Virtio.cpp revision ee4d840f54fd2dcea8a73b1b86d5ec0db370b05d
/* $Id$ */
/** @file
* Virtio - Virtio Common Functions (VRing, VQueue, Virtio PCI)
*/
/*
* Copyright (C) 2009-2010 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
#define LOG_GROUP LOG_GROUP_DEV_VIRTIO
#include <iprt/param.h>
#include <iprt/uuid.h>
#include <VBox/pdmdev.h>
#include "Virtio.h"
#define INSTANCE(pState) pState->szInstance
#define IFACE_TO_STATE(pIface, ifaceName) ((VPCISTATE *)((char*)pIface - RT_OFFSETOF(VPCISTATE, ifaceName)))
#ifdef DEBUG
#define QUEUENAME(s, q) (q->pcszName)
#endif /* DEBUG */
#ifndef VBOX_DEVICE_STRUCT_TESTCASE
//RT_C_DECLS_BEGIN
//RT_C_DECLS_END
static void vqueueReset(PVQUEUE pQueue)
{
pQueue->VRing.addrDescriptors = 0;
pQueue->VRing.addrAvail = 0;
pQueue->VRing.addrUsed = 0;
pQueue->uNextAvailIndex = 0;
pQueue->uNextUsedIndex = 0;
pQueue->uPageNumber = 0;
}
static void vqueueInit(PVQUEUE pQueue, uint32_t uPageNumber)
{
pQueue->VRing.addrDescriptors = uPageNumber << PAGE_SHIFT;
pQueue->VRing.addrAvail = pQueue->VRing.addrDescriptors
+ sizeof(VRINGDESC) * pQueue->VRing.uSize;
pQueue->VRing.addrUsed = RT_ALIGN(
pQueue->VRing.addrAvail + RT_OFFSETOF(VRINGAVAIL, auRing[pQueue->VRing.uSize]),
PAGE_SIZE); /* The used ring must start from the next page. */
pQueue->uNextAvailIndex = 0;
pQueue->uNextUsedIndex = 0;
}
// void vqueueElemFree(PVQUEUEELEM pElem)
// {
// }
void vringReadDesc(PVPCISTATE pState, PVRING pVRing, uint32_t uIndex, PVRINGDESC pDesc)
{
//Log(("%s vringReadDesc: ring=%p idx=%u\n", INSTANCE(pState), pVRing, uIndex));
PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns),
pVRing->addrDescriptors + sizeof(VRINGDESC) * (uIndex % pVRing->uSize),
pDesc, sizeof(VRINGDESC));
}
uint16_t vringReadAvail(PVPCISTATE pState, PVRING pVRing, uint32_t uIndex)
{
uint16_t tmp;
PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns),
pVRing->addrAvail + RT_OFFSETOF(VRINGAVAIL, auRing[uIndex % pVRing->uSize]),
&tmp, sizeof(tmp));
return tmp;
}
uint16_t vringReadAvailFlags(PVPCISTATE pState, PVRING pVRing)
{
uint16_t tmp;
PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns),
pVRing->addrAvail + RT_OFFSETOF(VRINGAVAIL, uFlags),
&tmp, sizeof(tmp));
return tmp;
}
void vringSetNotification(PVPCISTATE pState, PVRING pVRing, bool fEnabled)
{
uint16_t tmp;
PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns),
pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uFlags),
&tmp, sizeof(tmp));
if (fEnabled)
tmp &= ~ VRINGUSED_F_NO_NOTIFY;
else
tmp |= VRINGUSED_F_NO_NOTIFY;
PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns),
pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uFlags),
&tmp, sizeof(tmp));
}
bool vqueueGet(PVPCISTATE pState, PVQUEUE pQueue, PVQUEUEELEM pElem)
{
if (vqueueIsEmpty(pState, pQueue))
return false;
pElem->nIn = pElem->nOut = 0;
Log2(("%s vqueueGet: %s avail_idx=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), pQueue->uNextAvailIndex));
VRINGDESC desc;
uint16_t idx = vringReadAvail(pState, &pQueue->VRing, pQueue->uNextAvailIndex++);
pElem->uIndex = idx;
do
{
VQUEUESEG *pSeg;
vringReadDesc(pState, &pQueue->VRing, idx, &desc);
if (desc.u16Flags & VRINGDESC_F_WRITE)
{
Log2(("%s vqueueGet: %s IN seg=%u desc_idx=%u addr=%p cb=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), pElem->nIn, idx, desc.u64Addr, desc.uLen));
pSeg = &pElem->aSegsIn[pElem->nIn++];
}
else
{
Log2(("%s vqueueGet: %s OUT seg=%u desc_idx=%u addr=%p cb=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), pElem->nOut, idx, desc.u64Addr, desc.uLen));
pSeg = &pElem->aSegsOut[pElem->nOut++];
}
pSeg->addr = desc.u64Addr;
pSeg->cb = desc.uLen;
pSeg->pv = NULL;
idx = desc.u16Next;
} while (desc.u16Flags & VRINGDESC_F_NEXT);
Log2(("%s vqueueGet: %s head_desc_idx=%u nIn=%u nOut=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), pElem->uIndex, pElem->nIn, pElem->nOut));
return true;
}
uint16_t vringReadUsedIndex(PVPCISTATE pState, PVRING pVRing)
{
uint16_t tmp;
PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns),
pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uIndex),
&tmp, sizeof(tmp));
return tmp;
}
void vringWriteUsedIndex(PVPCISTATE pState, PVRING pVRing, uint16_t u16Value)
{
PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns),
pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uIndex),
&u16Value, sizeof(u16Value));
}
void vringWriteUsedElem(PVPCISTATE pState, PVRING pVRing, uint32_t uIndex, uint32_t uId, uint32_t uLen)
{
VRINGUSEDELEM elem;
elem.uId = uId;
elem.uLen = uLen;
PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns),
pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, aRing[uIndex % pVRing->uSize]),
&elem, sizeof(elem));
}
void vqueuePut(PVPCISTATE pState, PVQUEUE pQueue, PVQUEUEELEM pElem, uint32_t uLen)
{
unsigned int i, uOffset;
Log2(("%s vqueuePut: %s desc_idx=%u acb=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), pElem->uIndex, uLen));
for (i = uOffset = 0; i < pElem->nIn && uOffset < uLen; i++)
{
uint32_t cbSegLen = RT_MIN(uLen - uOffset, pElem->aSegsIn[i].cb);
if (pElem->aSegsIn[i].pv)
{
Log2(("%s vqueuePut: %s used_idx=%u seg=%u addr=%p pv=%p cb=%u acb=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), pQueue->uNextUsedIndex, i, pElem->aSegsIn[i].addr, pElem->aSegsIn[i].pv, pElem->aSegsIn[i].cb, cbSegLen));
PDMDevHlpPhysWrite(pState->CTX_SUFF(pDevIns), pElem->aSegsIn[i].addr,
pElem->aSegsIn[i].pv, cbSegLen);
}
uOffset += cbSegLen;
}
Log2(("%s vqueuePut: %s used_idx=%u guest_used_idx=%u id=%u len=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), pQueue->uNextUsedIndex, vringReadUsedIndex(pState, &pQueue->VRing), pElem->uIndex, uLen));
vringWriteUsedElem(pState, &pQueue->VRing, pQueue->uNextUsedIndex++, pElem->uIndex, uLen);
}
void vqueueNotify(PVPCISTATE pState, PVQUEUE pQueue)
{
LogFlow(("%s vqueueNotify: %s availFlags=%x guestFeatures=%x vqueue is %sempty\n",
INSTANCE(pState), QUEUENAME(pState, pQueue),
vringReadAvailFlags(pState, &pQueue->VRing),
pState->uGuestFeatures, vqueueIsEmpty(pState, pQueue)?"":"not "));
if (!(vringReadAvailFlags(pState, &pQueue->VRing) & VRINGAVAIL_F_NO_INTERRUPT)
|| ((pState->uGuestFeatures & VPCI_F_NOTIFY_ON_EMPTY) && vqueueIsEmpty(pState, pQueue)))
{
int rc = vpciRaiseInterrupt(pState, VERR_INTERNAL_ERROR, VPCI_ISR_QUEUE);
if (RT_FAILURE(rc))
Log(("%s vqueueNotify: Failed to raise an interrupt (%Vrc).\n", INSTANCE(pState), rc));
}
else
{
STAM_COUNTER_INC(&pState->StatIntsSkipped);
}
}
void vqueueSync(PVPCISTATE pState, PVQUEUE pQueue)
{
Log2(("%s vqueueSync: %s old_used_idx=%u new_used_idx=%u\n", INSTANCE(pState),
QUEUENAME(pState, pQueue), vringReadUsedIndex(pState, &pQueue->VRing), pQueue->uNextUsedIndex));
vringWriteUsedIndex(pState, &pQueue->VRing, pQueue->uNextUsedIndex);
vqueueNotify(pState, pQueue);
}
void vpciReset(PVPCISTATE pState)
{
pState->uGuestFeatures = 0;
pState->uQueueSelector = 0;
pState->uStatus = 0;
pState->uISR = 0;
for (unsigned i = 0; i < pState->nQueues; i++)
vqueueReset(&pState->Queues[i]);
}
/**
* Raise interrupt.
*
* @param pState The device state structure.
* @param rcBusy Status code to return when the critical section is busy.
* @param u8IntCause Interrupt cause bit mask to set in PCI ISR port.
*/
int vpciRaiseInterrupt(VPCISTATE *pState, int rcBusy, uint8_t u8IntCause)
{
// int rc = vpciCsEnter(pState, rcBusy);
// if (RT_UNLIKELY(rc != VINF_SUCCESS))
// return rc;
STAM_COUNTER_INC(&pState->StatIntsRaised);
LogFlow(("%s vpciRaiseInterrupt: u8IntCause=%x\n",
INSTANCE(pState), u8IntCause));
pState->uISR |= u8IntCause;
PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 1);
// vpciCsLeave(pState);
return VINF_SUCCESS;
}
/**
* Lower interrupt.
*
* @param pState The device state structure.
*/
PDMBOTHCBDECL(void) vpciLowerInterrupt(VPCISTATE *pState)
{
LogFlow(("%s vpciLowerInterrupt\n", INSTANCE(pState)));
PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 0);
}
DECLINLINE(uint32_t) vpciGetHostFeatures(PVPCISTATE pState,
PFNGETHOSTFEATURES pfnGetHostFeatures)
{
return pfnGetHostFeatures(pState)
| VPCI_F_NOTIFY_ON_EMPTY;
}
/**
* Port I/O Handler for IN operations.
*
* @returns VBox status code.
*
* @param pDevIns The device instance.
* @param pvUser Pointer to the device state structure.
* @param port Port number used for the IN operation.
* @param pu32 Where to store the result.
* @param cb Number of bytes read.
* @thread EMT
*/
int vpciIOPortIn(PPDMDEVINS pDevIns,
void *pvUser,
RTIOPORT port,
uint32_t *pu32,
unsigned cb,
PFNGETHOSTFEATURES pfnGetHostFeatures,
PFNGETCONFIG pfnGetConfig)
{
VPCISTATE *pState = PDMINS_2_DATA(pDevIns, VPCISTATE *);
int rc = VINF_SUCCESS;
const char *szInst = INSTANCE(pState);
STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatIORead), a);
/*
* We probably do not need to enter critical section when reading registers
* as the most of them are either constant or being changed during
* initialization only, the exception being ISR which can be raced by all
* threads but I see no big harm in it. It also happens to be the most read
* register as it gets read in interrupt handler. By dropping cs protection
* here we gain the ability to deliver RX packets to the guest while TX is
* holding cs transmitting queued packets.
*
rc = vpciCsEnter(pState, VINF_IOM_HC_IOPORT_READ);
if (RT_UNLIKELY(rc != VINF_SUCCESS))
{
STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIORead), a);
return rc;
}*/
port -= pState->addrIOPort;
switch (port)
{
case VPCI_HOST_FEATURES:
/* Tell the guest what features we support. */
*pu32 = vpciGetHostFeatures(pState, pfnGetHostFeatures)
| VPCI_F_BAD_FEATURE;
break;
case VPCI_GUEST_FEATURES:
*pu32 = pState->uGuestFeatures;
break;
case VPCI_QUEUE_PFN:
*pu32 = pState->Queues[pState->uQueueSelector].uPageNumber;
break;
case VPCI_QUEUE_NUM:
Assert(cb == 2);
*(uint16_t*)pu32 = pState->Queues[pState->uQueueSelector].VRing.uSize;
break;
case VPCI_QUEUE_SEL:
Assert(cb == 2);
*(uint16_t*)pu32 = pState->uQueueSelector;
break;
case VPCI_STATUS:
Assert(cb == 1);
*(uint8_t*)pu32 = pState->uStatus;
break;
case VPCI_ISR:
Assert(cb == 1);
*(uint8_t*)pu32 = pState->uISR;
pState->uISR = 0; /* read clears all interrupts */
vpciLowerInterrupt(pState);
break;
default:
if (port >= VPCI_CONFIG)
{
rc = pfnGetConfig(pState, port - VPCI_CONFIG, cb, pu32);
}
else
{
*pu32 = 0xFFFFFFFF;
rc = PDMDeviceDBGFStop(pDevIns, RT_SRC_POS, "%s vpciIOPortIn: "
"no valid port at offset port=%RTiop "
"cb=%08x\n", szInst, port, cb);
}
break;
}
Log3(("%s vpciIOPortIn: At %RTiop in %0*x\n",
szInst, port, cb*2, *pu32));
STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIORead), a);
//vpciCsLeave(pState);
return rc;
}
/**
* Port I/O Handler for OUT operations.
*
* @returns VBox status code.
*
* @param pDevIns The device instance.
* @param pvUser User argument.
* @param Port Port number used for the IN operation.
* @param u32 The value to output.
* @param cb The value size in bytes.
* @thread EMT
*/
int vpciIOPortOut(PPDMDEVINS pDevIns,
void *pvUser,
RTIOPORT port,
uint32_t u32,
unsigned cb,
PFNGETHOSTMINIMALFEATURES pfnGetHostMinimalFeatures,
PFNGETHOSTFEATURES pfnGetHostFeatures,
PFNSETHOSTFEATURES pfnSetHostFeatures,
PFNRESET pfnReset,
PFNREADY pfnReady,
PFNSETCONFIG pfnSetConfig)
{
VPCISTATE *pState = PDMINS_2_DATA(pDevIns, VPCISTATE *);
int rc = VINF_SUCCESS;
const char *szInst = INSTANCE(pState);
bool fHasBecomeReady;
STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatIOWrite), a);
port -= pState->addrIOPort;
Log3(("%s virtioIOPortOut: At %RTiop out %0*x\n", szInst, port, cb*2, u32));
switch (port)
{
case VPCI_GUEST_FEATURES:
/* Check if the guest negotiates properly, fall back to basics if it does not. */
if (VPCI_F_BAD_FEATURE & u32)
{
Log(("%s WARNING! Guest failed to negotiate properly (guest=%x)\n",
INSTANCE(pState), u32));
pState->uGuestFeatures = pfnGetHostMinimalFeatures(pState);
}
/* The guest may potentially desire features we don't support! */
else if (~vpciGetHostFeatures(pState, pfnGetHostFeatures) & u32)
{
Log(("%s Guest asked for features host does not support! (host=%x guest=%x)\n",
INSTANCE(pState),
vpciGetHostFeatures(pState, pfnGetHostFeatures), u32));
pState->uGuestFeatures =
vpciGetHostFeatures(pState, pfnGetHostFeatures);
}
else
pState->uGuestFeatures = u32;
pfnSetHostFeatures(pState, pState->uGuestFeatures);
break;
case VPCI_QUEUE_PFN:
/*
* The guest is responsible for allocating the pages for queues,
* here it provides us with the page number of descriptor table.
* Note that we provide the size of the queue to the guest via
* VIRTIO_PCI_QUEUE_NUM.
*/
pState->Queues[pState->uQueueSelector].uPageNumber = u32;
if (u32)
vqueueInit(&pState->Queues[pState->uQueueSelector], u32);
else
pfnReset(pState);
break;
case VPCI_QUEUE_SEL:
Assert(cb == 2);
u32 &= 0xFFFF;
if (u32 < pState->nQueues)
pState->uQueueSelector = u32;
else
Log3(("%s vpciIOPortOut: Invalid queue selector %08x\n", szInst, u32));
break;
case VPCI_QUEUE_NOTIFY:
#ifdef IN_RING3
Assert(cb == 2);
u32 &= 0xFFFF;
if (u32 < pState->nQueues)
if (pState->Queues[u32].VRing.addrDescriptors)
{
// rc = vpciCsEnter(pState, VERR_SEM_BUSY);
// if (RT_LIKELY(rc == VINF_SUCCESS))
// {
pState->Queues[u32].pfnCallback(pState, &pState->Queues[u32]);
// vpciCsLeave(pState);
// }
}
else
Log(("%s The queue (#%d) being notified has not been initialized.\n",
INSTANCE(pState), u32));
else
Log(("%s Invalid queue number (%d)\n", INSTANCE(pState), u32));
#else
rc = VINF_IOM_HC_IOPORT_WRITE;
#endif
break;
case VPCI_STATUS:
Assert(cb == 1);
u32 &= 0xFF;
fHasBecomeReady = !(pState->uStatus & VPCI_STATUS_DRV_OK) && (u32 & VPCI_STATUS_DRV_OK);
pState->uStatus = u32;
/* Writing 0 to the status port triggers device reset. */
if (u32 == 0)
pfnReset(pState);
else if (fHasBecomeReady)
pfnReady(pState);
break;
default:
if (port >= VPCI_CONFIG)
rc = pfnSetConfig(pState, port - VPCI_CONFIG, cb, &u32);
else
rc = PDMDeviceDBGFStop(pDevIns, RT_SRC_POS, "%s vpciIOPortOut: no valid port at offset port=%RTiop cb=%08x\n", szInst, port, cb);
break;
}
STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIOWrite), a);
return rc;
}
#ifdef IN_RING3
/**
* @interface_method_impl{PDMIBASE,pfnQueryInterface}
*/
void *vpciQueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
{
VPCISTATE *pThis = IFACE_TO_STATE(pInterface, IBase);
Assert(&pThis->IBase == pInterface);
if (RTUuidCompare2Strs(pszIID, PDMIBASE_IID) == 0)
return &pThis->IBase;
if (RTUuidCompare2Strs(pszIID, PDMINTERFACE_LED_PORTS) == 0)
return &pThis->ILeds;
return NULL;
}
/**
* Gets the pointer to the status LED of a unit.
*
* @returns VBox status code.
* @param pInterface Pointer to the interface structure.
* @param iLUN The unit which status LED we desire.
* @param ppLed Where to store the LED pointer.
* @thread EMT
*/
static DECLCALLBACK(int) vpciQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
{
VPCISTATE *pState = IFACE_TO_STATE(pInterface, ILeds);
int rc = VERR_PDM_LUN_NOT_FOUND;
if (iLUN == 0)
{
*ppLed = &pState->led;
rc = VINF_SUCCESS;
}
return rc;
}
/**
* Turns on/off the write status LED.
*
* @returns VBox status code.
* @param pState Pointer to the device state structure.
* @param fOn New LED state.
*/
void vpciSetWriteLed(PVPCISTATE pState, bool fOn)
{
LogFlow(("%s vpciSetWriteLed: %s\n", INSTANCE(pState), fOn?"on":"off"));
if (fOn)
pState->led.Asserted.s.fWriting = pState->led.Actual.s.fWriting = 1;
else
pState->led.Actual.s.fWriting = fOn;
}
/**
* Turns on/off the read status LED.
*
* @returns VBox status code.
* @param pState Pointer to the device state structure.
* @param fOn New LED state.
*/
void vpciSetReadLed(PVPCISTATE pState, bool fOn)
{
LogFlow(("%s vpciSetReadLed: %s\n", INSTANCE(pState), fOn?"on":"off"));
if (fOn)
pState->led.Asserted.s.fReading = pState->led.Actual.s.fReading = 1;
else
pState->led.Actual.s.fReading = fOn;
}
/**
* Sets 8-bit register in PCI configuration space.
* @param refPciDev The PCI device.
* @param uOffset The register offset.
* @param u16Value The value to store in the register.
* @thread EMT
*/
DECLINLINE(void) vpciCfgSetU8(PCIDEVICE& refPciDev, uint32_t uOffset, uint8_t u8Value)
{
Assert(uOffset < sizeof(refPciDev.config));
refPciDev.config[uOffset] = u8Value;
}
/**
* Sets 16-bit register in PCI configuration space.
* @param refPciDev The PCI device.
* @param uOffset The register offset.
* @param u16Value The value to store in the register.
* @thread EMT
*/
DECLINLINE(void) vpciCfgSetU16(PCIDEVICE& refPciDev, uint32_t uOffset, uint16_t u16Value)
{
Assert(uOffset+sizeof(u16Value) <= sizeof(refPciDev.config));
*(uint16_t*)&refPciDev.config[uOffset] = u16Value;
}
/**
* Sets 32-bit register in PCI configuration space.
* @param refPciDev The PCI device.
* @param uOffset The register offset.
* @param u32Value The value to store in the register.
* @thread EMT
*/
DECLINLINE(void) vpciCfgSetU32(PCIDEVICE& refPciDev, uint32_t uOffset, uint32_t u32Value)
{
Assert(uOffset+sizeof(u32Value) <= sizeof(refPciDev.config));
*(uint32_t*)&refPciDev.config[uOffset] = u32Value;
}
#ifdef DEBUG
static void vpciDumpState(PVPCISTATE pState, const char *pcszCaller)
{
Log2(("vpciDumpState: (called from %s)\n"
" uGuestFeatures = 0x%08x\n"
" uQueueSelector = 0x%04x\n"
" uStatus = 0x%02x\n"
" uISR = 0x%02x\n",
pcszCaller,
pState->uGuestFeatures,
pState->uQueueSelector,
pState->uStatus,
pState->uISR));
for (unsigned i = 0; i < pState->nQueues; i++)
Log2((" %s queue:\n"
" VRing.uSize = %u\n"
" VRing.addrDescriptors = %p\n"
" VRing.addrAvail = %p\n"
" VRing.addrUsed = %p\n"
" uNextAvailIndex = %u\n"
" uNextUsedIndex = %u\n"
" uPageNumber = %x\n",
pState->Queues[i].pcszName,
pState->Queues[i].VRing.uSize,
pState->Queues[i].VRing.addrDescriptors,
pState->Queues[i].VRing.addrAvail,
pState->Queues[i].VRing.addrUsed,
pState->Queues[i].uNextAvailIndex,
pState->Queues[i].uNextUsedIndex,
pState->Queues[i].uPageNumber));
}
#else
# define vpciDumpState(x, s) do {} while (0)
#endif
/**
* Saves the state of device.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSM The handle to the saved state.
*/
int vpciSaveExec(PVPCISTATE pState, PSSMHANDLE pSSM)
{
int rc;
vpciDumpState(pState, "vpciSaveExec");
rc = SSMR3PutU32(pSSM, pState->uGuestFeatures);
AssertRCReturn(rc, rc);
rc = SSMR3PutU16(pSSM, pState->uQueueSelector);
AssertRCReturn(rc, rc);
rc = SSMR3PutU8( pSSM, pState->uStatus);
AssertRCReturn(rc, rc);
rc = SSMR3PutU8( pSSM, pState->uISR);
AssertRCReturn(rc, rc);
/* Save queue states */
rc = SSMR3PutU32(pSSM, pState->nQueues);
AssertRCReturn(rc, rc);
for (unsigned i = 0; i < pState->nQueues; i++)
{
rc = SSMR3PutU16(pSSM, pState->Queues[i].VRing.uSize);
AssertRCReturn(rc, rc);
rc = SSMR3PutU32(pSSM, pState->Queues[i].uPageNumber);
AssertRCReturn(rc, rc);
rc = SSMR3PutU16(pSSM, pState->Queues[i].uNextAvailIndex);
AssertRCReturn(rc, rc);
rc = SSMR3PutU16(pSSM, pState->Queues[i].uNextUsedIndex);
AssertRCReturn(rc, rc);
}
return VINF_SUCCESS;
}
/**
* Loads a saved device state.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSM The handle to the saved state.
* @param uVersion The data unit version number.
* @param uPass The data pass.
*/
int vpciLoadExec(PVPCISTATE pState, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass, uint32_t nQueues)
{
int rc;
if (uPass == SSM_PASS_FINAL)
{
/* Restore state data */
rc = SSMR3GetU32(pSSM, &pState->uGuestFeatures);
AssertRCReturn(rc, rc);
rc = SSMR3GetU16(pSSM, &pState->uQueueSelector);
AssertRCReturn(rc, rc);
rc = SSMR3GetU8( pSSM, &pState->uStatus);
AssertRCReturn(rc, rc);
rc = SSMR3GetU8( pSSM, &pState->uISR);
AssertRCReturn(rc, rc);
/* Restore queues */
if (uVersion > VIRTIO_SAVEDSTATE_VERSION_3_1_BETA1)
{
rc = SSMR3GetU32(pSSM, &pState->nQueues);
AssertRCReturn(rc, rc);
}
else
pState->nQueues = nQueues;
for (unsigned i = 0; i < pState->nQueues; i++)
{
rc = SSMR3GetU16(pSSM, &pState->Queues[i].VRing.uSize);
AssertRCReturn(rc, rc);
rc = SSMR3GetU32(pSSM, &pState->Queues[i].uPageNumber);
AssertRCReturn(rc, rc);
if (pState->Queues[i].uPageNumber)
vqueueInit(&pState->Queues[i], pState->Queues[i].uPageNumber);
rc = SSMR3GetU16(pSSM, &pState->Queues[i].uNextAvailIndex);
AssertRCReturn(rc, rc);
rc = SSMR3GetU16(pSSM, &pState->Queues[i].uNextUsedIndex);
AssertRCReturn(rc, rc);
}
}
vpciDumpState(pState, "vpciLoadExec");
return VINF_SUCCESS;
}
/**
* Set PCI configuration space registers.
*
* @param pci Reference to PCI device structure.
* @param uSubsystemId PCI Subsystem Id
* @param uClass Class of PCI device (network, etc)
* @thread EMT
*/
static DECLCALLBACK(void) vpciConfigure(PCIDEVICE& pci,
uint16_t uSubsystemId,
uint16_t uClass)
{
/* Configure PCI Device, assume 32-bit mode ******************************/
PCIDevSetVendorId(&pci, DEVICE_PCI_VENDOR_ID);
PCIDevSetDeviceId(&pci, DEVICE_PCI_DEVICE_ID);
vpciCfgSetU16(pci, VBOX_PCI_SUBSYSTEM_VENDOR_ID, DEVICE_PCI_SUBSYSTEM_VENDOR_ID);
vpciCfgSetU16(pci, VBOX_PCI_SUBSYSTEM_ID, uSubsystemId);
/* ABI version, must be equal 0 as of 2.6.30 kernel. */
vpciCfgSetU8( pci, VBOX_PCI_REVISION_ID, 0x00);
/* Ethernet adapter */
vpciCfgSetU8( pci, VBOX_PCI_CLASS_PROG, 0x00);
vpciCfgSetU16(pci, VBOX_PCI_CLASS_DEVICE, uClass);
/* Interrupt Pin: INTA# */
vpciCfgSetU8( pci, VBOX_PCI_INTERRUPT_PIN, 0x01);
}
/* WARNING! This function must never be used in multithreaded context! */
static const char *vpciCounter(const char *pszDevFmt,
const char *pszCounter)
{
static char g_szCounterName[80];
RTStrPrintf(g_szCounterName, sizeof(g_szCounterName),
"/Devices/%s/%s", pszDevFmt, pszCounter);
return g_szCounterName;
}
// TODO: header
DECLCALLBACK(int) vpciConstruct(PPDMDEVINS pDevIns, VPCISTATE *pState,
int iInstance, const char *pcszNameFmt,
uint16_t uSubsystemId, uint16_t uClass,
uint32_t nQueues)
{
int rc = VINF_SUCCESS;
/* Init handles and log related stuff. */
RTStrPrintf(pState->szInstance, sizeof(pState->szInstance),
pcszNameFmt, iInstance);
pState->pDevInsR3 = pDevIns;
pState->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
pState->led.u32Magic = PDMLED_MAGIC;
pState->ILeds.pfnQueryStatusLed = vpciQueryStatusLed;
/* Initialize critical section. */
rc = PDMDevHlpCritSectInit(pDevIns, &pState->cs, RT_SRC_POS, "%s", pState->szInstance);
if (RT_FAILURE(rc))
return rc;
/* Set PCI config registers */
vpciConfigure(pState->pciDevice, uSubsystemId, uClass);
/* Register PCI device */
rc = PDMDevHlpPCIRegister(pDevIns, &pState->pciDevice);
if (RT_FAILURE(rc))
return rc;
/* Status driver */
PPDMIBASE pBase;
rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pState->IBase, &pBase, "Status Port");
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the status LUN"));
pState->pLedsConnector = (PPDMILEDCONNECTORS)pBase->pfnQueryInterface(pBase, PDMINTERFACE_LED_CONNECTORS);
pState->nQueues = nQueues;
#if defined(VBOX_WITH_STATISTICS)
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in GC", vpciCounter(pcszNameFmt, "IO/ReadGC"), iInstance);
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in HC", vpciCounter(pcszNameFmt, "IO/ReadHC"), iInstance);
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in GC", vpciCounter(pcszNameFmt, "IO/WriteGC"), iInstance);
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in HC", vpciCounter(pcszNameFmt, "IO/WriteHC"), iInstance);
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsRaised, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of raised interrupts", vpciCounter(pcszNameFmt, "Interrupts/Raised"), iInstance);
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped interrupts", vpciCounter(pcszNameFmt, "Interrupts/Skipped"), iInstance);
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatCsGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling CS wait in GC", vpciCounter(pcszNameFmt, "Cs/CsGC"), iInstance);
PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatCsHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling CS wait in HC", vpciCounter(pcszNameFmt, "Cs/CsHC"), iInstance);
#endif /* VBOX_WITH_STATISTICS */
return rc;
}
/**
* Destruct PCI-related part of device.
*
* We need to free non-VM resources only.
*
* @returns VBox status.
* @param pState The device state structure.
*/
int vpciDestruct(VPCISTATE* pState)
{
Log(("%s Destroying PCI instance\n", INSTANCE(pState)));
if (PDMCritSectIsInitialized(&pState->cs))
PDMR3CritSectDelete(&pState->cs);
return VINF_SUCCESS;
}
/**
* Device relocation callback.
*
* When this callback is called the device instance data, and if the
* device have a GC component, is being relocated, or/and the selectors
* have been changed. The device must use the chance to perform the
* necessary pointer relocations and data updates.
*
* Before the GC code is executed the first time, this function will be
* called with a 0 delta so GC pointer calculations can be one in one place.
*
* @param pDevIns Pointer to the device instance.
* @param offDelta The relocation delta relative to the old location.
*
* @remark A relocation CANNOT fail.
*/
void vpciRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
VPCISTATE* pState = PDMINS_2_DATA(pDevIns, VPCISTATE*);
pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
// TBD
}
PVQUEUE vpciAddQueue(VPCISTATE* pState, unsigned uSize,
void (*pfnCallback)(void *pvState, PVQUEUE pQueue),
const char *pcszName)
{
PVQUEUE pQueue = NULL;
/* Find an empty queue slot */
for (unsigned i = 0; i < pState->nQueues; i++)
{
if (pState->Queues[i].VRing.uSize == 0)
{
pQueue = &pState->Queues[i];
break;
}
}
if (!pQueue)
{
Log(("%s Too many queues being added, no empty slots available!\n", INSTANCE(pState)));
}
else
{
pQueue->VRing.uSize = uSize;
pQueue->VRing.addrDescriptors = 0;
pQueue->uPageNumber = 0;
pQueue->pfnCallback = pfnCallback;
pQueue->pcszName = pcszName;
}
return pQueue;
}
#endif /* IN_RING3 */
#endif /* VBOX_DEVICE_STRUCT_TESTCASE */