpu->abInstr[off], pbSrc, cbAlreadyRead) == 0);
uAddress += cbAlreadyRead;
pbSrc += cbAlreadyRead;
cbSrc -= cbAlreadyRead;
}
if (off >= sizeof(cbInstr))
{
/* The instruction is too long! This shouldn't happen. */
AssertMsgFailed(("%RTptr LB %zx off=%RTptr (%.*Rhxs)", uAddress, cbSrc, off, cbInstr, pCpu->abInstr));
return;
}
else if (off > cbInstr)
{
/* Mind the gap - this shouldn't happen, but read the gap bytes if it does. */
AssertMsgFailed(("%RTptr LB %zx off=%RTptr (%.16Rhxs)", uAddress, cbSrc, off, cbInstr, pCpu->abInstr));
uint32_t cbGap = off - cbInstr;
int rc = pCpu->pfnReadBytes(pCpu, &pCpu->abInstr[cbInstr], uAddress - cbGap, cbGap);
if (RT_FAILURE(rc))
{
pCpu->rc = VERR_DIS_MEM_READ;
RT_BZERO(&pCpu->abInstr[cbInstr], cbGap);
}
pCpu->opsize = cbInstr = off;
}
/*
* Copy the bytes.
*/
if (off + cbSrc <= sizeof(pCpu->abInstr))
{
memcpy(&pCpu->abInstr[cbInstr], pbSrc, cbSrc);
pCpu->opsize = cbInstr + (uint32_t)cbSrc;
}
else
{
size_t cbToCopy = sizeof(pCpu->abInstr) - off;
memcpy(&pCpu->abInstr[cbInstr], pbSrc, cbToCopy);
pCpu->opsize = sizeof(pCpu->abInstr);
AssertMsgFailed(("%RTptr LB %zx off=%RTptr (%.*Rhxs)", uAddress, cbSrc, off, sizeof(pCpu->abInstr), pCpu->abInstr));
}
}
DECLCALLBACK(int) disReadBytesDefault(PDISCPUSTATE pCpu, uint8_t *pbDst, RTUINTPTR uSrcAddr, uint32_t cbToRead)
{
#ifdef IN_RING0
AssertMsgFailed(("DISReadWord with no read callback in ring 0!!\n"));
RT_BZERO(pbDst, cbToRead);
return VERR_DIS_NO_READ_CALLBACK;
#else
memcpy(pbDst, (void const *)(uintptr_t)uSrcAddr, cbToRead);
return VINF_SUCCESS;
#endif
}
//*****************************************************************************
/* Read functions for getting the opcode bytes */
//*****************************************************************************
uint8_t DISReadByte(PDISCPUSTATE pCpu, RTUINTPTR uAddress)
{
uint8_t bTemp = 0;
int rc = pCpu->pfnReadBytes(pCpu, &bTemp, uAddress, sizeof(bTemp));
if (RT_FAILURE(rc))
{
Log(("DISReadByte failed!!\n"));
pCpu->rc = VERR_DIS_MEM_READ;
}
/** @todo change this into reading directly into abInstr and use it as a
* cache. */
if (RT_LIKELY( pCpu->uInstrAddr + pCpu->opsize == uAddress
&& pCpu->opsize + sizeof(bTemp) < sizeof(pCpu->abInstr)))
pCpu->abInstr[pCpu->opsize++] = bTemp;
else
disStoreInstrBytesSlow(pCpu, uAddress, &bTemp, sizeof(bTemp));
return bTemp;
}
//*****************************************************************************
//*****************************************************************************
uint16_t DISReadWord(PDISCPUSTATE pCpu, RTUINTPTR uAddress)
{
RTUINT16U uTemp;
uTemp.u = 0;
int rc = pCpu->pfnReadBytes(pCpu, uTemp.au8, uAddress, sizeof(uTemp));
if (RT_FAILURE(rc))
{
Log(("DISReadWord failed!!\n"));
pCpu->rc = VERR_DIS_MEM_READ;
}
if (RT_LIKELY( pCpu->uInstrAddr + pCpu->opsize == uAddress
&& pCpu->opsize + sizeof(uTemp) < sizeof(pCpu->abInstr)))
{
pCpu->abInstr[pCpu->opsize ] = uTemp.au8[0];
pCpu->abInstr[pCpu->opsize + 1] = uTemp.au8[1];
pCpu->opsize += 2;
}
else
disStoreInstrBytesSlow(pCpu, uAddress, uTemp.au8, sizeof(uTemp));
return uTemp.u;
}
//*****************************************************************************
//*****************************************************************************
uint32_t DISReadDWord(PDISCPUSTATE pCpu, RTUINTPTR uAddress)
{
RTUINT32U uTemp;
uTemp.u = 0;
int rc = pCpu->pfnReadBytes(pCpu, uTemp.au8, uAddress, sizeof(uTemp));
if (RT_FAILURE(rc))
{
Log(("DISReadDWord failed!!\n"));
pCpu->rc = VERR_DIS_MEM_READ;
}
if (RT_LIKELY( pCpu->uInstrAddr + pCpu->opsize == uAddress
&& pCpu->opsize + sizeof(uTemp) < sizeof(pCpu->abInstr)))
{
pCpu->abInstr[pCpu->opsize ] = uTemp.au8[0];
pCpu->abInstr[pCpu->opsize + 1] = uTemp.au8[1];
pCpu->abInstr[pCpu->opsize + 2] = uTemp.au8[2];
pCpu->abInstr[pCpu->opsize + 3] = uTemp.au8[3];
pCpu->opsize += 4;
}
else
disStoreInstrBytesSlow(pCpu, uAddress, uTemp.au8, sizeof(uTemp));
return uTemp.u;
}
//*****************************************************************************
//*****************************************************************************
uint64_t DISReadQWord(PDISCPUSTATE pCpu, RTUINTPTR uAddress)
{
RTUINT64U uTemp;
uTemp.u = 0;
int rc = pCpu->pfnReadBytes(pCpu, uTemp.au8, uAddress, sizeof(uTemp));
if (RT_FAILURE(rc))
{
Log(("DISReadQWord %x failed!!\n", uAddress));
pCpu->rc = VERR_DIS_MEM_READ;
}
if (RT_LIKELY( pCpu->uInstrAddr + pCpu->opsize == uAddress
&& pCpu->opsize + sizeof(uTemp) < sizeof(pCpu->abInstr)))
{
pCpu->abInstr[pCpu->opsize ] = uTemp.au8[0];
pCpu->abInstr[pCpu->opsize + 1] = uTemp.au8[1];
pCpu->abInstr[pCpu->opsize + 2] = uTemp.au8[2];
pCpu->abInstr[pCpu->opsize + 3] = uTemp.au8[3];
pCpu->abInstr[pCpu->opsize + 4] = uTemp.au8[4];
pCpu->abInstr[pCpu->opsize + 5] = uTemp.au8[5];
pCpu->abInstr[pCpu->opsize + 6] = uTemp.au8[6];
pCpu->abInstr[pCpu->opsize + 7] = uTemp.au8[7];
pCpu->opsize += 4;
}
else
disStoreInstrBytesSlow(pCpu, uAddress, uTemp.au8, sizeof(uTemp));
return uTemp.u;
}
#if !defined(DIS_CORE_ONLY) && defined(LOG_ENABLED)
//*****************************************************************************
//*****************************************************************************
void disasmAddString(char *psz, const char *pszAdd)
{
strcat(psz, pszAdd);
}
//*****************************************************************************
//*****************************************************************************
void disasmAddStringF(char *psz, const char *pszFormat, ...)
{
va_list args;
va_start(args, pszFormat);
size_t cchCur = strlen(psz);
Assert(cchCur < RT_SIZEOFMEMB(OP_PARAMETER, szParam));
RTStrPrintfV(psz + cchCur, RT_SIZEOFMEMB(OP_PARAMETER, szParam) - cchCur,
pszFormat, args);
va_end(args);
}
//*****************************************************************************
//*****************************************************************************
void disasmAddChar(char *psz, char ch)
{
char sz[2];
sz[0] = ch;
sz[1] = '\0';
strcat(psz, sz);
}
#endif /* !DIS_CORE_ONLY */
/**
* Validates the lock sequence.
*
* The AMD manual lists the following instructions:
* ADC
* ADD
* AND
* BTC
* BTR
* BTS
* CMPXCHG
* CMPXCHG8B
* CMPXCHG16B
* DEC
* INC
* NEG
* NOT
* OR
* SBB
* SUB
* XADD
* XCHG
* XOR
*
* @param pCpu Fully disassembled instruction.
*/
void disValidateLockSequence(PDISCPUSTATE pCpu)
{
Assert(pCpu->prefix & PREFIX_LOCK);
/*
* Filter out the valid lock sequences.
*/
switch (pCpu->pCurInstr->opcode)
{
/* simple: no variations */
case OP_CMPXCHG8B: /* == OP_CMPXCHG16B? */
return;
/* simple: /r - reject register destination. */
case OP_BTC:
case OP_BTR:
case OP_BTS:
case OP_CMPXCHG:
case OP_XADD:
if (pCpu->ModRM.Bits.Mod == 3)
break;
return;
/*
* Lots of variants but its sufficient to check that param 1
* is a memory operand.
*/
case OP_ADC:
case OP_ADD:
case OP_AND:
case OP_DEC:
case OP_INC:
case OP_NEG:
case OP_NOT:
case OP_OR:
case OP_SBB:
case OP_SUB:
case OP_XCHG:
case OP_XOR:
if (pCpu->param1.flags & (USE_BASE | USE_INDEX | USE_DISPLACEMENT64 | USE_DISPLACEMENT32 | USE_DISPLACEMENT16 | USE_DISPLACEMENT8 | USE_RIPDISPLACEMENT32))
return;
break;
default:
break;
}
/*
* Invalid lock sequence, make it a OP_ILLUD2.
*/
pCpu->pCurInstr = &g_aTwoByteMapX86[11];
Assert(pCpu->pCurInstr->opcode == OP_ILLUD2);
}