DisasmCore.cpp revision 9fddb5277c67fe4db6da1c96c4cb2605c1fcb828
/* $Id$ */
/** @file
* VBox Disassembler - Core Components.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DIS
#include <VBox/dis.h>
#include <VBox/disopcode.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/param.h>
#include <iprt/string.h>
#include <iprt/stdarg.h>
#include "DisasmInternal.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
/** This must be less or equal to DISSTATE::abInstr.
* See Vol3A/Table 6-2 and Vol3B/Section22.25 for instance. */
#define DIS_MAX_INSTR_LENGTH 15
/** Whether we can do unaligned access. */
#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
# define DIS_HOST_UNALIGNED_ACCESS_OK
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
/** @name Parsers
* @{ */
static FNDISPARSE ParseIllegal;
static FNDISPARSE ParseModRM;
static FNDISPARSE ParseModRM_SizeOnly;
static FNDISPARSE UseModRM;
static FNDISPARSE ParseImmByte;
static FNDISPARSE ParseImmByte_SizeOnly;
static FNDISPARSE ParseImmByteSX;
static FNDISPARSE ParseImmByteSX_SizeOnly;
static FNDISPARSE ParseImmBRel;
static FNDISPARSE ParseImmBRel_SizeOnly;
static FNDISPARSE ParseImmUshort;
static FNDISPARSE ParseImmUshort_SizeOnly;
static FNDISPARSE ParseImmV;
static FNDISPARSE ParseImmV_SizeOnly;
static FNDISPARSE ParseImmVRel;
static FNDISPARSE ParseImmVRel_SizeOnly;
static FNDISPARSE ParseImmZ;
static FNDISPARSE ParseImmZ_SizeOnly;
static FNDISPARSE ParseImmAddr;
static FNDISPARSE ParseImmAddr_SizeOnly;
static FNDISPARSE ParseImmAddrF;
static FNDISPARSE ParseImmAddrF_SizeOnly;
static FNDISPARSE ParseFixedReg;
static FNDISPARSE ParseImmUlong;
static FNDISPARSE ParseImmUlong_SizeOnly;
static FNDISPARSE ParseImmQword;
static FNDISPARSE ParseImmQword_SizeOnly;
static FNDISPARSE ParseInvOpModRm;
static FNDISPARSE ParseTwoByteEsc;
static FNDISPARSE ParseThreeByteEsc4;
static FNDISPARSE ParseThreeByteEsc5;
static FNDISPARSE ParseImmGrpl;
static FNDISPARSE ParseShiftGrp2;
static FNDISPARSE ParseGrp3;
static FNDISPARSE ParseGrp4;
static FNDISPARSE ParseGrp5;
static FNDISPARSE Parse3DNow;
static FNDISPARSE ParseGrp6;
static FNDISPARSE ParseGrp7;
static FNDISPARSE ParseGrp8;
static FNDISPARSE ParseGrp9;
static FNDISPARSE ParseGrp10;
static FNDISPARSE ParseGrp12;
static FNDISPARSE ParseGrp13;
static FNDISPARSE ParseGrp14;
static FNDISPARSE ParseGrp15;
static FNDISPARSE ParseGrp16;
static FNDISPARSE ParseModFence;
static FNDISPARSE ParseNopPause;
static FNDISPARSE ParseYv;
static FNDISPARSE ParseYb;
static FNDISPARSE ParseXv;
static FNDISPARSE ParseXb;
/** Floating point parsing */
static FNDISPARSE ParseEscFP;
/** @} */
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** Parser opcode table for full disassembly. */
static PFNDISPARSE const g_apfnFullDisasm[IDX_ParseMax] =
{
ParseIllegal,
ParseModRM,
UseModRM,
ParseImmByte,
ParseImmBRel,
ParseImmUshort,
ParseImmV,
ParseImmVRel,
ParseImmAddr,
ParseFixedReg,
ParseImmUlong,
ParseImmQword,
ParseTwoByteEsc,
ParseImmGrpl,
ParseShiftGrp2,
ParseGrp3,
ParseGrp4,
ParseGrp5,
Parse3DNow,
ParseGrp6,
ParseGrp7,
ParseGrp8,
ParseGrp9,
ParseGrp10,
ParseGrp12,
ParseGrp13,
ParseGrp14,
ParseGrp15,
ParseGrp16,
ParseModFence,
ParseYv,
ParseYb,
ParseXv,
ParseXb,
ParseEscFP,
ParseNopPause,
ParseImmByteSX,
ParseImmZ,
ParseThreeByteEsc4,
ParseThreeByteEsc5,
ParseImmAddrF,
ParseInvOpModRm
};
/** Parser opcode table for only calculating instruction size. */
static PFNDISPARSE const g_apfnCalcSize[IDX_ParseMax] =
{
ParseIllegal,
ParseModRM_SizeOnly,
UseModRM,
ParseImmByte_SizeOnly,
ParseImmBRel_SizeOnly,
ParseImmUshort_SizeOnly,
ParseImmV_SizeOnly,
ParseImmVRel_SizeOnly,
ParseImmAddr_SizeOnly,
ParseFixedReg,
ParseImmUlong_SizeOnly,
ParseImmQword_SizeOnly,
ParseTwoByteEsc,
ParseImmGrpl,
ParseShiftGrp2,
ParseGrp3,
ParseGrp4,
ParseGrp5,
Parse3DNow,
ParseGrp6,
ParseGrp7,
ParseGrp8,
ParseGrp9,
ParseGrp10,
ParseGrp12,
ParseGrp13,
ParseGrp14,
ParseGrp15,
ParseGrp16,
ParseModFence,
ParseYv,
ParseYb,
ParseXv,
ParseXb,
ParseEscFP,
ParseNopPause,
ParseImmByteSX_SizeOnly,
ParseImmZ_SizeOnly,
ParseThreeByteEsc4,
ParseThreeByteEsc5,
ParseImmAddrF_SizeOnly,
ParseInvOpModRm
};
/********************************************************************************************************************************
*
*
* Read functions for getting the opcode bytes
*
*
********************************************************************************************************************************/
/**
* @interface_method_impl{FNDISREADBYTES, The default byte reader callber.}
*/
static DECLCALLBACK(int) disReadBytesDefault(PDISSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
{
#ifdef IN_RING0
NOREF(cbMinRead);
AssertMsgFailed(("disReadWord with no read callback in ring 0!!\n"));
RT_BZERO(&pDis->abInstr[offInstr], cbMaxRead);
pDis->cbCachedInstr = offInstr + cbMaxRead;
return VERR_DIS_NO_READ_CALLBACK;
#else
uint8_t const *pbSrc = (uint8_t const *)(uintptr_t)pDis->uInstrAddr + offInstr;
size_t cbLeftOnPage = (uintptr_t)pbSrc & PAGE_OFFSET_MASK;
uint8_t cbToRead = cbLeftOnPage >= cbMaxRead
? cbMaxRead
: cbLeftOnPage <= cbMinRead
? cbMinRead
: (uint8_t)cbLeftOnPage;
memcpy(&pDis->abInstr[offInstr], pbSrc, cbToRead);
pDis->cbCachedInstr = offInstr + cbToRead;
return VINF_SUCCESS;
#endif
}
/**
* Read more bytes into the DISSTATE::abInstr buffer, advance
* DISSTATE::cbCachedInstr.
*
* Will set DISSTATE::rc on failure, but still advance cbCachedInstr.
*
* The caller shall fend off reads beyond the DISSTATE::abInstr buffer.
*
* @param pDis The disassembler state.
* @param offInstr The offset of the read request.
* @param cbMin The size of the read request that needs to be
* satisfied.
*/
DECL_NO_INLINE(static, void) disReadMore(PDISSTATE pDis, uint8_t offInstr, uint8_t cbMin)
{
Assert(cbMin + offInstr <= sizeof(pDis->abInstr));
/*
* Adjust the incoming request to not overlap with bytes that has already
* been read and to make sure we don't leave unread gaps.
*/
if (offInstr < pDis->cbCachedInstr)
{
Assert(offInstr + cbMin > pDis->cbCachedInstr);
cbMin -= pDis->cbCachedInstr - offInstr;
offInstr = pDis->cbCachedInstr;
}
else if (offInstr > pDis->cbCachedInstr)
{
cbMin += offInstr - pDis->cbCachedInstr;
offInstr = pDis->cbCachedInstr;
}
/*
* Do the read.
* (No need to zero anything on failure as abInstr is already zeroed by the
* DISInstrEx API.)
*/
int rc = pDis->pfnReadBytes(pDis, offInstr, cbMin, sizeof(pDis->abInstr) - offInstr);
if (RT_SUCCESS(rc))
{
Assert(pDis->cbCachedInstr >= offInstr + cbMin);
Assert(pDis->cbCachedInstr <= sizeof(pDis->abInstr));
}
else
{
Log(("disReadMore failed with rc=%Rrc!!\n", rc));
pDis->rc = rc;
}
}
/**
* Function for handling a 8-bit cache miss.
*
* @returns The requested byte.
* @param pDis The disassembler state.
* @param offInstr The offset of the byte relative to the
* instruction.
*/
DECL_NO_INLINE(static, uint8_t) disReadByteSlow(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr >= DIS_MAX_INSTR_LENGTH))
{
Log(("disReadByte: too long instruction...\n"));
pDis->rc = VERR_DIS_TOO_LONG_INSTR;
RTINTPTR cbLeft = sizeof(pDis->abInstr) - offInstr;
if (cbLeft > 0)
return pDis->abInstr[offInstr];
return 0;
}
disReadMore(pDis, (uint8_t)offInstr, 1);
return pDis->abInstr[offInstr];
}
/**
* Read a byte (8-bit) instruction.
*
* @returns The requested byte.
* @param pDis The disassembler state.
* @param uAddress The address.
*/
DECLINLINE(uint8_t) disReadByte(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr >= pDis->cbCachedInstr))
return disReadByteSlow(pDis, offInstr);
return pDis->abInstr[offInstr];
}
/**
* Function for handling a 16-bit cache miss.
*
* @returns The requested word.
* @param pDis The disassembler state.
* @param offInstr The offset of the word relative to the
* instruction.
*/
DECL_NO_INLINE(static, uint16_t) disReadWordSlow(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr + 2 > DIS_MAX_INSTR_LENGTH))
{
Log(("disReadWord: too long instruction...\n"));
pDis->rc = VERR_DIS_TOO_LONG_INSTR;
RTINTPTR cbLeft = sizeof(pDis->abInstr) - offInstr;
switch (cbLeft)
{
case 1:
return pDis->abInstr[offInstr];
default:
if (cbLeft >= 2)
return RT_MAKE_U16(pDis->abInstr[offInstr], pDis->abInstr[offInstr + 1]);
return 0;
}
}
disReadMore(pDis, (uint8_t)offInstr, 2);
#ifdef DIS_HOST_UNALIGNED_ACCESS_OK
return *(uint16_t const *)&pDis->abInstr[offInstr];
#else
return RT_MAKE_U16(pDis->abInstr[offInstr], pDis->abInstr[offInstr + 1]);
#endif
}
/**
* Read a word (16-bit) instruction.
*
* @returns The requested word.
* @param pDis The disassembler state.
* @param offInstr The offset of the qword relative to the
* instruction.
*/
DECLINLINE(uint16_t) disReadWord(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr + 2 > pDis->cbCachedInstr))
return disReadWordSlow(pDis, offInstr);
#ifdef DIS_HOST_UNALIGNED_ACCESS_OK
return *(uint16_t const *)&pDis->abInstr[offInstr];
#else
return RT_MAKE_U16(pDis->abInstr[offInstr], pDis->abInstr[offInstr + 1]);
#endif
}
/**
* Function for handling a 32-bit cache miss.
*
* @returns The requested dword.
* @param pDis The disassembler state.
* @param offInstr The offset of the dword relative to the
* instruction.
*/
DECL_NO_INLINE(static, uint32_t) disReadDWordSlow(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr + 4 > DIS_MAX_INSTR_LENGTH))
{
Log(("disReadDWord: too long instruction...\n"));
pDis->rc = VERR_DIS_TOO_LONG_INSTR;
RTINTPTR cbLeft = sizeof(pDis->abInstr) - offInstr;
switch (cbLeft)
{
case 1:
return RT_MAKE_U32_FROM_U8(pDis->abInstr[offInstr], 0, 0, 0);
case 2:
return RT_MAKE_U32_FROM_U8(pDis->abInstr[offInstr], pDis->abInstr[offInstr + 1], 0, 0);
case 3:
return RT_MAKE_U32_FROM_U8(pDis->abInstr[offInstr], pDis->abInstr[offInstr + 1], pDis->abInstr[offInstr + 2], 0);
default:
if (cbLeft >= 4)
return RT_MAKE_U32_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3]);
return 0;
}
}
disReadMore(pDis, (uint8_t)offInstr, 4);
#ifdef DIS_HOST_UNALIGNED_ACCESS_OK
return *(uint32_t const *)&pDis->abInstr[offInstr];
#else
return RT_MAKE_U32_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3]);
#endif
}
/**
* Read a dword (32-bit) instruction.
*
* @returns The requested dword.
* @param pDis The disassembler state.
* @param offInstr The offset of the qword relative to the
* instruction.
*/
DECLINLINE(uint32_t) disReadDWord(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr + 4 > pDis->cbCachedInstr))
return disReadDWordSlow(pDis, offInstr);
#ifdef DIS_HOST_UNALIGNED_ACCESS_OK
return *(uint32_t const *)&pDis->abInstr[offInstr];
#else
return RT_MAKE_U32_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3]);
#endif
}
/**
* Function for handling a 64-bit cache miss.
*
* @returns The requested qword.
* @param pDis The disassembler state.
* @param offInstr The offset of the qword relative to the
* instruction.
*/
DECL_NO_INLINE(static, uint64_t) disReadQWordSlow(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr + 8 > DIS_MAX_INSTR_LENGTH))
{
Log(("disReadQWord: too long instruction...\n"));
pDis->rc = VERR_DIS_TOO_LONG_INSTR;
RTINTPTR cbLeft = sizeof(pDis->abInstr) - offInstr;
switch (cbLeft)
{
case 1:
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr], 0, 0, 0, 0, 0, 0, 0);
case 2:
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr], pDis->abInstr[offInstr + 1], 0, 0, 0, 0, 0, 0);
case 3:
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], 0, 0, 0, 0, 0);
case 4:
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3],
0, 0, 0, 0);
case 5:
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3],
pDis->abInstr[offInstr + 4], 0, 0, 0);
case 6:
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3],
pDis->abInstr[offInstr + 4], pDis->abInstr[offInstr + 5],
0, 0);
case 7:
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3],
pDis->abInstr[offInstr + 4], pDis->abInstr[offInstr + 5],
pDis->abInstr[offInstr + 6], 0);
default:
if (cbLeft >= 8)
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3],
pDis->abInstr[offInstr + 4], pDis->abInstr[offInstr + 5],
pDis->abInstr[offInstr + 6], pDis->abInstr[offInstr + 7]);
return 0;
}
}
disReadMore(pDis, (uint8_t)offInstr, 8);
#ifdef DIS_HOST_UNALIGNED_ACCESS_OK
return *(uint64_t const *)&pDis->abInstr[offInstr];
#else
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3],
pDis->abInstr[offInstr + 4], pDis->abInstr[offInstr + 5],
pDis->abInstr[offInstr + 6], pDis->abInstr[offInstr + 7]);
#endif
}
/**
* Read a qword (64-bit) instruction.
*
* @returns The requested qword.
* @param pDis The disassembler state.
* @param uAddress The address.
*/
DECLINLINE(uint64_t) disReadQWord(PDISSTATE pDis, size_t offInstr)
{
if (RT_UNLIKELY(offInstr + 8 > pDis->cbCachedInstr))
return disReadQWordSlow(pDis, offInstr);
#ifdef DIS_HOST_UNALIGNED_ACCESS_OK
return *(uint64_t const *)&pDis->abInstr[offInstr];
#else
return RT_MAKE_U64_FROM_U8(pDis->abInstr[offInstr ], pDis->abInstr[offInstr + 1],
pDis->abInstr[offInstr + 2], pDis->abInstr[offInstr + 3],
pDis->abInstr[offInstr + 4], pDis->abInstr[offInstr + 5],
pDis->abInstr[offInstr + 6], pDis->abInstr[offInstr + 7]);
#endif
}
//*****************************************************************************
//*****************************************************************************
static size_t disParseInstruction(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis)
{
Assert(pOp); Assert(pDis);
// Store the opcode format string for disasmPrintf
pDis->pCurInstr = pOp;
/*
* Apply filter to instruction type to determine if a full disassembly is required.
* Note! Multibyte opcodes are always marked harmless until the final byte.
*/
bool fFiltered;
if ((pOp->fOpType & pDis->fFilter) == 0)
{
fFiltered = true;
pDis->pfnDisasmFnTable = g_apfnCalcSize;
}
else
{
/* Not filtered out -> full disassembly */
fFiltered = false;
pDis->pfnDisasmFnTable = g_apfnFullDisasm;
}
// Should contain the parameter type on input
pDis->Param1.fParam = pOp->fParam1;
pDis->Param2.fParam = pOp->fParam2;
pDis->Param3.fParam = pOp->fParam3;
/* Correct the operand size if the instruction is marked as forced or default 64 bits */
if (pDis->uCpuMode == DISCPUMODE_64BIT)
{
if (pOp->fOpType & DISOPTYPE_FORCED_64_OP_SIZE)
pDis->uOpMode = DISCPUMODE_64BIT;
else
if ( (pOp->fOpType & DISOPTYPE_DEFAULT_64_OP_SIZE)
&& !(pDis->fPrefix & DISPREFIX_OPSIZE))
pDis->uOpMode = DISCPUMODE_64BIT;
}
else
if (pOp->fOpType & DISOPTYPE_FORCED_32_OP_SIZE_X86)
{
/* Forced 32 bits operand size for certain instructions (mov crx, mov drx). */
Assert(pDis->uCpuMode != DISCPUMODE_64BIT);
pDis->uOpMode = DISCPUMODE_32BIT;
}
if (pOp->idxParse1 != IDX_ParseNop)
{
offInstr = pDis->pfnDisasmFnTable[pOp->idxParse1](offInstr, pOp, pDis, &pDis->Param1);
if (fFiltered == false) pDis->Param1.cb = DISGetParamSize(pDis, &pDis->Param1);
}
if (pOp->idxParse2 != IDX_ParseNop)
{
offInstr = pDis->pfnDisasmFnTable[pOp->idxParse2](offInstr, pOp, pDis, &pDis->Param2);
if (fFiltered == false) pDis->Param2.cb = DISGetParamSize(pDis, &pDis->Param2);
}
if (pOp->idxParse3 != IDX_ParseNop)
{
offInstr = pDis->pfnDisasmFnTable[pOp->idxParse3](offInstr, pOp, pDis, &pDis->Param3);
if (fFiltered == false) pDis->Param3.cb = DISGetParamSize(pDis, &pDis->Param3);
}
// else simple one byte instruction
return offInstr;
}
//*****************************************************************************
/* Floating point opcode parsing */
//*****************************************************************************
static size_t ParseEscFP(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
PCDISOPCODE fpop;
NOREF(pOp);
uint8_t ModRM = disReadByte(pDis, offInstr);
uint8_t index = pDis->bOpCode - 0xD8;
if (ModRM <= 0xBF)
{
fpop = &(g_apMapX86_FP_Low[index])[MODRM_REG(ModRM)];
pDis->pCurInstr = fpop;
// Should contain the parameter type on input
pDis->Param1.fParam = fpop->fParam1;
pDis->Param2.fParam = fpop->fParam2;
}
else
{
fpop = &(g_apMapX86_FP_High[index])[ModRM - 0xC0];
pDis->pCurInstr = fpop;
}
/*
* Apply filter to instruction type to determine if a full disassembly is required.
* @note Multibyte opcodes are always marked harmless until the final byte.
*/
if ((fpop->fOpType & pDis->fFilter) == 0)
pDis->pfnDisasmFnTable = g_apfnCalcSize;
else
/* Not filtered out -> full disassembly */
pDis->pfnDisasmFnTable = g_apfnFullDisasm;
/* Correct the operand size if the instruction is marked as forced or default 64 bits */
if (pDis->uCpuMode == DISCPUMODE_64BIT)
{
/* Note: redundant, but just in case this ever changes */
if (fpop->fOpType & DISOPTYPE_FORCED_64_OP_SIZE)
pDis->uOpMode = DISCPUMODE_64BIT;
else
if ( (fpop->fOpType & DISOPTYPE_DEFAULT_64_OP_SIZE)
&& !(pDis->fPrefix & DISPREFIX_OPSIZE))
pDis->uOpMode = DISCPUMODE_64BIT;
}
// Little hack to make sure the ModRM byte is included in the returned size
if (fpop->idxParse1 != IDX_ParseModRM && fpop->idxParse2 != IDX_ParseModRM)
offInstr++; //ModRM byte
if (fpop->idxParse1 != IDX_ParseNop)
offInstr = pDis->pfnDisasmFnTable[fpop->idxParse1](offInstr, fpop, pDis, pParam);
if (fpop->idxParse2 != IDX_ParseNop)
offInstr = pDis->pfnDisasmFnTable[fpop->idxParse2](offInstr, fpop, pDis, pParam);
return offInstr;
}
/********************************************************************************************************************************
*
*
* SIB byte: (not 16-bit mode)
* 7 - 6 5 - 3 2-0
* Scale Index Base
*
*
********************************************************************************************************************************/
static void UseSIB(PDISSTATE pDis, PDISOPPARAM pParam)
{
unsigned scale = pDis->SIB.Bits.Scale;
unsigned base = pDis->SIB.Bits.Base;
unsigned index = pDis->SIB.Bits.Index;
unsigned regtype;
if (pDis->uAddrMode == DISCPUMODE_32BIT)
regtype = DISUSE_REG_GEN32;
else
regtype = DISUSE_REG_GEN64;
if (index != 4)
{
pParam->fUse |= DISUSE_INDEX | regtype;
pParam->Index.idxGenReg = index;
if (scale != 0)
{
pParam->fUse |= DISUSE_SCALE;
pParam->uScale = (1<<scale);
}
}
if (base == 5 && pDis->ModRM.Bits.Mod == 0)
{
// [scaled index] + disp32
if (pDis->uAddrMode == DISCPUMODE_32BIT)
{
pParam->fUse |= DISUSE_DISPLACEMENT32;
pParam->uDisp.i32 = pDis->i32SibDisp;
}
else
{ /* sign-extend to 64 bits */
pParam->fUse |= DISUSE_DISPLACEMENT64;
pParam->uDisp.i64 = pDis->i32SibDisp;
}
}
else
{
pParam->fUse |= DISUSE_BASE | regtype;
pParam->Base.idxGenReg = base;
}
return; /* Already fetched everything in ParseSIB; no size returned */
}
static size_t ParseSIB(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam);
uint8_t SIB = disReadByte(pDis, offInstr);
offInstr++;
pDis->SIB.Bits.Base = SIB_BASE(SIB);
pDis->SIB.Bits.Index = SIB_INDEX(SIB);
pDis->SIB.Bits.Scale = SIB_SCALE(SIB);
if (pDis->fPrefix & DISPREFIX_REX)
{
/* REX.B extends the Base field if not scaled index + disp32 */
if (!(pDis->SIB.Bits.Base == 5 && pDis->ModRM.Bits.Mod == 0))
pDis->SIB.Bits.Base |= (!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_B)) << 3;
pDis->SIB.Bits.Index |= (!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_X)) << 3;
}
if ( pDis->SIB.Bits.Base == 5
&& pDis->ModRM.Bits.Mod == 0)
{
/* Additional 32 bits displacement. No change in long mode. */
pDis->i32SibDisp = disReadDWord(pDis, offInstr);
offInstr += 4;
}
return offInstr;
}
static size_t ParseSIB_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam);
uint8_t SIB = disReadByte(pDis, offInstr);
offInstr++;
pDis->SIB.Bits.Base = SIB_BASE(SIB);
pDis->SIB.Bits.Index = SIB_INDEX(SIB);
pDis->SIB.Bits.Scale = SIB_SCALE(SIB);
if (pDis->fPrefix & DISPREFIX_REX)
{
/* REX.B extends the Base field. */
pDis->SIB.Bits.Base |= ((!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_B)) << 3);
/* REX.X extends the Index field. */
pDis->SIB.Bits.Index |= ((!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_X)) << 3);
}
if ( pDis->SIB.Bits.Base == 5
&& pDis->ModRM.Bits.Mod == 0)
{
/* Additional 32 bits displacement. No change in long mode. */
offInstr += 4;
}
return offInstr;
}
/********************************************************************************************************************************
*
*
* ModR/M byte:
* 7 - 6 5 - 3 2-0
* Mod Reg/Opcode R/M
*
*
********************************************************************************************************************************/
static void disasmModRMReg(unsigned idx, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam, int fRegAddr)
{
NOREF(pOp); NOREF(pDis);
unsigned type = OP_PARM_VTYPE(pParam->fParam);
unsigned subtype = OP_PARM_VSUBTYPE(pParam->fParam);
if (fRegAddr)
subtype = (pDis->uAddrMode == DISCPUMODE_64BIT) ? OP_PARM_q : OP_PARM_d;
else
if (subtype == OP_PARM_v || subtype == OP_PARM_NONE || subtype == OP_PARM_y)
{
switch (pDis->uOpMode)
{
case DISCPUMODE_32BIT:
subtype = OP_PARM_d;
break;
case DISCPUMODE_64BIT:
subtype = OP_PARM_q;
break;
case DISCPUMODE_16BIT:
if (subtype != OP_PARM_y)
subtype = OP_PARM_w;
break;
default:
/* make gcc happy */
break;
}
}
switch (subtype)
{
case OP_PARM_b:
Assert(idx < (pDis->fPrefix & DISPREFIX_REX ? 16U : 8U));
/* AH, BH, CH & DH map to DIL, SIL, EBL & SPL when a rex prefix is present. */
/* Intel� 64 and IA-32 Architectures Software Developer�s Manual: 3.4.1.1 */
if ( (pDis->fPrefix & DISPREFIX_REX)
&& idx >= DISGREG_AH
&& idx <= DISGREG_BH)
{
idx += (DISGREG_SPL - DISGREG_AH);
}
pParam->fUse |= DISUSE_REG_GEN8;
pParam->Base.idxGenReg = idx;
break;
case OP_PARM_w:
Assert(idx < (pDis->fPrefix & DISPREFIX_REX ? 16U : 8U));
pParam->fUse |= DISUSE_REG_GEN16;
pParam->Base.idxGenReg = idx;
break;
case OP_PARM_d:
Assert(idx < (pDis->fPrefix & DISPREFIX_REX ? 16U : 8U));
pParam->fUse |= DISUSE_REG_GEN32;
pParam->Base.idxGenReg = idx;
break;
case OP_PARM_q:
pParam->fUse |= DISUSE_REG_GEN64;
pParam->Base.idxGenReg = idx;
break;
default:
Log(("disasmModRMReg %x:%x failed!!\n", type, subtype));
pDis->rc = VERR_DIS_INVALID_MODRM;
break;
}
}
static void disasmModRMReg16(unsigned idx, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
static const uint8_t s_auBaseModRMReg16[8] =
{ DISGREG_BX, DISGREG_BX, DISGREG_BP, DISGREG_BP, DISGREG_SI, DISGREG_DI, DISGREG_BP, DISGREG_BX };
NOREF(pDis); NOREF(pOp);
pParam->fUse |= DISUSE_REG_GEN16;
pParam->Base.idxGenReg = s_auBaseModRMReg16[idx];
if (idx < 4)
{
static const uint8_t s_auIndexModRMReg16[4] = { DISGREG_SI, DISGREG_DI, DISGREG_SI, DISGREG_DI };
pParam->fUse |= DISUSE_INDEX;
pParam->Index.idxGenReg = s_auIndexModRMReg16[idx];
}
}
static void disasmModRMSReg(unsigned idx, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
if (idx >= DISSELREG_END)
{
Log(("disasmModRMSReg %d failed!!\n", idx));
pDis->rc = VERR_DIS_INVALID_PARAMETER;
return;
}
pParam->fUse |= DISUSE_REG_SEG;
pParam->Base.idxSegReg = (DISSELREG)idx;
}
static size_t UseModRM(size_t const offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
unsigned vtype = OP_PARM_VTYPE(pParam->fParam);
uint8_t reg = pDis->ModRM.Bits.Reg;
uint8_t mod = pDis->ModRM.Bits.Mod;
uint8_t rm = pDis->ModRM.Bits.Rm;
switch (vtype)
{
case OP_PARM_G: //general purpose register
disasmModRMReg(reg, pOp, pDis, pParam, 0);
return offInstr;
default:
if (IS_OP_PARM_RARE(vtype))
{
switch (vtype)
{
case OP_PARM_C: //control register
pParam->fUse |= DISUSE_REG_CR;
if ( pDis->pCurInstr->uOpcode == OP_MOV_CR
&& pDis->uOpMode == DISCPUMODE_32BIT
&& (pDis->fPrefix & DISPREFIX_LOCK))
{
pDis->fPrefix &= ~DISPREFIX_LOCK;
pParam->Base.idxCtrlReg = DISCREG_CR8;
}
else
pParam->Base.idxCtrlReg = reg;
return offInstr;
case OP_PARM_D: //debug register
pParam->fUse |= DISUSE_REG_DBG;
pParam->Base.idxDbgReg = reg;
return offInstr;
case OP_PARM_Q: //MMX or memory operand
if (mod != 3)
break; /* memory operand */
reg = rm; /* the RM field specifies the xmm register */
/* else no break */
case OP_PARM_P: //MMX register
reg &= 7; /* REX.R has no effect here */
pParam->fUse |= DISUSE_REG_MMX;
pParam->Base.idxMmxReg = reg;
return offInstr;
case OP_PARM_S: //segment register
reg &= 7; /* REX.R has no effect here */
disasmModRMSReg(reg, pOp, pDis, pParam);
pParam->fUse |= DISUSE_REG_SEG;
return offInstr;
case OP_PARM_T: //test register
reg &= 7; /* REX.R has no effect here */
pParam->fUse |= DISUSE_REG_TEST;
pParam->Base.idxTestReg = reg;
return offInstr;
case OP_PARM_W: //XMM register or memory operand
if (mod != 3)
break; /* memory operand */
reg = rm; /* the RM field specifies the xmm register */
/* else no break */
case OP_PARM_V: //XMM register
pParam->fUse |= DISUSE_REG_XMM;
pParam->Base.idxXmmReg = reg;
return offInstr;
}
}
}
/** @todo bound */
if (pDis->uAddrMode != DISCPUMODE_16BIT)
{
Assert(pDis->uAddrMode == DISCPUMODE_32BIT || pDis->uAddrMode == DISCPUMODE_64BIT);
/*
* Note: displacements in long mode are 8 or 32 bits and sign-extended to 64 bits
*/
switch (mod)
{
case 0: //effective address
if (rm == 4) /* SIB byte follows ModRM */
UseSIB(pDis, pParam);
else
if (rm == 5)
{
/* 32 bits displacement */
if (pDis->uCpuMode != DISCPUMODE_64BIT)
{
pParam->fUse |= DISUSE_DISPLACEMENT32;
pParam->uDisp.i32 = pDis->i32SibDisp;
}
else
{
pParam->fUse |= DISUSE_RIPDISPLACEMENT32;
pParam->uDisp.i32 = pDis->i32SibDisp;
}
}
else
{ //register address
pParam->fUse |= DISUSE_BASE;
disasmModRMReg(rm, pOp, pDis, pParam, 1);
}
break;
case 1: //effective address + 8 bits displacement
if (rm == 4) /* SIB byte follows ModRM */
UseSIB(pDis, pParam);
else
{
pParam->fUse |= DISUSE_BASE;
disasmModRMReg(rm, pOp, pDis, pParam, 1);
}
pParam->uDisp.i8 = pDis->i32SibDisp;
pParam->fUse |= DISUSE_DISPLACEMENT8;
break;
case 2: //effective address + 32 bits displacement
if (rm == 4) /* SIB byte follows ModRM */
UseSIB(pDis, pParam);
else
{
pParam->fUse |= DISUSE_BASE;
disasmModRMReg(rm, pOp, pDis, pParam, 1);
}
pParam->uDisp.i32 = pDis->i32SibDisp;
pParam->fUse |= DISUSE_DISPLACEMENT32;
break;
case 3: //registers
disasmModRMReg(rm, pOp, pDis, pParam, 0);
break;
}
}
else
{//16 bits addressing mode
switch (mod)
{
case 0: //effective address
if (rm == 6)
{//16 bits displacement
pParam->uDisp.i16 = pDis->i32SibDisp;
pParam->fUse |= DISUSE_DISPLACEMENT16;
}
else
{
pParam->fUse |= DISUSE_BASE;
disasmModRMReg16(rm, pOp, pDis, pParam);
}
break;
case 1: //effective address + 8 bits displacement
disasmModRMReg16(rm, pOp, pDis, pParam);
pParam->uDisp.i8 = pDis->i32SibDisp;
pParam->fUse |= DISUSE_BASE | DISUSE_DISPLACEMENT8;
break;
case 2: //effective address + 16 bits displacement
disasmModRMReg16(rm, pOp, pDis, pParam);
pParam->uDisp.i16 = pDis->i32SibDisp;
pParam->fUse |= DISUSE_BASE | DISUSE_DISPLACEMENT16;
break;
case 3: //registers
disasmModRMReg(rm, pOp, pDis, pParam, 0);
break;
}
}
return offInstr;
}
//*****************************************************************************
// Query the size of the ModRM parameters and fetch the immediate data (if any)
//*****************************************************************************
static size_t QueryModRM(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
uint8_t mod = pDis->ModRM.Bits.Mod;
uint8_t rm = pDis->ModRM.Bits.Rm;
if (pDis->uAddrMode != DISCPUMODE_16BIT)
{
Assert(pDis->uAddrMode == DISCPUMODE_32BIT || pDis->uAddrMode == DISCPUMODE_64BIT);
/*
* Note: displacements in long mode are 8 or 32 bits and sign-extended to 64 bits
*/
if (mod != 3 && rm == 4) /* SIB byte follows ModRM */
offInstr = ParseSIB(offInstr, pOp, pDis, pParam);
switch (mod)
{
case 0: /* Effective address */
if (rm == 5) /* 32 bits displacement */
{
pDis->i32SibDisp = disReadDWord(pDis, offInstr);
offInstr += 4;
}
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
pDis->i32SibDisp = (int8_t)disReadByte(pDis, offInstr);
offInstr++;
break;
case 2: /* Effective address + 32 bits displacement */
pDis->i32SibDisp = disReadDWord(pDis, offInstr);
offInstr += 4;
break;
case 3: /* registers */
break;
}
}
else
{
/* 16 bits mode */
switch (mod)
{
case 0: /* Effective address */
if (rm == 6)
{
pDis->i32SibDisp = disReadWord(pDis, offInstr);
offInstr += 2;
}
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
pDis->i32SibDisp = (int8_t)disReadByte(pDis, offInstr);
offInstr++;
break;
case 2: /* Effective address + 32 bits displacement */
pDis->i32SibDisp = (int16_t)disReadWord(pDis, offInstr);
offInstr += 2;
break;
case 3: /* registers */
break;
}
}
return offInstr;
}
//*****************************************************************************
// Parse the ModRM parameters and fetch the immediate data (if any)
//*****************************************************************************
static size_t QueryModRM_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
uint8_t mod = pDis->ModRM.Bits.Mod;
uint8_t rm = pDis->ModRM.Bits.Rm;
if (pDis->uAddrMode != DISCPUMODE_16BIT)
{
Assert(pDis->uAddrMode == DISCPUMODE_32BIT || pDis->uAddrMode == DISCPUMODE_64BIT);
/*
* Note: displacements in long mode are 8 or 32 bits and sign-extended to 64 bits
*/
if (mod != 3 && rm == 4)
{ /* SIB byte follows ModRM */
offInstr = ParseSIB_SizeOnly(offInstr, pOp, pDis, pParam);
}
switch (mod)
{
case 0: //effective address
if (rm == 5) /* 32 bits displacement */
offInstr += 4;
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
offInstr += 1;
break;
case 2: /* Effective address + 32 bits displacement */
offInstr += 4;
break;
case 3: /* registers */
break;
}
}
else
{
/* 16 bits mode */
switch (mod)
{
case 0: //effective address
if (rm == 6)
offInstr += 2;
/* else register address */
break;
case 1: /* Effective address + 8 bits displacement */
offInstr++;
break;
case 2: /* Effective address + 32 bits displacement */
offInstr += 2;
break;
case 3: /* registers */
break;
}
}
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseIllegal(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam); NOREF(pDis);
AssertFailed();
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseModRM(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
uint8_t ModRM = disReadByte(pDis, offInstr);
offInstr++;
pDis->ModRM.Bits.Rm = MODRM_RM(ModRM);
pDis->ModRM.Bits.Mod = MODRM_MOD(ModRM);
pDis->ModRM.Bits.Reg = MODRM_REG(ModRM);
/* Disregard the mod bits for certain instructions (mov crx, mov drx).
*
* From the AMD manual:
* This instruction is always treated as a register-to-register (MOD = 11) instruction, regardless of the
* encoding of the MOD field in the MODR/M byte.
*/
if (pOp->fOpType & DISOPTYPE_MOD_FIXED_11)
pDis->ModRM.Bits.Mod = 3;
if (pDis->fPrefix & DISPREFIX_REX)
{
Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
/* REX.R extends the Reg field. */
pDis->ModRM.Bits.Reg |= ((!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_R)) << 3);
/* REX.B extends the Rm field if there is no SIB byte nor a 32 bits displacement */
if (!( pDis->ModRM.Bits.Mod != 3
&& pDis->ModRM.Bits.Rm == 4)
&&
!( pDis->ModRM.Bits.Mod == 0
&& pDis->ModRM.Bits.Rm == 5))
{
pDis->ModRM.Bits.Rm |= ((!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_B)) << 3);
}
}
offInstr = QueryModRM(offInstr, pOp, pDis, pParam);
return UseModRM(offInstr, pOp, pDis, pParam);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseModRM_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
uint8_t ModRM = disReadByte(pDis, offInstr);
offInstr++;
pDis->ModRM.Bits.Rm = MODRM_RM(ModRM);
pDis->ModRM.Bits.Mod = MODRM_MOD(ModRM);
pDis->ModRM.Bits.Reg = MODRM_REG(ModRM);
/* Disregard the mod bits for certain instructions (mov crx, mov drx).
*
* From the AMD manual:
* This instruction is always treated as a register-to-register (MOD = 11) instruction, regardless of the
* encoding of the MOD field in the MODR/M byte.
*/
if (pOp->fOpType & DISOPTYPE_MOD_FIXED_11)
pDis->ModRM.Bits.Mod = 3;
if (pDis->fPrefix & DISPREFIX_REX)
{
Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
/* REX.R extends the Reg field. */
pDis->ModRM.Bits.Reg |= ((!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_R)) << 3);
/* REX.B extends the Rm field if there is no SIB byte nor a 32 bits displacement */
if (!( pDis->ModRM.Bits.Mod != 3
&& pDis->ModRM.Bits.Rm == 4)
&&
!( pDis->ModRM.Bits.Mod == 0
&& pDis->ModRM.Bits.Rm == 5))
{
pDis->ModRM.Bits.Rm |= ((!!(pDis->fRexPrefix & DISPREFIX_REX_FLAGS_B)) << 3);
}
}
offInstr = QueryModRM_SizeOnly(offInstr, pOp, pDis, pParam);
/* UseModRM is not necessary here; we're only interested in the opcode size */
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseModFence(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam); NOREF(pDis);
/* Note! Only used in group 15, so we must account for the mod/rm byte. */
return offInstr + 1;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmByte(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->uValue = disReadByte(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE8;
pParam->cb = sizeof(uint8_t);
return offInstr + 1;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmByte_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam); NOREF(pDis);
return offInstr + 1;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmByteSX(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
if (pDis->uOpMode == DISCPUMODE_32BIT)
{
pParam->uValue = (uint32_t)(int8_t)disReadByte(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE32_SX8;
pParam->cb = sizeof(uint32_t);
}
else
if (pDis->uOpMode == DISCPUMODE_64BIT)
{
pParam->uValue = (uint64_t)(int8_t)disReadByte(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE64_SX8;
pParam->cb = sizeof(uint64_t);
}
else
{
pParam->uValue = (uint16_t)(int8_t)disReadByte(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE16_SX8;
pParam->cb = sizeof(uint16_t);
}
return offInstr + 1;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmByteSX_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam); NOREF(pDis);
return offInstr + 1;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmUshort(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->uValue = disReadWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE16;
pParam->cb = sizeof(uint16_t);
return offInstr + 2;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmUshort_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam); NOREF(pDis);
return offInstr + 2;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmUlong(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->uValue = disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE32;
pParam->cb = sizeof(uint32_t);
return offInstr + 4;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmUlong_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam); NOREF(pDis);
return offInstr + 4;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmQword(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->uValue = disReadQWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE64;
pParam->cb = sizeof(uint64_t);
return offInstr + 8;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmQword_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr); NOREF(pOp); NOREF(pParam); NOREF(pDis);
return offInstr + 8;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmV(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
if (pDis->uOpMode == DISCPUMODE_32BIT)
{
pParam->uValue = disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE32;
pParam->cb = sizeof(uint32_t);
return offInstr + 4;
}
if (pDis->uOpMode == DISCPUMODE_64BIT)
{
pParam->uValue = disReadQWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE64;
pParam->cb = sizeof(uint64_t);
return offInstr + 8;
}
pParam->uValue = disReadWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE16;
pParam->cb = sizeof(uint16_t);
return offInstr + 2;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmV_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr); NOREF(pOp); NOREF(pParam);
if (pDis->uOpMode == DISCPUMODE_32BIT)
return offInstr + 4;
if (pDis->uOpMode == DISCPUMODE_64BIT)
return offInstr + 8;
return offInstr + 2;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmZ(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
/* Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size. */
if (pDis->uOpMode == DISCPUMODE_16BIT)
{
pParam->uValue = disReadWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE16;
pParam->cb = sizeof(uint16_t);
return offInstr + 2;
}
/* 64 bits op mode means *sign* extend to 64 bits. */
if (pDis->uOpMode == DISCPUMODE_64BIT)
{
pParam->uValue = (uint64_t)(int32_t)disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE64;
pParam->cb = sizeof(uint64_t);
}
else
{
pParam->uValue = disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE32;
pParam->cb = sizeof(uint32_t);
}
return offInstr + 4;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmZ_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr); NOREF(pOp); NOREF(pParam);
/* Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size. */
if (pDis->uOpMode == DISCPUMODE_16BIT)
return offInstr + 2;
return offInstr + 4;
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
static size_t ParseImmBRel(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->uValue = disReadByte(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE8_REL;
pParam->cb = sizeof(uint8_t);
return offInstr + 1;
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
static size_t ParseImmBRel_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr); NOREF(pOp); NOREF(pParam); NOREF(pDis);
return offInstr + 1;
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
static size_t ParseImmVRel(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
if (pDis->uOpMode == DISCPUMODE_32BIT)
{
pParam->uValue = disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE32_REL;
pParam->cb = sizeof(int32_t);
return offInstr + 4;
}
if (pDis->uOpMode == DISCPUMODE_64BIT)
{
/* 32 bits relative immediate sign extended to 64 bits. */
pParam->uValue = (uint64_t)(int32_t)disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE64_REL;
pParam->cb = sizeof(int64_t);
return offInstr + 4;
}
pParam->uValue = disReadWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE16_REL;
pParam->cb = sizeof(int16_t);
return offInstr + 2;
}
//*****************************************************************************
// Relative displacement for branches (rel. to next instruction)
//*****************************************************************************
static size_t ParseImmVRel_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr); NOREF(pOp); NOREF(pParam);
if (pDis->uOpMode == DISCPUMODE_16BIT)
return offInstr + 2;
/* Both 32 & 64 bits mode use 32 bits relative immediates. */
return offInstr + 4;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmAddr(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
if (pDis->uAddrMode == DISCPUMODE_32BIT)
{
if (OP_PARM_VSUBTYPE(pParam->fParam) == OP_PARM_p)
{
/* far 16:32 pointer */
pParam->uValue = disReadDWord(pDis, offInstr);
*((uint32_t*)&pParam->uValue+1) = disReadWord(pDis, offInstr+sizeof(uint32_t));
pParam->fUse |= DISUSE_IMMEDIATE_ADDR_16_32;
pParam->cb = sizeof(uint16_t) + sizeof(uint32_t);
return offInstr + 4 + 2;
}
/*
* near 32 bits pointer
*
* Note: used only in "mov al|ax|eax, [Addr]" and "mov [Addr], al|ax|eax"
* so we treat it like displacement.
*/
pParam->uDisp.i32 = disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_DISPLACEMENT32;
pParam->cb = sizeof(uint32_t);
return offInstr + 4;
}
if (pDis->uAddrMode == DISCPUMODE_64BIT)
{
/*
* near 64 bits pointer
*
* Note: used only in "mov al|ax|eax, [Addr]" and "mov [Addr], al|ax|eax"
* so we treat it like displacement.
*/
Assert(OP_PARM_VSUBTYPE(pParam->fParam) != OP_PARM_p);
pParam->uDisp.i64 = disReadQWord(pDis, offInstr);
pParam->fUse |= DISUSE_DISPLACEMENT64;
pParam->cb = sizeof(uint64_t);
return offInstr + 8;
}
if (OP_PARM_VSUBTYPE(pParam->fParam) == OP_PARM_p)
{
/* far 16:16 pointer */
pParam->uValue = disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE_ADDR_16_16;
pParam->cb = 2*sizeof(uint16_t);
return offInstr + 4;
}
/*
* near 16 bits pointer
*
* Note: used only in "mov al|ax|eax, [Addr]" and "mov [Addr], al|ax|eax"
* so we treat it like displacement.
*/
pParam->uDisp.i16 = disReadWord(pDis, offInstr);
pParam->fUse |= DISUSE_DISPLACEMENT16;
pParam->cb = sizeof(uint16_t);
return offInstr + 2;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmAddr_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr); NOREF(pOp);
if (pDis->uAddrMode == DISCPUMODE_32BIT)
{
if (OP_PARM_VSUBTYPE(pParam->fParam) == OP_PARM_p)
return offInstr + 4 + 2; /* far 16:32 pointer */
return offInstr + 4; /* near 32 bits pointer */
}
if (pDis->uAddrMode == DISCPUMODE_64BIT)
{
Assert(OP_PARM_VSUBTYPE(pParam->fParam) != OP_PARM_p);
return offInstr + 8;
}
if (OP_PARM_VSUBTYPE(pParam->fParam) == OP_PARM_p)
return offInstr + 4; /* far 16:16 pointer */
return offInstr + 2; /* near 16 bits pointer */
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmAddrF(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
// immediate far pointers - only 16:16 or 16:32; determined by operand, *not* address size!
Assert(pDis->uOpMode == DISCPUMODE_16BIT || pDis->uOpMode == DISCPUMODE_32BIT);
Assert(OP_PARM_VSUBTYPE(pParam->fParam) == OP_PARM_p);
if (pDis->uOpMode == DISCPUMODE_32BIT)
{
// far 16:32 pointer
pParam->uValue = disReadDWord(pDis, offInstr);
*((uint32_t*)&pParam->uValue+1) = disReadWord(pDis, offInstr+sizeof(uint32_t));
pParam->fUse |= DISUSE_IMMEDIATE_ADDR_16_32;
pParam->cb = sizeof(uint16_t) + sizeof(uint32_t);
return offInstr + 4 + 2;
}
// far 16:16 pointer
pParam->uValue = disReadDWord(pDis, offInstr);
pParam->fUse |= DISUSE_IMMEDIATE_ADDR_16_16;
pParam->cb = 2*sizeof(uint16_t);
return offInstr + 2 + 2;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmAddrF_SizeOnly(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr); NOREF(pOp);
// immediate far pointers - only 16:16 or 16:32
Assert(pDis->uOpMode == DISCPUMODE_16BIT || pDis->uOpMode == DISCPUMODE_32BIT);
Assert(OP_PARM_VSUBTYPE(pParam->fParam) == OP_PARM_p);
if (pDis->uOpMode == DISCPUMODE_32BIT)
return offInstr + 4 + 2; /* far 16:32 pointer */
return offInstr + 2 + 2; /* far 16:16 pointer */
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseFixedReg(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(offInstr);
/*
* Sets up flags for stored in OPC fixed registers.
*/
if (pParam->fParam == OP_PARM_NONE)
{
/* No parameter at all. */
return offInstr;
}
AssertCompile(OP_PARM_REG_GEN32_END < OP_PARM_REG_SEG_END);
AssertCompile(OP_PARM_REG_SEG_END < OP_PARM_REG_GEN16_END);
AssertCompile(OP_PARM_REG_GEN16_END < OP_PARM_REG_GEN8_END);
AssertCompile(OP_PARM_REG_GEN8_END < OP_PARM_REG_FP_END);
if (pParam->fParam <= OP_PARM_REG_GEN32_END)
{
/* 32-bit EAX..EDI registers. */
if (pDis->uOpMode == DISCPUMODE_32BIT)
{
/* Use 32-bit registers. */
pParam->Base.idxGenReg = pParam->fParam - OP_PARM_REG_GEN32_START;
pParam->fUse |= DISUSE_REG_GEN32;
pParam->cb = 4;
}
else if (pDis->uOpMode == DISCPUMODE_64BIT)
{
/* Use 64-bit registers. */
pParam->Base.idxGenReg = pParam->fParam - OP_PARM_REG_GEN32_START;
pParam->fUse |= DISUSE_REG_GEN64;
pParam->cb = 8;
}
else
{
/* Use 16-bit registers. */
pParam->Base.idxGenReg = pParam->fParam - OP_PARM_REG_GEN32_START;
pParam->fUse |= DISUSE_REG_GEN16;
pParam->cb = 2;
pParam->fParam = pParam->fParam - OP_PARM_REG_GEN32_START + OP_PARM_REG_GEN16_START;
}
if ( (pOp->fOpType & DISOPTYPE_REXB_EXTENDS_OPREG)
&& pParam == &pDis->Param1 /* ugly assumption that it only applies to the first parameter */
&& (pDis->fPrefix & DISPREFIX_REX)
&& (pDis->fRexPrefix & DISPREFIX_REX_FLAGS_B))
{
Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
pParam->Base.idxGenReg += 8;
}
}
else if (pParam->fParam <= OP_PARM_REG_SEG_END)
{
/* Segment ES..GS registers. */
pParam->Base.idxSegReg = (DISSELREG)(pParam->fParam - OP_PARM_REG_SEG_START);
pParam->fUse |= DISUSE_REG_SEG;
pParam->cb = 2;
}
else if (pParam->fParam <= OP_PARM_REG_GEN16_END)
{
/* 16-bit AX..DI registers. */
pParam->Base.idxGenReg = pParam->fParam - OP_PARM_REG_GEN16_START;
pParam->fUse |= DISUSE_REG_GEN16;
pParam->cb = 2;
}
else if (pParam->fParam <= OP_PARM_REG_GEN8_END)
{
/* 8-bit AL..DL, AH..DH registers. */
pParam->Base.idxGenReg = pParam->fParam - OP_PARM_REG_GEN8_START;
pParam->fUse |= DISUSE_REG_GEN8;
pParam->cb = 1;
if ( pDis->uCpuMode == DISCPUMODE_64BIT
&& (pOp->fOpType & DISOPTYPE_REXB_EXTENDS_OPREG)
&& pParam == &pDis->Param1 /* ugly assumption that it only applies to the first parameter */
&& (pDis->fPrefix & DISPREFIX_REX))
{
if (pDis->fRexPrefix & DISPREFIX_REX_FLAGS_B)
pParam->Base.idxGenReg += 8; /* least significant byte of R8-R15 */
else if ( pParam->Base.idxGenReg >= DISGREG_AH
&& pParam->Base.idxGenReg <= DISGREG_BH)
pParam->Base.idxGenReg += DISGREG_SPL - DISGREG_AH;
}
}
else if (pParam->fParam <= OP_PARM_REG_FP_END)
{
/* FPU registers. */
pParam->Base.idxFpuReg = pParam->fParam - OP_PARM_REG_FP_START;
pParam->fUse |= DISUSE_REG_FP;
pParam->cb = 10;
}
Assert(!(pParam->fParam >= OP_PARM_REG_GEN64_START && pParam->fParam <= OP_PARM_REG_GEN64_END));
/* else - not supported for now registers. */
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseXv(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->fUse |= DISUSE_POINTER_DS_BASED;
if (pDis->uAddrMode == DISCPUMODE_32BIT)
{
pParam->Base.idxGenReg = DISGREG_ESI;
pParam->fUse |= DISUSE_REG_GEN32;
}
else
if (pDis->uAddrMode == DISCPUMODE_64BIT)
{
pParam->Base.idxGenReg = DISGREG_RSI;
pParam->fUse |= DISUSE_REG_GEN64;
}
else
{
pParam->Base.idxGenReg = DISGREG_SI;
pParam->fUse |= DISUSE_REG_GEN16;
}
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseXb(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->fUse |= DISUSE_POINTER_DS_BASED;
if (pDis->uAddrMode == DISCPUMODE_32BIT)
{
pParam->Base.idxGenReg = DISGREG_ESI;
pParam->fUse |= DISUSE_REG_GEN32;
}
else
if (pDis->uAddrMode == DISCPUMODE_64BIT)
{
pParam->Base.idxGenReg = DISGREG_RSI;
pParam->fUse |= DISUSE_REG_GEN64;
}
else
{
pParam->Base.idxGenReg = DISGREG_SI;
pParam->fUse |= DISUSE_REG_GEN16;
}
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseYv(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->fUse |= DISUSE_POINTER_ES_BASED;
if (pDis->uAddrMode == DISCPUMODE_32BIT)
{
pParam->Base.idxGenReg = DISGREG_EDI;
pParam->fUse |= DISUSE_REG_GEN32;
}
else
if (pDis->uAddrMode == DISCPUMODE_64BIT)
{
pParam->Base.idxGenReg = DISGREG_RDI;
pParam->fUse |= DISUSE_REG_GEN64;
}
else
{
pParam->Base.idxGenReg = DISGREG_DI;
pParam->fUse |= DISUSE_REG_GEN16;
}
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseYb(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp);
pParam->fUse |= DISUSE_POINTER_ES_BASED;
if (pDis->uAddrMode == DISCPUMODE_32BIT)
{
pParam->Base.idxGenReg = DISGREG_EDI;
pParam->fUse |= DISUSE_REG_GEN32;
}
else
if (pDis->uAddrMode == DISCPUMODE_64BIT)
{
pParam->Base.idxGenReg = DISGREG_RDI;
pParam->fUse |= DISUSE_REG_GEN64;
}
else
{
pParam->Base.idxGenReg = DISGREG_DI;
pParam->fUse |= DISUSE_REG_GEN16;
}
return offInstr;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseInvOpModRm(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pDis); NOREF(pParam);
/* This is used to avoid a bunch of special hacks to get the ModRM byte
included when encountering invalid opcodes in groups. */
return offInstr + 1;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseTwoByteEsc(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam);
/* 2nd byte */
pDis->bOpCode = disReadByte(pDis, offInstr);
offInstr++;
/* default to the non-prefixed table. */
PCDISOPCODE pOpcode = &g_aTwoByteMapX86[pDis->bOpCode];
/* Handle opcode table extensions that rely on the address, repe or repne prefix byte. */
/** @todo Should we take the first or last prefix byte in case of multiple prefix bytes??? */
if (pDis->bLastPrefix)
{
switch (pDis->bLastPrefix)
{
case OP_OPSIZE: /* 0x66 */
if (g_aTwoByteMapX86_PF66[pDis->bOpCode].uOpcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
pOpcode = &g_aTwoByteMapX86_PF66[pDis->bOpCode];
/* Cancel prefix changes. */
pDis->fPrefix &= ~DISPREFIX_OPSIZE;
if (pDis->uCpuMode == DISCPUMODE_64BIT)
{
pDis->uOpMode = (pDis->fRexPrefix & DISPREFIX_REX_FLAGS_W ? DISCPUMODE_64BIT : DISCPUMODE_32BIT);
}
else
pDis->uOpMode = pDis->uCpuMode;
}
break;
case OP_REPNE: /* 0xF2 */
if (g_aTwoByteMapX86_PFF2[pDis->bOpCode].uOpcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
pOpcode = &g_aTwoByteMapX86_PFF2[pDis->bOpCode];
/* Cancel prefix changes. */
pDis->fPrefix &= ~DISPREFIX_REPNE;
}
break;
case OP_REPE: /* 0xF3 */
if (g_aTwoByteMapX86_PFF3[pDis->bOpCode].uOpcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
pOpcode = &g_aTwoByteMapX86_PFF3[pDis->bOpCode];
/* Cancel prefix changes. */
pDis->fPrefix &= ~DISPREFIX_REP;
}
break;
}
}
return disParseInstruction(offInstr, pOpcode, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseThreeByteEsc4(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam);
/* 3rd byte */
pDis->bOpCode = disReadByte(pDis, offInstr);
offInstr++;
/* default to the non-prefixed table. */
PCDISOPCODE pOpcode;
if (g_apThreeByteMapX86_0F38[pDis->bOpCode >> 4])
{
pOpcode = g_apThreeByteMapX86_0F38[pDis->bOpCode >> 4];
pOpcode = &pOpcode[pDis->bOpCode & 0xf];
}
else
pOpcode = &g_InvalidOpcode[0];
/* Handle opcode table extensions that rely on the address, repne prefix byte. */
/** @todo Should we take the first or last prefix byte in case of multiple prefix bytes??? */
switch (pDis->bLastPrefix)
{
case OP_OPSIZE: /* 0x66 */
if (g_apThreeByteMapX86_660F38[pDis->bOpCode >> 4])
{
pOpcode = g_apThreeByteMapX86_660F38[pDis->bOpCode >> 4];
pOpcode = &pOpcode[pDis->bOpCode & 0xf];
if (pOpcode->uOpcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
/* Cancel prefix changes. */
pDis->fPrefix &= ~DISPREFIX_OPSIZE;
if (pDis->uCpuMode == DISCPUMODE_64BIT)
{
pDis->uOpMode = (pDis->fRexPrefix & DISPREFIX_REX_FLAGS_W ? DISCPUMODE_64BIT : DISCPUMODE_32BIT);
}
else
pDis->uOpMode = pDis->uCpuMode;
}
}
break;
case OP_REPNE: /* 0xF2 */
if (g_apThreeByteMapX86_F20F38[pDis->bOpCode >> 4])
{
pOpcode = g_apThreeByteMapX86_F20F38[pDis->bOpCode >> 4];
pOpcode = &pOpcode[pDis->bOpCode & 0xf];
if (pOpcode->uOpcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
/* Cancel prefix changes. */
pDis->fPrefix &= ~DISPREFIX_REPNE;
}
}
break;
case OP_REPE: /* 0xF3 */
if (g_apThreeByteMapX86_F30F38[pDis->bOpCode >> 4])
{
pOpcode = g_apThreeByteMapX86_F30F38[pDis->bOpCode >> 4];
pOpcode = &pOpcode[pDis->bOpCode & 0xf];
if (pOpcode->uOpcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
/* Cancel prefix changes. */
pDis->fPrefix &= ~DISPREFIX_REP;
}
}
}
return disParseInstruction(offInstr, pOpcode, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseThreeByteEsc5(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pOp); NOREF(pParam);
/* 3rd byte */
pDis->bOpCode = disReadByte(pDis, offInstr);
offInstr++;
/** @todo Should we take the first or last prefix byte in case of multiple prefix bytes??? */
Assert(pDis->bLastPrefix == OP_OPSIZE);
/* default to the non-prefixed table. */
PCDISOPCODE pOpcode;
if (g_apThreeByteMapX86_660F3A[pDis->bOpCode >> 4])
{
pOpcode = g_apThreeByteMapX86_660F3A[pDis->bOpCode >> 4];
pOpcode = &pOpcode[pDis->bOpCode & 0xf];
if (pOpcode->uOpcode != OP_INVALID)
{
/* Table entry is valid, so use the extension table. */
/* Cancel prefix changes. */
pDis->fPrefix &= ~DISPREFIX_OPSIZE;
if (pDis->uCpuMode == DISCPUMODE_64BIT)
{
pDis->uOpMode = (pDis->fRexPrefix & DISPREFIX_REX_FLAGS_W ? DISCPUMODE_64BIT : DISCPUMODE_32BIT);
}
else
pDis->uOpMode = pDis->uCpuMode;
}
}
else
pOpcode = &g_InvalidOpcode[0];
return disParseInstruction(offInstr, pOpcode, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseNopPause(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
if (pDis->fPrefix & DISPREFIX_REP)
{
pOp = &g_aMapX86_NopPause[1]; /* PAUSE */
pDis->fPrefix &= ~DISPREFIX_REP;
}
else
pOp = &g_aMapX86_NopPause[0]; /* NOP */
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseImmGrpl(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
unsigned idx = (pDis->bOpCode - 0x80) * 8;
pOp = &g_aMapX86_Group1[idx+reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseShiftGrp2(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
unsigned idx;
switch (pDis->bOpCode)
{
case 0xC0:
case 0xC1:
idx = (pDis->bOpCode - 0xC0)*8;
break;
case 0xD0:
case 0xD1:
case 0xD2:
case 0xD3:
idx = (pDis->bOpCode - 0xD0 + 2)*8;
break;
default:
Log(("ParseShiftGrp2: bOpCode=%#x\n", pDis->bOpCode));
pDis->rc = VERR_DIS_INVALID_OPCODE;
return offInstr;
}
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group2[idx+reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp3(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
unsigned idx = (pDis->bOpCode - 0xF6) * 8;
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group3[idx+reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp4(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group4[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp5(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group5[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
// 0xF 0xF [ModRM] [SIB] [displacement] imm8_opcode
// It would appear the ModRM byte must always be present. How else can you
// determine the offset of the imm8_opcode byte otherwise?
//
//*****************************************************************************
static size_t Parse3DNow(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
/** @todo This code needs testing! Esp. wrt invalid opcodes. */
uint8_t ModRM = disReadByte(pDis, offInstr);
pDis->ModRM.Bits.Rm = MODRM_RM(ModRM);
pDis->ModRM.Bits.Mod = MODRM_MOD(ModRM);
pDis->ModRM.Bits.Reg = MODRM_REG(ModRM);
size_t offRet = QueryModRM(offInstr + 1, pOp, pDis, pParam);
uint8_t opcode = disReadByte(pDis, offRet);
offRet++;
pOp = &g_aTwoByteMapX86_3DNow[opcode];
size_t offStrict = disParseInstruction(offInstr, pOp, pDis);
AssertMsg(offStrict == offRet - 1 /* the imm8_opcode */ || pOp->uOpcode == OP_INVALID,
("offStrict=%#x offRet=%#x uOpCode=%u\n", offStrict, offRet, pOp->uOpcode));
NOREF(offStrict);
return offRet;
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp6(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group6[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp7(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t mod = MODRM_MOD(modrm);
uint8_t reg = MODRM_REG(modrm);
uint8_t rm = MODRM_RM(modrm);
if (mod == 3 && rm == 0)
pOp = &g_aMapX86_Group7_mod11_rm000[reg];
else
if (mod == 3 && rm == 1)
pOp = &g_aMapX86_Group7_mod11_rm001[reg];
else
pOp = &g_aMapX86_Group7_mem[reg];
/* Cannot easily skip this hack because of monitor and vmcall! */
//little hack to make sure the ModRM byte is included in the returned size
if (pOp->idxParse1 != IDX_ParseModRM && pOp->idxParse2 != IDX_ParseModRM)
offInstr++;
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp8(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group8[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp9(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group9[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp10(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
pOp = &g_aMapX86_Group10[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp12(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
if (pDis->fPrefix & DISPREFIX_OPSIZE)
reg += 8; /* 2nd table */
pOp = &g_aMapX86_Group12[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp13(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
if (pDis->fPrefix & DISPREFIX_OPSIZE)
reg += 8; /* 2nd table */
pOp = &g_aMapX86_Group13[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp14(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t reg = MODRM_REG(modrm);
if (pDis->fPrefix & DISPREFIX_OPSIZE)
reg += 8; /* 2nd table */
pOp = &g_aMapX86_Group14[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp15(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
uint8_t mod = MODRM_MOD(modrm);
uint8_t reg = MODRM_REG(modrm);
uint8_t rm = MODRM_RM(modrm);
if (mod == 3 && rm == 0)
pOp = &g_aMapX86_Group15_mod11_rm000[reg];
else
pOp = &g_aMapX86_Group15_mem[reg];
return disParseInstruction(offInstr, pOp, pDis);
}
//*****************************************************************************
//*****************************************************************************
static size_t ParseGrp16(size_t offInstr, PCDISOPCODE pOp, PDISSTATE pDis, PDISOPPARAM pParam)
{
NOREF(pParam);
uint8_t modrm = disReadByte(pDis, offInstr);
pOp = &g_aMapX86_Group16[MODRM_REG(modrm)];
return disParseInstruction(offInstr, pOp, pDis);
}
/**
* Validates the lock sequence.
*
* The AMD manual lists the following instructions:
* ADC
* ADD
* AND
* BTC
* BTR
* BTS
* CMPXCHG
* CMPXCHG8B
* CMPXCHG16B
* DEC
* INC
* NEG
* NOT
* OR
* SBB
* SUB
* XADD
* XCHG
* XOR
*
* @param pDis Fully disassembled instruction.
*/
static void disValidateLockSequence(PDISSTATE pDis)
{
Assert(pDis->fPrefix & DISPREFIX_LOCK);
/*
* Filter out the valid lock sequences.
*/
switch (pDis->pCurInstr->uOpcode)
{
/* simple: no variations */
case OP_CMPXCHG8B: /* == OP_CMPXCHG16B? */
return;
/* simple: /r - reject register destination. */
case OP_BTC:
case OP_BTR:
case OP_BTS:
case OP_CMPXCHG:
case OP_XADD:
if (pDis->ModRM.Bits.Mod == 3)
break;
return;
/*
* Lots of variants but its sufficient to check that param 1
* is a memory operand.
*/
case OP_ADC:
case OP_ADD:
case OP_AND:
case OP_DEC:
case OP_INC:
case OP_NEG:
case OP_NOT:
case OP_OR:
case OP_SBB:
case OP_SUB:
case OP_XCHG:
case OP_XOR:
if (pDis->Param1.fUse & (DISUSE_BASE | DISUSE_INDEX | DISUSE_DISPLACEMENT64 | DISUSE_DISPLACEMENT32
| DISUSE_DISPLACEMENT16 | DISUSE_DISPLACEMENT8 | DISUSE_RIPDISPLACEMENT32))
return;
break;
default:
break;
}
/*
* Invalid lock sequence, make it a OP_ILLUD2.
*/
pDis->pCurInstr = &g_aTwoByteMapX86[11];
Assert(pDis->pCurInstr->uOpcode == OP_ILLUD2);
}
/**
* Internal worker for DISInstrEx and DISInstrWithPrefetchedBytes.
*
* @returns VBox status code.
* @param pDis Initialized disassembler state.
* @param paOneByteMap The one byte opcode map to use.
* @param pcbInstr Where to store the instruction size. Can be NULL.
*/
static int disInstrWorker(PDISSTATE pDis, PCDISOPCODE paOneByteMap, uint32_t *pcbInstr)
{
/*
* Parse byte by byte.
*/
size_t offInstr = 0;
for (;;)
{
uint8_t codebyte = disReadByte(pDis, offInstr++);
uint8_t opcode = paOneByteMap[codebyte].uOpcode;
/* Hardcoded assumption about OP_* values!! */
if (opcode <= OP_LAST_PREFIX)
{
/* The REX prefix must precede the opcode byte(s). Any other placement is ignored. */
if (opcode != OP_REX)
{
/* Last prefix byte (for SSE2 extension tables); don't include the REX prefix */
pDis->bLastPrefix = opcode;
pDis->fPrefix &= ~DISPREFIX_REX;
}
switch (opcode)
{
case OP_INVALID:
if (pcbInstr)
*pcbInstr = (uint32_t)offInstr;
return pDis->rc = VERR_DIS_INVALID_OPCODE;
// segment override prefix byte
case OP_SEG:
pDis->idxSegPrefix = (DISSELREG)(paOneByteMap[codebyte].fParam1 - OP_PARM_REG_SEG_START);
#if 0 /* Try be accurate in our reporting, shouldn't break anything... :-) */
/* Segment prefixes for CS, DS, ES and SS are ignored in long mode. */
if ( pDis->uCpuMode != DISCPUMODE_64BIT
|| pDis->idxSegPrefix >= DISSELREG_FS)
pDis->fPrefix |= DISPREFIX_SEG;
#else
pDis->fPrefix |= DISPREFIX_SEG;
#endif
continue; //fetch the next byte
// lock prefix byte
case OP_LOCK:
pDis->fPrefix |= DISPREFIX_LOCK;
continue; //fetch the next byte
// address size override prefix byte
case OP_ADDRSIZE:
pDis->fPrefix |= DISPREFIX_ADDRSIZE;
if (pDis->uCpuMode == DISCPUMODE_16BIT)
pDis->uAddrMode = DISCPUMODE_32BIT;
else
if (pDis->uCpuMode == DISCPUMODE_32BIT)
pDis->uAddrMode = DISCPUMODE_16BIT;
else
pDis->uAddrMode = DISCPUMODE_32BIT; /* 64 bits */
continue; //fetch the next byte
// operand size override prefix byte
case OP_OPSIZE:
pDis->fPrefix |= DISPREFIX_OPSIZE;
if (pDis->uCpuMode == DISCPUMODE_16BIT)
pDis->uOpMode = DISCPUMODE_32BIT;
else
pDis->uOpMode = DISCPUMODE_16BIT; /* for 32 and 64 bits mode (there is no 32 bits operand size override prefix) */
continue; //fetch the next byte
// rep and repne are not really prefixes, but we'll treat them as such
case OP_REPE:
pDis->fPrefix |= DISPREFIX_REP;
continue; //fetch the next byte
case OP_REPNE:
pDis->fPrefix |= DISPREFIX_REPNE;
continue; //fetch the next byte
case OP_REX:
Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
/* REX prefix byte */
pDis->fPrefix |= DISPREFIX_REX;
pDis->fRexPrefix = DISPREFIX_REX_OP_2_FLAGS(paOneByteMap[codebyte].fParam1);
if (pDis->fRexPrefix & DISPREFIX_REX_FLAGS_W)
pDis->uOpMode = DISCPUMODE_64BIT; /* overrides size prefix byte */
continue; //fetch the next byte
}
}
/* first opcode byte. */
pDis->bOpCode = codebyte;
pDis->cbPrefix = (uint8_t)offInstr - 1;
offInstr = disParseInstruction(offInstr, &paOneByteMap[pDis->bOpCode], pDis);
break;
}
pDis->cbInstr = (uint8_t)offInstr;
if (pcbInstr)
*pcbInstr = (uint32_t)offInstr;
if (pDis->fPrefix & DISPREFIX_LOCK)
disValidateLockSequence(pDis);
return pDis->rc;
}
/**
* Inlined worker that initializes the disassembler state.
*
* @returns The primary opcode map to use.
* @param pDis The disassembler state.
* @param uInstrAddr The instruction address.
* @param enmCpuMode The CPU mode.
* @param fFilter The instruction filter settings.
* @param pfnReadBytes The byte reader, can be NULL.
* @param pvUser The the user data for the reader.
*/
DECL_FORCE_INLINE(PCDISOPCODE)
disInitializeState(PDISSTATE pDis, RTUINTPTR uInstrAddr, DISCPUMODE enmCpuMode, uint32_t fFilter,
PFNDISREADBYTES pfnReadBytes, void *pvUser)
{
RT_ZERO(*pDis);
#ifdef VBOX_STRICT /* poison */
pDis->Param1.Base.idxGenReg = 0xc1;
pDis->Param2.Base.idxGenReg = 0xc2;
pDis->Param3.Base.idxGenReg = 0xc3;
pDis->Param1.Index.idxGenReg = 0xc4;
pDis->Param2.Index.idxGenReg = 0xc5;
pDis->Param3.Index.idxGenReg = 0xc6;
pDis->Param1.uDisp.u64 = UINT64_C(0xd1d1d1d1d1d1d1d1);
pDis->Param2.uDisp.u64 = UINT64_C(0xd2d2d2d2d2d2d2d2);
pDis->Param3.uDisp.u64 = UINT64_C(0xd3d3d3d3d3d3d3d3);
pDis->Param1.uValue = UINT64_C(0xb1b1b1b1b1b1b1b1);
pDis->Param2.uValue = UINT64_C(0xb2b2b2b2b2b2b2b2);
pDis->Param3.uValue = UINT64_C(0xb3b3b3b3b3b3b3b3);
pDis->Param1.uScale = 28;
pDis->Param2.uScale = 29;
pDis->Param3.uScale = 30;
#endif
pDis->fPrefix = DISPREFIX_NONE;
pDis->idxSegPrefix = DISSELREG_DS;
pDis->rc = VINF_SUCCESS;
pDis->pfnDisasmFnTable = g_apfnFullDisasm;
pDis->uInstrAddr = uInstrAddr;
pDis->fFilter = fFilter;
pDis->pfnReadBytes = pfnReadBytes ? pfnReadBytes : disReadBytesDefault;
pDis->pvUser = pvUser;
pDis->uCpuMode = enmCpuMode;
PCDISOPCODE paOneByteMap;
if (enmCpuMode == DISCPUMODE_64BIT)
{
pDis->uAddrMode = DISCPUMODE_64BIT;
pDis->uOpMode = DISCPUMODE_32BIT;
paOneByteMap = g_aOneByteMapX64;
}
else
{
pDis->uAddrMode = enmCpuMode;
pDis->uOpMode = enmCpuMode;
paOneByteMap = g_aOneByteMapX86;
}
return paOneByteMap;
}
/**
* Reads some bytes into the cache.
*
* While this will set DISSTATE::rc on failure, the caller should disregard
* this since that is what would happen if we didn't prefetch bytes prior to the
* instruction parsing.
*
* @param pDis The disassembler state.
*/
DECL_FORCE_INLINE(void) disPrefetchBytes(PDISSTATE pDis)
{
/*
* Read some bytes into the cache. (If this fail we continue as nothing
* has gone wrong since this is what would happen if we didn't precharge
* the cache here.)
*/
int rc = pDis->pfnReadBytes(pDis, 0, 1, sizeof(pDis->abInstr));
if (RT_SUCCESS(rc))
{
Assert(pDis->cbCachedInstr >= 1);
Assert(pDis->cbCachedInstr <= sizeof(pDis->abInstr));
}
else
{
Log(("Initial read failed with rc=%Rrc!!\n", rc));
pDis->rc = rc;
}
}
/**
* Disassembles on instruction, details in @a pDis and length in @a pcbInstr.
*
* @returns VBox status code.
* @param uInstrAddr Address of the instruction to decode. What this means
* is left to the pfnReadBytes function.
* @param enmCpuMode The CPU mode. DISCPUMODE_32BIT, DISCPUMODE_16BIT, or DISCPUMODE_64BIT.
* @param pfnReadBytes Callback for reading instruction bytes.
* @param fFilter Instruction type filter.
* @param pvUser User argument for the instruction reader. (Ends up in pvUser.)
* @param pDis Pointer to disassembler state (output).
* @param pcbInstr Where to store the size of the instruction. (This
* is also stored in PDISSTATE::cbInstr.) Optional.
*/
DISDECL(int) DISInstrEx(RTUINTPTR uInstrAddr, DISCPUMODE enmCpuMode, uint32_t fFilter,
PFNDISREADBYTES pfnReadBytes, void *pvUser,
PDISSTATE pDis, uint32_t *pcbInstr)
{
PCDISOPCODE paOneByteMap = disInitializeState(pDis, uInstrAddr, enmCpuMode, fFilter, pfnReadBytes, pvUser);
disPrefetchBytes(pDis);
return disInstrWorker(pDis, paOneByteMap, pcbInstr);
}
/**
* Disassembles on instruction partially or fully from prefetched bytes, details
* in @a pDis and length in @a pcbInstr.
*
* @returns VBox status code.
* @param uInstrAddr Address of the instruction to decode. What this means
* is left to the pfnReadBytes function.
* @param enmCpuMode The CPU mode. DISCPUMODE_32BIT, DISCPUMODE_16BIT, or DISCPUMODE_64BIT.
* @param pvPrefetched Pointer to the prefetched bytes.
* @param cbPrefetched The number of valid bytes pointed to by @a
* pbPrefetched.
* @param pfnReadBytes Callback for reading instruction bytes.
* @param fFilter Instruction type filter.
* @param pvUser User argument for the instruction reader. (Ends up in pvUser.)
* @param pDis Pointer to disassembler state (output).
* @param pcbInstr Where to store the size of the instruction. (This
* is also stored in PDISSTATE::cbInstr.) Optional.
*/
DISDECL(int) DISInstrWithPrefetchedBytes(RTUINTPTR uInstrAddr, DISCPUMODE enmCpuMode, uint32_t fFilter,
void const *pvPrefetched, size_t cbPretched,
PFNDISREADBYTES pfnReadBytes, void *pvUser,
PDISSTATE pDis, uint32_t *pcbInstr)
{
PCDISOPCODE paOneByteMap = disInitializeState(pDis, uInstrAddr, enmCpuMode, fFilter, pfnReadBytes, pvUser);
if (!cbPretched)
disPrefetchBytes(pDis);
else
{
if (cbPretched >= sizeof(pDis->abInstr))
{
memcpy(pDis->abInstr, pvPrefetched, sizeof(pDis->abInstr));
pDis->cbCachedInstr = (uint8_t)sizeof(pDis->abInstr);
}
else
{
memcpy(pDis->abInstr, pvPrefetched, cbPretched);
pDis->cbCachedInstr = (uint8_t)cbPretched;
}
}
return disInstrWorker(pDis, paOneByteMap, pcbInstr);
}
/**
* Parses one guest instruction.
*
* The result is found in pDis and pcbInstr.
*
* @returns VBox status code.
* @param uInstrAddr Address of the instruction to decode. What this means
* is left to the pfnReadBytes function.
* @param enmCpuMode The CPU mode. DISCPUMODE_32BIT, DISCPUMODE_16BIT, or DISCPUMODE_64BIT.
* @param pfnReadBytes Callback for reading instruction bytes.
* @param pvUser User argument for the instruction reader. (Ends up in pvUser.)
* @param pDis Pointer to disassembler state (output).
* @param pcbInstr Where to store the size of the instruction.
* NULL is allowed. This is also stored in
* PDISSTATE::cbInstr.
*/
DISDECL(int) DISInstrWithReader(RTUINTPTR uInstrAddr, DISCPUMODE enmCpuMode, PFNDISREADBYTES pfnReadBytes, void *pvUser,
PDISSTATE pDis, uint32_t *pcbInstr)
{
return DISInstrEx(uInstrAddr, enmCpuMode, DISOPTYPE_ALL, pfnReadBytes, pvUser, pDis, pcbInstr);
}
/**
* Parses one guest instruction.
*
* The result is found in pDis and pcbInstr.
*
* @returns VBox status code.
* @param pvInstr Address of the instruction to decode. This is a
* real address in the current context that can be
* accessed without faulting. (Consider
* DISInstrWithReader if this isn't the case.)
* @param enmCpuMode The CPU mode. DISCPUMODE_32BIT, DISCPUMODE_16BIT, or DISCPUMODE_64BIT.
* @param pfnReadBytes Callback for reading instruction bytes.
* @param pvUser User argument for the instruction reader. (Ends up in pvUser.)
* @param pDis Pointer to disassembler state (output).
* @param pcbInstr Where to store the size of the instruction.
* NULL is allowed. This is also stored in
* PDISSTATE::cbInstr.
*/
DISDECL(int) DISInstr(const void *pvInstr, DISCPUMODE enmCpuMode, PDISSTATE pDis, uint32_t *pcbInstr)
{
return DISInstrEx((uintptr_t)pvInstr, enmCpuMode, DISOPTYPE_ALL, NULL /*pfnReadBytes*/, NULL /*pvUser*/, pDis, pcbInstr);
}