DevOHCI.cpp revision 1e9e76e4273dcc2e3d560a0f3605c46f0013eb7b
/* $Id$ */
/** @file
* DevOHCI - Open Host Controller Interface for USB.
*/
/*
* Copyright (C) 2006-2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_dev_ohci OHCI - Open Host Controller Interface Emulation.
*
* This component implements an OHCI USB controller. It is split roughly in
* to two main parts, the first part implements the register level
* specification of USB OHCI and the second part maintains the root hub (which
* is an integrated component of the device).
*
* The OHCI registers are used for the usual stuff like enabling and disabling
* interrupts. Since the USB time is divided in to 1ms frames and various
* interrupts may need to be triggered at frame boundary time, a timer-based
* approach was taken. Whenever the bus is enabled ohci->eof_timer will be set.
*
* The actual USB transfers are stored in main memory (along with endpoint and
* transfer descriptors). The ED's for all the control and bulk endpoints are
* found by consulting the HcControlHeadED and HcBulkHeadED registers
* respectively. Interrupt ED's are different, they are found by looking
* in the HCCA (another communication area in main memory).
*
* At the start of every frame (in function ohci_sof) we traverse all enabled
* ED lists and queue up as many transfers as possible. No attention is paid
* to control/bulk service ratios or bandwidth requirements since our USB
* could conceivably contain a dozen high speed busses so this would
* artificially limit the performance.
*
* Once we have a transfer ready to go (in function ohciServiceTd) we
* allocate an URB on the stack, fill in all the relevant fields and submit
* it using the VUSBIRhSubmitUrb function. The roothub device and the virtual
* USB core code (vusb.c) coordinates everything else from this point onwards.
*
* When the URB has been successfully handed to the lower level driver, our
* prepare callback gets called and we can remove the TD from the ED transfer
* list. This stops us queueing it twice while it completes.
* bird: no, we don't remove it because that confuses the guest! (=> crashes)
*
* Completed URBs are reaped at the end of every frame (in function
* ohci_frame_boundary). Our completion routine makes use of the ED and TD
* fields in the URB to store the physical addresses of the descriptors so
* that they may be modified in the roothub callbacks. Our completion
* routine (ohciRhXferComplete) carries out a number of tasks:
* -# Retires the TD associated with the transfer, setting the
* relevant error code etc.
* -# Updates done-queue interrupt timer and potentially causes
* a writeback of the done-queue.
* -# If the transfer was device-to-host, we copy the data in to
* the host memory.
*
* As for error handling OHCI allows for 3 retries before failing a transfer,
* an error count is stored in each transfer descriptor. A halt flag is also
* stored in the transfer descriptor. That allows for ED's to be disabled
* without stopping the bus and de-queuing them.
*
* When the bus is started and stopped we call VUSBIDevPowerOn/Off() on our
* roothub to indicate it's powering up and powering down. Whenever we power
* down, the USB core makes sure to synchronously complete all outstanding
* requests so that the OHCI is never seen in an inconsistent state by the
* guest OS (Transfers are not meant to be unlinked until they've actually
* completed, but we can't do that unless we work synchronously, so we just
* have to fake it).
* bird: we do work synchronously now, anything causes guest crashes.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DEV_USB
#include <VBox/pci.h>
#include <VBox/vmm/pdm.h>
#include <VBox/vmm/mm.h>
#include <VBox/err.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/asm.h>
#include <iprt/asm-math.h>
#ifdef IN_RING3
# include <iprt/alloca.h>
# include <iprt/mem.h>
# include <iprt/thread.h>
# include <iprt/uuid.h>
#endif
#include <VBox/vusb.h>
#include "VBoxDD.h"
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/** The saved state version. */
#define OHCI_SAVED_STATE_VERSION 4
/** The saved state version used in 3.0 and earlier.
*
* @remarks Because of the SSMR3MemPut/Get laziness we ended up with an
* accidental format change between 2.0 and 2.1 that didn't get its own
* version number. It is therefore not possible to restore states from
* 2.0 and earlier with 2.1 and later. */
#define OHCI_SAVED_STATE_VERSION_MEM_HELL 3
/** Number of Downstream Ports on the root hub.
* If you change this you need to add more status register words to the 'opreg'
* array.
*/
#define OHCI_NDP 8
/** Pointer to OHCI device data. */
typedef struct OHCI *POHCI;
/** Read-only pointer to the OHCI device data. */
typedef struct OHCI const *PCOHCI;
/**
* An OHCI root hub port.
*/
typedef struct OHCIHUBPORT
{
/** The port register. */
uint32_t fReg;
#if HC_ARCH_BITS == 64
uint32_t Alignment0; /**< Align the pointer correctly. */
#endif
/** The device attached to the port. */
R3PTRTYPE(PVUSBIDEVICE) pDev;
} OHCIHUBPORT;
#if HC_ARCH_BITS == 64
AssertCompile(sizeof(OHCIHUBPORT) == 16); /* saved state */
#endif
/** Pointer to an OHCI hub port. */
typedef OHCIHUBPORT *POHCIHUBPORT;
/**
* The OHCI root hub.
*
* @implements PDMIBASE
* @implements VUSBIROOTHUBPORT
* @implements PDMILEDPORTS
*/
typedef struct ohci_roothub
{
/** Pointer to the base interface of the VUSB RootHub. */
R3PTRTYPE(PPDMIBASE) pIBase;
/** Pointer to the connector interface of the VUSB RootHub. */
R3PTRTYPE(PVUSBIROOTHUBCONNECTOR) pIRhConn;
/** Pointer to the device interface of the VUSB RootHub. */
R3PTRTYPE(PVUSBIDEVICE) pIDev;
/** The base interface exposed to the roothub driver. */
PDMIBASE IBase;
/** The roothub port interface exposed to the roothub driver. */
VUSBIROOTHUBPORT IRhPort;
/** The LED. */
PDMLED Led;
/** The LED ports. */
PDMILEDPORTS ILeds;
/** Partner of ILeds. */
R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
uint32_t status;
uint32_t desc_a;
uint32_t desc_b;
#if HC_ARCH_BITS == 64
uint32_t Alignment0; /**< Align aPorts on a 8 byte boundary. */
#endif
OHCIHUBPORT aPorts[OHCI_NDP];
R3PTRTYPE(POHCI) pOhci;
} OHCIROOTHUB;
#if HC_ARCH_BITS == 64
AssertCompile(sizeof(OHCIROOTHUB) == 280); /* saved state */
#endif
/** Pointer to the OHCI root hub. */
typedef OHCIROOTHUB *POHCIROOTHUB;
/**
* Data used for reattaching devices on a state load.
*/
typedef struct ohci_load {
/** Timer used once after state load to inform the guest about new devices.
* We do this to be sure the guest get any disconnect / reconnect on the
* same port. */
PTMTIMERR3 pTimer;
/** Number of detached devices. */
unsigned cDevs;
/** Array of devices which were detached. */
PVUSBIDEVICE apDevs[OHCI_NDP];
} OHCILOAD;
/** Pointer to an OHCILOAD structure. */
typedef OHCILOAD *POHCILOAD;
/**
* OHCI device data.
*/
typedef struct OHCI
{
/** The PCI device. */
PCIDEVICE PciDev;
/** Pointer to the device instance - R3 ptr. */
PPDMDEVINSR3 pDevInsR3;
/** The End-Of-Frame timer - R3 Ptr. */
PTMTIMERR3 pEndOfFrameTimerR3;
/** Pointer to the device instance - R0 ptr */
PPDMDEVINSR0 pDevInsR0;
/** The End-Of-Frame timer - R0 Ptr. */
PTMTIMERR0 pEndOfFrameTimerR0;
/** Pointer to the device instance - RC ptr. */
PPDMDEVINSRC pDevInsRC;
/** The End-Of-Frame timer - RC Ptr. */
PTMTIMERRC pEndOfFrameTimerRC;
/** Start of current frame. */
uint64_t SofTime;
/* done queue interrupt counter */
uint32_t dqic : 3;
/** frame number overflow. */
uint32_t fno : 1;
/** Address of the MMIO region assigned by PCI. */
RTGCPHYS32 MMIOBase;
/* Root hub device */
OHCIROOTHUB RootHub;
/* OHCI registers */
/** @name Control partition
* @{ */
/** HcControl. */
uint32_t ctl;
/** HcCommandStatus. */
uint32_t status;
/** HcInterruptStatus. */
uint32_t intr_status;
/** HcInterruptEnabled. */
uint32_t intr;
/** @} */
/** @name Memory pointer partition
* @{ */
/** HcHCCA. */
uint32_t hcca;
/** HcPeriodCurrentEd. */
uint32_t per_cur;
/** HcControlCurrentED. */
uint32_t ctrl_cur;
/** HcControlHeadED. */
uint32_t ctrl_head;
/** HcBlockCurrendED. */
uint32_t bulk_cur;
/** HcBlockHeadED. */
uint32_t bulk_head;
/** HcDoneHead. */
uint32_t done;
/** @} */
/** @name Frame counter partition
* @{ */
/** HcFmInterval.FSMPS - FSLargestDataPacket */
uint32_t fsmps : 15;
/** HcFmInterval.FIT - FrameItervalToggle */
uint32_t fit : 1;
/** HcFmInterval.FI - FrameInterval */
uint32_t fi : 14;
/** HcFmRemaining.FRT - toggle bit. */
uint32_t frt : 1;
/** HcFmNumber.
* @remark The register size is 16-bit, but for debugging and performance
* reasons we maintain a 32-bit counter. */
uint32_t HcFmNumber;
/** HcPeriodicStart */
uint32_t pstart;
/** @} */
/** The number of virtual time ticks per frame. */
uint64_t cTicksPerFrame;
/** The number of virtual time ticks per USB bus tick. */
uint64_t cTicksPerUsbTick;
/** Number of in-flight TDs. */
unsigned cInFlight;
unsigned Alignment0; /**< Align aInFlight on a 8 byte boundary. */
/** Array of in-flight TDs. */
struct ohci_td_in_flight
{
/** Address of the transport descriptor. */
uint32_t GCPhysTD;
/** Flag indicating an inactive (not-linked) URB. */
bool fInactive;
/** Pointer to the URB. */
R3PTRTYPE(PVUSBURB) pUrb;
} aInFlight[257];
#if HC_ARCH_BITS == 32
uint32_t Alignment1;
#endif
/** Number of in-done-queue TDs. */
unsigned cInDoneQueue;
/** Array of in-done-queue TDs. */
struct ohci_td_in_done_queue
{
/** Address of the transport descriptor. */
uint32_t GCPhysTD;
} aInDoneQueue[64];
/** When the tail of the done queue was added.
* Used to calculate the age of the done queue. */
uint32_t u32FmDoneQueueTail;
#if R3_ARCH_BITS == 32
/** Align pLoad, the stats and the struct size correctly. */
uint32_t Alignment2;
#endif
/** Pointer to state load data. */
R3PTRTYPE(POHCILOAD) pLoad;
/** Detected canceled isochronous URBs. */
STAMCOUNTER StatCanceledIsocUrbs;
/** Detected canceled general URBs. */
STAMCOUNTER StatCanceledGenUrbs;
/** Dropped URBs (endpoint halted, or URB canceled). */
STAMCOUNTER StatDroppedUrbs;
/** Profiling ohciFrameBoundaryTimer. */
STAMPROFILE StatTimer;
/** This member and all the following are not part of saved state. */
uint64_t SavedStateEnd;
/** VM timer frequency used for frame timer calculations. */
uint64_t u64TimerHz;
/** Number of USB work cycles with no transfers. */
uint32_t cIdleCycles;
/** Current frame timer rate (default 1000). */
uint32_t uFrameRate;
/** Idle detection flag; must be cleared at start of frame */
bool fIdle;
/** A flag indicating that the bulk list may have in-flight URBs. */
bool fBulkNeedsCleaning;
/** Whether RC/R0 is enabled. */
bool fRZEnabled;
uint32_t Alignment3; /**< Align size on a 8 byte boundary. */
} OHCI;
/* Standard OHCI bus speed */
#define OHCI_DEFAULT_TIMER_FREQ 1000
/* Host Controller Communications Area */
#define OHCI_HCCA_NUM_INTR 32
#define OHCI_HCCA_OFS (OHCI_HCCA_NUM_INTR * sizeof(uint32_t))
struct ohci_hcca
{
uint16_t frame;
uint16_t pad;
uint32_t done;
};
AssertCompileSize(ohci_hcca, 8);
/** @name OHCI Endpoint Descriptor
* @{ */
#define ED_PTR_MASK (~(uint32_t)0xf)
#define ED_HWINFO_MPS 0x07ff0000
#define ED_HWINFO_ISO RT_BIT(15)
#define ED_HWINFO_SKIP RT_BIT(14)
#define ED_HWINFO_LOWSPEED RT_BIT(13)
#define ED_HWINFO_IN RT_BIT(12)
#define ED_HWINFO_OUT RT_BIT(11)
#define ED_HWINFO_DIR (RT_BIT(11) | RT_BIT(12))
#define ED_HWINFO_ENDPOINT 0x780 /* 4 bits */
#define ED_HWINFO_ENDPOINT_SHIFT 7
#define ED_HWINFO_FUNCTION 0x7f /* 7 bits */
#define ED_HEAD_CARRY RT_BIT(1)
#define ED_HEAD_HALTED RT_BIT(0)
/**
* OHCI Endpoint Descriptor.
*/
typedef struct OHCIED
{
/** Flags and stuff. */
uint32_t hwinfo;
/** TailP - TD Queue Tail pointer. Bits 0-3 ignored / preserved. */
uint32_t TailP;
/** HeadP - TD Queue head pointer. Bit 0 - Halted, Bit 1 - toggleCarry. Bit 2&3 - 0. */
uint32_t HeadP;
/** NextED - Next Endpoint Descriptor. Bits 0-3 ignored / preserved. */
uint32_t NextED;
} OHCIED, *POHCIED;
typedef const OHCIED *PCOHCIED;
AssertCompileSize(OHCIED, 16);
/** @} */
/** @name Completion Codes
* @{ */
#define OHCI_CC_NO_ERROR (UINT32_C(0x00) << 28)
#define OHCI_CC_CRC (UINT32_C(0x01) << 28)
#define OHCI_CC_STALL (UINT32_C(0x04) << 28)
#define OHCI_CC_DEVICE_NOT_RESPONDING (UINT32_C(0x05) << 28)
#define OHCI_CC_DNR OHCI_CC_DEVICE_NOT_RESPONDING
#define OHCI_CC_PID_CHECK_FAILURE (UINT32_C(0x06) << 28)
#define OHCI_CC_UNEXPECTED_PID (UINT32_C(0x07) << 28)
#define OHCI_CC_DATA_OVERRUN (UINT32_C(0x08) << 28)
#define OHCI_CC_DATA_UNDERRUN (UINT32_C(0x09) << 28)
/* 0x0a..0x0b - reserved */
#define OHCI_CC_BUFFER_OVERRUN (UINT32_C(0x0c) << 28)
#define OHCI_CC_BUFFER_UNDERRUN (UINT32_C(0x0d) << 28)
#define OHCI_CC_NOT_ACCESSED_0 (UINT32_C(0x0e) << 28)
#define OHCI_CC_NOT_ACCESSED_1 (UINT32_C(0x0f) << 28)
/** @} */
/** @name OHCI General transfer descriptor
* @{ */
/** Error count (EC) shift. */
#define TD_ERRORS_SHIFT 26
/** Error count max. (One greater than what the EC field can hold.) */
#define TD_ERRORS_MAX 4
/** CC - Condition code mask. */
#define TD_HWINFO_CC (UINT32_C(0xf0000000))
#define TD_HWINFO_CC_SHIFT 28
/** EC - Error count. */
#define TD_HWINFO_ERRORS (RT_BIT(26) | RT_BIT(27))
/** T - Data toggle. */
#define TD_HWINFO_TOGGLE (RT_BIT(24) | RT_BIT(25))
#define TD_HWINFO_TOGGLE_HI (RT_BIT(25))
#define TD_HWINFO_TOGGLE_LO (RT_BIT(24))
/** DI - Delay interrupt. */
#define TD_HWINFO_DI (RT_BIT(21) | RT_BIT(22) | RT_BIT(23))
#define TD_HWINFO_IN (RT_BIT(20))
#define TD_HWINFO_OUT (RT_BIT(19))
/** DP - Direction / PID. */
#define TD_HWINFO_DIR (RT_BIT(19) | RT_BIT(20))
/** R - Buffer rounding. */
#define TD_HWINFO_ROUNDING (RT_BIT(18))
/** Bits that are reserved / unknown. */
#define TD_HWINFO_UNKNOWN_MASK (UINT32_C(0x0003ffff))
/** SETUP - to endpoint. */
#define OHCI_TD_DIR_SETUP 0x0
/** OUT - to endpoint. */
#define OHCI_TD_DIR_OUT 0x1
/** IN - from endpoint. */
#define OHCI_TD_DIR_IN 0x2
/** Reserved. */
#define OHCI_TD_DIR_RESERVED 0x3
/**
* OHCI general transfer descriptor
*/
typedef struct OHCITD
{
uint32_t hwinfo;
/** CBP - Current Buffer Pointer. (32-bit physical address) */
uint32_t cbp;
/** NextTD - Link to the next transfer descriptor. (32-bit physical address, dword aligned) */
uint32_t NextTD;
/** BE - Buffer End (inclusive). (32-bit physical address) */
uint32_t be;
} OHCITD, *POHCITD;
typedef const OHCITD *PCOHCITD;
AssertCompileSize(OHCIED, 16);
/** @} */
/** @name OHCI isochronous transfer descriptor.
* @{ */
/** SF - Start frame number. */
#define ITD_HWINFO_SF 0xffff
/** DI - Delay interrupt. (TD_HWINFO_DI) */
#define ITD_HWINFO_DI (RT_BIT(21) | RT_BIT(22) | RT_BIT(23))
#define ITD_HWINFO_DI_SHIFT 21
/** FC - Frame count. */
#define ITD_HWINFO_FC (RT_BIT(24) | RT_BIT(25) | RT_BIT(26))
#define ITD_HWINFO_FC_SHIFT 24
/** CC - Condition code mask. (=TD_HWINFO_CC) */
#define ITD_HWINFO_CC UINT32_C(0xf0000000)
#define ITD_HWINFO_CC_SHIFT 28
/** The buffer page 0 mask (lower 12 bits are ignored). */
#define ITD_BP0_MASK UINT32_C(0xfffff000)
#define ITD_NUM_PSW 8
/** OFFSET - offset of the package into the buffer page.
* (Only valid when CC set to Not Accessed.)
*
* Note that the top bit of the OFFSET field is overlapping with the
* first bit in the CC field. This is ok because both 0xf and 0xe are
* defined as "Not Accessed".
*/
#define ITD_PSW_OFFSET 0x1fff
/** SIZE field mask for IN bound transfers.
* (Only valid when CC isn't Not Accessed.)*/
#define ITD_PSW_SIZE 0x07ff
/** CC field mask.
* USed to indicate the format of SIZE (Not Accessed -> OFFSET). */
#define ITD_PSW_CC 0xf000
#define ITD_PSW_CC_SHIFT 12
/**
* OHCI isochronous transfer descriptor.
*/
typedef struct OHCIITD
{
uint32_t HwInfo;
/** BP0 - Buffer Page 0. The lower 12 bits are ignored. */
uint32_t BP0;
/** NextTD - Link to the next transfer descriptor. (32-bit physical address, dword aligned) */
uint32_t NextTD;
/** BE - Buffer End (inclusive). (32-bit physical address) */
uint32_t BE;
/** (OffsetN/)PSWN - package status word array (0..7).
* The format varies depending on whether the package has been completed or not. */
uint16_t aPSW[ITD_NUM_PSW];
} OHCIITD, *POHCIITD;
typedef const OHCIITD *PCOHCIITD;
AssertCompileSize(OHCIITD, 32);
/** @} */
/**
* OHCI register operator.
*/
typedef struct ohci_opreg
{
const char *pszName;
int (*pfnRead )(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value);
int (*pfnWrite)(POHCI pThis, uint32_t iReg, uint32_t u32Value);
} OHCIOPREG;
/* OHCI Local stuff */
#define OHCI_CTL_CBSR ((1<<0)|(1<<1))
#define OHCI_CTL_PLE (1<<2)
#define OHCI_CTL_IE (1<<3)
#define OHCI_CTL_CLE (1<<4)
#define OHCI_CTL_BLE (1<<5)
#define OHCI_CTL_HCFS ((1<<6)|(1<<7))
#define OHCI_USB_RESET 0x00
#define OHCI_USB_RESUME 0x40
#define OHCI_USB_OPERATIONAL 0x80
#define OHCI_USB_SUSPEND 0xc0
#define OHCI_CTL_IR (1<<8)
#define OHCI_CTL_RWC (1<<9)
#define OHCI_CTL_RWE (1<<10)
#define OHCI_STATUS_HCR (1<<0)
#define OHCI_STATUS_CLF (1<<1)
#define OHCI_STATUS_BLF (1<<2)
#define OHCI_STATUS_OCR (1<<3)
#define OHCI_STATUS_SOC ((1<<6)|(1<<7))
/** @name Interrupt Status and Enabled/Disabled Flags
* @{ */
/** SO - Scheduling overrun. */
#define OHCI_INTR_SCHEDULEING_OVERRUN RT_BIT(0)
/** WDH - HcDoneHead writeback. */
#define OHCI_INTR_WRITE_DONE_HEAD RT_BIT(1)
/** SF - Start of frame. */
#define OHCI_INTR_START_OF_FRAME RT_BIT(2)
/** RD - Resume detect. */
#define OHCI_INTR_RESUME_DETECT RT_BIT(3)
/** UE - Unrecoverable error. */
#define OHCI_INTR_UNRECOVERABLE_ERROR RT_BIT(4)
/** FNO - Frame number overflow. */
#define OHCI_INTR_FRAMENUMBER_OVERFLOW RT_BIT(5)
/** RHSC- Root hub status change. */
#define OHCI_INTR_ROOT_HUB_STATUS_CHANGE RT_BIT(6)
/** OC - Ownership change. */
#define OHCI_INTR_OWNERSHIP_CHANGE RT_BIT(30)
/** MIE - Master interrupt enable. */
#define OHCI_INTR_MASTER_INTERRUPT_ENABLED RT_BIT(31)
/** @} */
#define OHCI_HCCA_SIZE 0x100
#define OHCI_HCCA_MASK UINT32_C(0xffffff00)
#define OHCI_FMI_FI UINT32_C(0x00003fff)
#define OHCI_FMI_FSMPS UINT32_C(0x7fff0000)
#define OHCI_FMI_FSMPS_SHIFT 16
#define OHCI_FMI_FIT UINT32_C(0x80000000)
#define OHCI_FMI_FIT_SHIFT 31
#define OHCI_FR_RT RT_BIT_32(31)
#define OHCI_LS_THRESH 0x628
#define OHCI_RHA_NDP (0xff)
#define OHCI_RHA_PSM RT_BIT_32(8)
#define OHCI_RHA_NPS RT_BIT_32(9)
#define OHCI_RHA_DT RT_BIT_32(10)
#define OHCI_RHA_OCPM RT_BIT_32(11)
#define OHCI_RHA_NOCP RT_BIT_32(12)
#define OHCI_RHA_POTPGP UINT32_C(0xff000000)
#define OHCI_RHS_LPS RT_BIT_32(0)
#define OHCI_RHS_OCI RT_BIT_32(1)
#define OHCI_RHS_DRWE RT_BIT_32(15)
#define OHCI_RHS_LPSC RT_BIT_32(16)
#define OHCI_RHS_OCIC RT_BIT_32(17)
#define OHCI_RHS_CRWE RT_BIT_32(31)
/** @name HcRhPortStatus[n] - RH Port Status register (read).
* @{ */
/** CCS - CurrentConnectionStatus - 0 = no device, 1 = device. */
#define OHCI_PORT_CCS RT_BIT(0)
/** PES - PortEnableStatus. */
#define OHCI_PORT_PES RT_BIT(1)
/** PSS - PortSuspendStatus */
#define OHCI_PORT_PSS RT_BIT(2)
/** POCI- PortOverCurrentIndicator. */
#define OHCI_PORT_POCI RT_BIT(3)
/** PRS - PortResetStatus */
#define OHCI_PORT_PRS RT_BIT(4)
/** PPS - PortPowerStatus */
#define OHCI_PORT_PPS RT_BIT(8)
/** LSDA - LowSpeedDeviceAttached */
#define OHCI_PORT_LSDA RT_BIT(9)
/** CSC - ConnectStatusChange */
#define OHCI_PORT_CSC RT_BIT(16)
/** PESC - PortEnableStatusChange */
#define OHCI_PORT_PESC RT_BIT(17)
/** PSSC - PortSuspendStatusChange */
#define OHCI_PORT_PSSC RT_BIT(18)
/** OCIC - OverCurrentIndicatorChange */
#define OHCI_PORT_OCIC RT_BIT(19)
/** PRSC - PortResetStatusChange */
#define OHCI_PORT_PRSC RT_BIT(20)
/** @} */
/** @name HcRhPortStatus[n] - Root Hub Port Status Registers - read.
* @{ */
/** CCS - CurrentConnectStatus - 0 = no device, 1 = device. */
#define OHCI_PORT_R_CURRENT_CONNECT_STATUS RT_BIT(0)
/** PES - PortEnableStatus. */
#define OHCI_PORT_R_ENABLE_STATUS RT_BIT(1)
/** PSS - PortSuspendStatus */
#define OHCI_PORT_R_SUSPEND_STATUS RT_BIT(2)
/** POCI- PortOverCurrentIndicator. */
#define OHCI_PORT_R_OVER_CURRENT_INDICATOR RT_BIT(3)
/** PRS - PortResetStatus */
#define OHCI_PORT_R_RESET_STATUS RT_BIT(4)
/** PPS - PortPowerStatus */
#define OHCI_PORT_R_POWER_STATUS RT_BIT(8)
/** LSDA - LowSpeedDeviceAttached */
#define OHCI_PORT_R_LOW_SPEED_DEVICE_ATTACHED RT_BIT(9)
/** CSC - ConnectStatusChange */
#define OHCI_PORT_R_CONNECT_STATUS_CHANGE RT_BIT(16)
/** PESC - PortEnableStatusChange */
#define OHCI_PORT_R_ENABLE_STATUS_CHANGE RT_BIT(17)
/** PSSC - PortSuspendStatusChange */
#define OHCI_PORT_R_SUSPEND_STATUS_CHANGE RT_BIT(18)
/** OCIC - OverCurrentIndicatorChange */
#define OHCI_PORT_R_OVER_CURRENT_INDICATOR_CHANGE RT_BIT(19)
/** PRSC - PortResetStatusChange */
#define OHCI_PORT_R_RESET_STATUS_CHANGE RT_BIT(20)
/** @} */
/** @name HcRhPortStatus[n] - Root Hub Port Status Registers - write.
* @{ */
/** CCS - ClearPortEnable. */
#define OHCI_PORT_W_CLEAR_ENABLE RT_BIT(0)
/** PES - SetPortEnable. */
#define OHCI_PORT_W_SET_ENABLE RT_BIT(1)
/** PSS - SetPortSuspend */
#define OHCI_PORT_W_SET_SUSPEND RT_BIT(2)
/** POCI- ClearSuspendStatus. */
#define OHCI_PORT_W_CLEAR_SUSPEND_STATUS RT_BIT(3)
/** PRS - SetPortReset */
#define OHCI_PORT_W_SET_RESET RT_BIT(4)
/** PPS - SetPortPower */
#define OHCI_PORT_W_SET_POWER RT_BIT(8)
/** LSDA - ClearPortPower */
#define OHCI_PORT_W_CLEAR_POWER RT_BIT(9)
/** CSC - ClearConnectStatusChange */
#define OHCI_PORT_W_CLEAR_CSC RT_BIT(16)
/** PESC - PortEnableStatusChange */
#define OHCI_PORT_W_CLEAR_PESC RT_BIT(17)
/** PSSC - PortSuspendStatusChange */
#define OHCI_PORT_W_CLEAR_PSSC RT_BIT(18)
/** OCIC - OverCurrentIndicatorChange */
#define OHCI_PORT_W_CLEAR_OCIC RT_BIT(19)
/** PRSC - PortResetStatusChange */
#define OHCI_PORT_W_CLEAR_PRSC RT_BIT(20)
/** The mask of bit which are used to clear themselves. */
#define OHCI_PORT_W_CLEAR_CHANGE_MASK ( OHCI_PORT_W_CLEAR_CSC | OHCI_PORT_W_CLEAR_PESC | OHCI_PORT_W_CLEAR_PSSC \
| OHCI_PORT_W_CLEAR_OCIC | OHCI_PORT_W_CLEAR_PRSC)
/** @} */
#ifndef VBOX_DEVICE_STRUCT_TESTCASE
/*******************************************************************************
* Global Variables *
*******************************************************************************/
#if defined(LOG_ENABLED) && defined(IN_RING3)
static bool g_fLogBulkEPs = false;
static bool g_fLogControlEPs = false;
static bool g_fLogInterruptEPs = false;
#endif
#ifdef IN_RING3
/**
* SSM descriptor table for the OHCI structure.
*/
static SSMFIELD const g_aOhciFields[] =
{
SSMFIELD_ENTRY( OHCI, SofTime),
SSMFIELD_ENTRY_CUSTOM( dpic+fno, RT_OFFSETOF(OHCI, SofTime) + RT_SIZEOFMEMB(OHCI, SofTime), 4),
SSMFIELD_ENTRY( OHCI, RootHub.status),
SSMFIELD_ENTRY( OHCI, RootHub.desc_a),
SSMFIELD_ENTRY( OHCI, RootHub.desc_b),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[0].fReg),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[1].fReg),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[2].fReg),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[3].fReg),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[4].fReg),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[5].fReg),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[6].fReg),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[7].fReg),
SSMFIELD_ENTRY( OHCI, ctl),
SSMFIELD_ENTRY( OHCI, status),
SSMFIELD_ENTRY( OHCI, intr_status),
SSMFIELD_ENTRY( OHCI, intr),
SSMFIELD_ENTRY( OHCI, hcca),
SSMFIELD_ENTRY( OHCI, per_cur),
SSMFIELD_ENTRY( OHCI, ctrl_cur),
SSMFIELD_ENTRY( OHCI, ctrl_head),
SSMFIELD_ENTRY( OHCI, bulk_cur),
SSMFIELD_ENTRY( OHCI, bulk_head),
SSMFIELD_ENTRY( OHCI, done),
SSMFIELD_ENTRY_CUSTOM( fsmps+fit+fi+frt, RT_OFFSETOF(OHCI, done) + RT_SIZEOFMEMB(OHCI, done), 4),
SSMFIELD_ENTRY( OHCI, HcFmNumber),
SSMFIELD_ENTRY( OHCI, pstart),
SSMFIELD_ENTRY_TERM()
};
#endif
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
RT_C_DECLS_BEGIN
#ifdef IN_RING3
/* Update host controller state to reflect a device attach */
static void rhport_power(POHCIROOTHUB pRh, unsigned iPort, bool fPowerUp);
static void ohciBusResume(POHCI ohci, bool fHardware);
static DECLCALLBACK(void) ohciRhXferCompletion(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb);
static DECLCALLBACK(bool) ohciRhXferError(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb);
static int ohci_in_flight_find(POHCI pThis, uint32_t GCPhysTD);
# if defined(VBOX_STRICT) || defined(LOG_ENABLED)
static int ohci_in_done_queue_find(POHCI pThis, uint32_t GCPhysTD);
# endif
static DECLCALLBACK(void) ohciR3LoadReattachDevices(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser);
#endif /* IN_RING3 */
RT_C_DECLS_END
/**
* Update PCI IRQ levels
*/
static void ohciUpdateInterrupt(POHCI ohci, const char *msg)
{
int level = 0;
if ( (ohci->intr & OHCI_INTR_MASTER_INTERRUPT_ENABLED)
&& (ohci->intr_status & ohci->intr)
&& !(ohci->ctl & OHCI_CTL_IR))
level = 1;
PDMDevHlpPCISetIrq(ohci->CTX_SUFF(pDevIns), 0, level);
if (level)
{
uint32_t val = ohci->intr_status & ohci->intr;
Log2(("ohci: Fired off interrupt %#010x - SO=%d WDH=%d SF=%d RD=%d UE=%d FNO=%d RHSC=%d OC=%d - %s\n",
val, val & 1, (val >> 1) & 1, (val >> 2) & 1, (val >> 3) & 1, (val >> 4) & 1, (val >> 5) & 1,
(val >> 6) & 1, (val >> 30) & 1, msg)); NOREF(val); NOREF(msg);
}
}
/**
* Set an interrupt, use the wrapper ohciSetInterrupt.
*/
DECLINLINE(void) ohciSetInterruptInt(POHCI ohci, uint32_t intr, const char *msg)
{
if ( (ohci->intr_status & intr) == intr )
return;
ohci->intr_status |= intr;
ohciUpdateInterrupt(ohci, msg);
}
/**
* Set an interrupt wrapper macro for logging purposes.
*/
#define ohciSetInterrupt(ohci, intr) ohciSetInterruptInt(ohci, intr, #intr)
#ifdef IN_RING3
/* Carry out a hardware remote wakeup */
static void ohci_remote_wakeup(POHCI pThis)
{
if ((pThis->ctl & OHCI_CTL_HCFS) != OHCI_USB_SUSPEND)
return;
if (!(pThis->RootHub.status & OHCI_RHS_DRWE))
return;
ohciBusResume(pThis, true /* hardware */);
}
/**
* Query interface method for the roothub LUN.
*/
static DECLCALLBACK(void *) ohciRhQueryInterface(PPDMIBASE pInterface, const char *pszIID)
{
POHCI pThis = RT_FROM_MEMBER(pInterface, OHCI, RootHub.IBase);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->RootHub.IBase);
PDMIBASE_RETURN_INTERFACE(pszIID, VUSBIROOTHUBPORT, &pThis->RootHub.IRhPort);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->RootHub.ILeds);
return NULL;
}
/**
* Gets the pointer to the status LED of a unit.
*
* @returns VBox status code.
* @param pInterface Pointer to the interface structure containing the called function pointer.
* @param iLUN The unit which status LED we desire.
* @param ppLed Where to store the LED pointer.
*/
static DECLCALLBACK(int) ohciRhQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
{
POHCI pThis = (POHCI)((uintptr_t)pInterface - RT_OFFSETOF(OHCI, RootHub.ILeds));
if (iLUN == 0)
{
*ppLed = &pThis->RootHub.Led;
return VINF_SUCCESS;
}
return VERR_PDM_LUN_NOT_FOUND;
}
/** Converts a OHCI.roothub.IRhPort pointer to a POHCI. */
#define VUSBIROOTHUBPORT_2_OHCI(pInterface) ((POHCI)( (uintptr_t)(pInterface) - RT_OFFSETOF(OHCI, RootHub.IRhPort) ))
/**
* Get the number of available ports in the hub.
*
* @returns The number of ports available.
* @param pInterface Pointer to this structure.
* @param pAvailable Bitmap indicating the available ports. Set bit == available port.
*/
static DECLCALLBACK(unsigned) ohciRhGetAvailablePorts(PVUSBIROOTHUBPORT pInterface, PVUSBPORTBITMAP pAvailable)
{
POHCI pThis = VUSBIROOTHUBPORT_2_OHCI(pInterface);
unsigned iPort;
unsigned cPorts = 0;
memset(pAvailable, 0, sizeof(*pAvailable));
PDMCritSectEnter(pThis->pDevInsR3->pCritSectRoR3, VERR_IGNORED);
for (iPort = 0; iPort < RT_ELEMENTS(pThis->RootHub.aPorts); iPort++)
{
if (!pThis->RootHub.aPorts[iPort].pDev)
{
cPorts++;
ASMBitSet(pAvailable, iPort + 1);
}
}
PDMCritSectLeave(pThis->pDevInsR3->pCritSectRoR3);
return cPorts;
}
/**
* Gets the supported USB versions.
*
* @returns The mask of supported USB versions.
* @param pInterface Pointer to this structure.
*/
static DECLCALLBACK(uint32_t) ohciRhGetUSBVersions(PVUSBIROOTHUBPORT pInterface)
{
return VUSB_STDVER_11;
}
/**
* A device is being attached to a port in the roothub.
*
* @param pInterface Pointer to this structure.
* @param pDev Pointer to the device being attached.
* @param uPort The port number assigned to the device.
*/
static DECLCALLBACK(int) ohciRhAttach(PVUSBIROOTHUBPORT pInterface, PVUSBIDEVICE pDev, unsigned uPort)
{
POHCI pThis = VUSBIROOTHUBPORT_2_OHCI(pInterface);
LogFlow(("ohciRhAttach: pDev=%p uPort=%u\n", pDev, uPort));
PDMCritSectEnter(pThis->pDevInsR3->pCritSectRoR3, VERR_IGNORED);
/*
* Validate and adjust input.
*/
Assert(uPort >= 1 && uPort <= RT_ELEMENTS(pThis->RootHub.aPorts));
uPort--;
Assert(!pThis->RootHub.aPorts[uPort].pDev);
/*
* Attach it.
*/
pThis->RootHub.aPorts[uPort].fReg = OHCI_PORT_R_CURRENT_CONNECT_STATUS | OHCI_PORT_R_CONNECT_STATUS_CHANGE;
pThis->RootHub.aPorts[uPort].pDev = pDev;
rhport_power(&pThis->RootHub, uPort, 1 /* power on */);
ohci_remote_wakeup(pThis);
ohciSetInterrupt(pThis, OHCI_INTR_ROOT_HUB_STATUS_CHANGE);
PDMCritSectLeave(pThis->pDevInsR3->pCritSectRoR3);
return VINF_SUCCESS;
}
/**
* A device is being detached from a port in the roothub.
*
* @param pInterface Pointer to this structure.
* @param pDev Pointer to the device being detached.
* @param uPort The port number assigned to the device.
*/
static DECLCALLBACK(void) ohciRhDetach(PVUSBIROOTHUBPORT pInterface, PVUSBIDEVICE pDev, unsigned uPort)
{
POHCI pThis = VUSBIROOTHUBPORT_2_OHCI(pInterface);
LogFlow(("ohciRhDetach: pDev=%p uPort=%u\n", pDev, uPort));
PDMCritSectEnter(pThis->pDevInsR3->pCritSectRoR3, VERR_IGNORED);
/*
* Validate and adjust input.
*/
Assert(uPort >= 1 && uPort <= RT_ELEMENTS(pThis->RootHub.aPorts));
uPort--;
Assert(pThis->RootHub.aPorts[uPort].pDev == pDev);
/*
* Detach it.
*/
pThis->RootHub.aPorts[uPort].pDev = NULL;
if (pThis->RootHub.aPorts[uPort].fReg & OHCI_PORT_PES)
pThis->RootHub.aPorts[uPort].fReg = OHCI_PORT_R_CONNECT_STATUS_CHANGE | OHCI_PORT_PESC;
else
pThis->RootHub.aPorts[uPort].fReg = OHCI_PORT_R_CONNECT_STATUS_CHANGE;
ohci_remote_wakeup(pThis);
ohciSetInterrupt(pThis, OHCI_INTR_ROOT_HUB_STATUS_CHANGE);
PDMCritSectLeave(pThis->pDevInsR3->pCritSectRoR3);
}
#ifdef IN_RING3
/**
* One of the roothub devices has completed its reset operation.
*
* Currently, we don't think anything is required to be done here
* so it's just a stub for forcing async resetting of the devices
* during a root hub reset.
*
* @param pDev The root hub device.
* @param rc The result of the operation.
* @param pvUser Pointer to the controller.
*/
static DECLCALLBACK(void) ohciRhResetDoneOneDev(PVUSBIDEVICE pDev, int rc, void *pvUser)
{
LogRel(("OHCI: root hub reset completed with %Rrc\n", rc));
NOREF(pDev); NOREF(rc); NOREF(pvUser);
}
#endif
/**
* Reset the root hub.
*
* @returns VBox status code.
* @param pInterface Pointer to this structure.
* @param fResetOnLinux This is used to indicate whether we're at VM reset time and
* can do real resets or if we're at any other time where that
* isn't such a good idea.
* @remark Do NOT call VUSBIDevReset on the root hub in an async fashion!
* @thread EMT
*/
static DECLCALLBACK(int) ohciRhReset(PVUSBIROOTHUBPORT pInterface, bool fResetOnLinux)
{
POHCI pThis = VUSBIROOTHUBPORT_2_OHCI(pInterface);
PDMCritSectEnter(pThis->pDevInsR3->pCritSectRoR3, VERR_IGNORED);
pThis->RootHub.status = 0;
pThis->RootHub.desc_a = OHCI_RHA_NPS | OHCI_NDP;
pThis->RootHub.desc_b = 0x0; /* Impl. specific */
/*
* We're pending to _reattach_ the device without resetting them.
* Except, during VM reset where we use the opportunity to do a proper
* reset before the guest comes along and expect things.
*
* However, it's very very likely that we're not doing the right thing
* here if coming from the guest (USB Reset state). The docs talks about
* root hub resetting, however what exact behaviour in terms of root hub
* status and changed bits, and HC interrupts aren't stated clearly. IF we
* get trouble and see the guest doing "USB Resets" we will have to look
* into this. For the time being we stick with simple.
*/
for (unsigned iPort = 0; iPort < RT_ELEMENTS(pThis->RootHub.aPorts); iPort++)
{
if (pThis->RootHub.aPorts[iPort].pDev)
{
pThis->RootHub.aPorts[iPort].fReg = OHCI_PORT_R_CURRENT_CONNECT_STATUS | OHCI_PORT_R_CONNECT_STATUS_CHANGE;
if (fResetOnLinux)
{
PVM pVM = PDMDevHlpGetVM(pThis->CTX_SUFF(pDevIns));
VUSBIDevReset(pThis->RootHub.aPorts[iPort].pDev, fResetOnLinux, ohciRhResetDoneOneDev, pThis, pVM);
}
}
else
pThis->RootHub.aPorts[iPort].fReg = 0;
}
PDMCritSectLeave(pThis->pDevInsR3->pCritSectRoR3);
return VINF_SUCCESS;
}
/**
* Does a software or hardware reset of the controller.
*
* This is called in response to setting HcCommandStatus.HCR, hardware reset,
* and device construction.
*
* @param pThis The ohci instance data.
* @param fNewMode The new mode of operation. This is UsbSuspend if it's a
* software reset, and UsbReset if it's a hardware reset / cold boot.
* @param fResetOnLinux Set if we can do a real reset of the devices attached to the root hub.
* This is really a just a hack for the non-working linux device reset.
* Linux has this feature called 'logical disconnect' if device reset fails
* which prevents us from doing resets when the guest asks for it - the guest
* will get confused when the device seems to be reconnected everytime it tries
* to reset it. But if we're at hardware reset time, we can allow a device to
* be 'reconnected' without upsetting the guest.
*
* @remark This hasn't got anything to do with software setting the mode to UsbReset.
*/
static void ohciDoReset(POHCI pThis, uint32_t fNewMode, bool fResetOnLinux)
{
Log(("ohci: %s reset%s\n", fNewMode == OHCI_USB_RESET ? "hardware" : "software",
fResetOnLinux ? " (reset on linux)" : ""));
/*
* Cancel all outstanding URBs.
*
* We can't, and won't, deal with URBs until we're moved out of the
* suspend/reset state. Also, a real HC isn't going to send anything
* any more when a reset has been signaled.
*/
pThis->RootHub.pIRhConn->pfnCancelAllUrbs(pThis->RootHub.pIRhConn);
/*
* Reset the hardware registers.
*/
if (fNewMode == OHCI_USB_RESET)
pThis->ctl |= OHCI_CTL_RWC; /* We're the firmware, set RemoteWakeupConnected. */
else
pThis->ctl &= OHCI_CTL_IR | OHCI_CTL_RWC; /* IR and RWC are preserved on software reset. */
pThis->ctl |= fNewMode;
pThis->status = 0;
pThis->intr_status = 0;
pThis->intr = OHCI_INTR_MASTER_INTERRUPT_ENABLED; /* (We follow the text and the not reset value column,) */
pThis->hcca = 0;
pThis->per_cur = 0;
pThis->ctrl_head = pThis->ctrl_cur = 0;
pThis->bulk_head = pThis->bulk_cur = 0;
pThis->done = 0;
pThis->fsmps = 0x2778; /* To-Be-Defined, use the value linux sets...*/
pThis->fit = 0;
pThis->fi = 11999; /* (12MHz ticks, one frame is 1ms) */
pThis->frt = 0;
pThis->HcFmNumber = 0;
pThis->pstart = 0;
pThis->dqic = 0x7;
pThis->fno = 0;
/*
* If this is a hardware reset, we will initialize the root hub too.
* Software resets doesn't do this according to the specs.
* (It's not possible to have device connected at the time of the
* device construction, so nothing to worry about there.)
*/
if (fNewMode == OHCI_USB_RESET)
VUSBIDevReset(pThis->RootHub.pIDev, fResetOnLinux, NULL, NULL, NULL);
}
#endif /* IN_RING3 */
/**
* Reads physical memory.
*/
DECLINLINE(void) ohciPhysRead(POHCI pThis, uint32_t Addr, void *pvBuf, size_t cbBuf)
{
if (cbBuf)
PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), Addr, pvBuf, cbBuf);
}
/**
* Writes physical memory.
*/
DECLINLINE(void) ohciPhysWrite(POHCI pThis, uint32_t Addr, const void *pvBuf, size_t cbBuf)
{
if (cbBuf)
PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), Addr, pvBuf, cbBuf);
}
/**
* Read an array of dwords from physical memory and correct endianness.
*/
DECLINLINE(void) ohciGetDWords(POHCI pThis, uint32_t Addr, uint32_t *pau32s, int c32s)
{
ohciPhysRead(pThis, Addr, pau32s, c32s * sizeof(uint32_t));
#if BYTE_ORDER != LITTLE_ENDIAN
for(int i = 0; i < c32s; i++)
pau32s[i] = RT_H2LE_U32(pau32s[i]);
#endif
}
/**
* Write an array of dwords from physical memory and correct endianness.
*/
DECLINLINE(void) ohciPutDWords(POHCI pThis, uint32_t Addr, const uint32_t *pau32s, int cu32s)
{
#if BYTE_ORDER == LITTLE_ENDIAN
ohciPhysWrite(pThis, Addr, pau32s, cu32s << 2);
#else
for (int i = 0; i < c32s; i++, pau32s++, Addr += sizeof(*pau32s))
{
uint32_t u32Tmp = RT_H2LE_U32(*pau32s);
ohciPhysWrite(pThis, Addr, (uint8_t *)&u32Tmp, sizeof(u32Tmp));
}
#endif
}
#ifdef IN_RING3
/**
* Reads an OHCIED.
*/
DECLINLINE(void) ohciReadEd(POHCI pThis, uint32_t EdAddr, POHCIED pEd)
{
ohciGetDWords(pThis, EdAddr, (uint32_t *)pEd, sizeof(*pEd) >> 2);
}
/**
* Reads an OHCITD.
*/
DECLINLINE(void) ohciReadTd(POHCI pThis, uint32_t TdAddr, POHCITD pTd)
{
ohciGetDWords(pThis, TdAddr, (uint32_t *)pTd, sizeof(*pTd) >> 2);
#ifdef LOG_ENABLED
if (LogIs3Enabled())
{
uint32_t hichg;
hichg = pTd->hwinfo;
Log3(("ohciReadTd(,%#010x,): R=%d DP=%d DI=%d T=%d EC=%d CC=%#x CBP=%#010x NextTD=%#010x BE=%#010x UNK=%#x\n",
TdAddr,
(pTd->hwinfo >> 18) & 1,
(pTd->hwinfo >> 19) & 3,
(pTd->hwinfo >> 21) & 7,
(pTd->hwinfo >> 24) & 3,
(pTd->hwinfo >> 26) & 3,
(pTd->hwinfo >> 28) &15,
pTd->cbp,
pTd->NextTD,
pTd->be,
pTd->hwinfo & TD_HWINFO_UNKNOWN_MASK));
#if 0
if (LogIs3Enabled())
{
/*
* usbohci.sys (32-bit XP) allocates 0x80 bytes per TD:
* 0x00-0x0f is the OHCI TD.
* 0x10-0x1f for isochronous TDs
* 0x20 is the physical address of this TD.
* 0x24 is initialized with 0x64745948, probably a magic.
* 0x28 is some kind of flags. the first bit begin the allocated / not allocated indicator.
* 0x30 is a pointer to something. endpoint? interface? device?
* 0x38 is initialized to 0xdeadface. but is changed into a pointer or something.
* 0x40 looks like a pointer.
* The rest is unknown and initialized with zeros.
*/
uint8_t abXpTd[0x80];
ohciPhysRead(pThis, TdAddr, abXpTd, sizeof(abXpTd));
Log3(("WinXpTd: alloc=%d PhysSelf=%RX32 s2=%RX32 magic=%RX32 s4=%RX32 s5=%RX32\n"
"%.*Rhxd\n",
abXpTd[28] & RT_BIT(0),
*((uint32_t *)&abXpTd[0x20]), *((uint32_t *)&abXpTd[0x30]),
*((uint32_t *)&abXpTd[0x24]), *((uint32_t *)&abXpTd[0x38]),
*((uint32_t *)&abXpTd[0x40]),
sizeof(abXpTd), &abXpTd[0]));
}
#endif
}
#endif
}
/**
* Reads an OHCIITD.
*/
DECLINLINE(void) ohciReadITd(POHCI pThis, uint32_t ITdAddr, POHCIITD pITd)
{
ohciGetDWords(pThis, ITdAddr, (uint32_t *)pITd, sizeof(*pITd) / sizeof(uint32_t));
#ifdef LOG_ENABLED
if (LogIs3Enabled())
{
Log3(("ohciReadITd(,%#010x,): SF=%#06x (%#RX32) DI=%#x FC=%d CC=%#x BP0=%#010x NextTD=%#010x BE=%#010x\n",
ITdAddr,
pITd->HwInfo & 0xffff, pThis->HcFmNumber,
(pITd->HwInfo >> 21) & 7,
(pITd->HwInfo >> 24) & 7,
(pITd->HwInfo >> 28) &15,
pITd->BP0,
pITd->NextTD,
pITd->BE));
Log3(("psw0=%x:%03x psw1=%x:%03x psw2=%x:%03x psw3=%x:%03x psw4=%x:%03x psw5=%x:%03x psw6=%x:%03x psw7=%x:%03x\n",
pITd->aPSW[0] >> 12, pITd->aPSW[0] & 0xfff,
pITd->aPSW[1] >> 12, pITd->aPSW[1] & 0xfff,
pITd->aPSW[2] >> 12, pITd->aPSW[2] & 0xfff,
pITd->aPSW[3] >> 12, pITd->aPSW[3] & 0xfff,
pITd->aPSW[4] >> 12, pITd->aPSW[4] & 0xfff,
pITd->aPSW[5] >> 12, pITd->aPSW[5] & 0xfff,
pITd->aPSW[6] >> 12, pITd->aPSW[6] & 0xfff,
pITd->aPSW[7] >> 12, pITd->aPSW[7] & 0xfff));
}
#endif
}
/**
* Writes an OHCIED.
*/
DECLINLINE(void) ohciWriteEd(POHCI pThis, uint32_t EdAddr, PCOHCIED pEd)
{
#ifdef LOG_ENABLED
if (LogIs3Enabled())
{
OHCIED EdOld;
uint32_t hichg;
ohciGetDWords(pThis, EdAddr, (uint32_t *)&EdOld, sizeof(EdOld) >> 2);
hichg = EdOld.hwinfo ^ pEd->hwinfo;
Log3(("ohciWriteEd(,%#010x,): %sFA=%#x %sEN=%#x %sD=%#x %sS=%d %sK=%d %sF=%d %sMPS=%#x %sTailP=%#010x %sHeadP=%#010x %sH=%d %sC=%d %sNextED=%#010x\n",
EdAddr,
(hichg >> 0) & 0x7f ? "*" : "", (pEd->hwinfo >> 0) & 0x7f,
(hichg >> 7) & 0xf ? "*" : "", (pEd->hwinfo >> 7) & 0xf,
(hichg >> 11) & 3 ? "*" : "", (pEd->hwinfo >> 11) & 3,
(hichg >> 13) & 1 ? "*" : "", (pEd->hwinfo >> 13) & 1,
(hichg >> 14) & 1 ? "*" : "", (pEd->hwinfo >> 14) & 1,
(hichg >> 15) & 1 ? "*" : "", (pEd->hwinfo >> 15) & 1,
(hichg >> 24) &0x3ff ? "*" : "", (pEd->hwinfo >> 16) &0x3ff,
EdOld.TailP != pEd->TailP ? "*" : "", pEd->TailP,
(EdOld.HeadP & ~3) != (pEd->HeadP & ~3) ? "*" : "", pEd->HeadP & ~3,
(EdOld.HeadP ^ pEd->HeadP) & 1 ? "*" : "", pEd->HeadP & 1,
(EdOld.HeadP ^ pEd->HeadP) & 2 ? "*" : "", (pEd->HeadP >> 1) & 1,
EdOld.NextED != pEd->NextED ? "*" : "", pEd->NextED));
}
#endif
ohciPutDWords(pThis, EdAddr, (uint32_t *)pEd, sizeof(*pEd) >> 2);
}
/**
* Writes an OHCITD.
*/
DECLINLINE(void) ohciWriteTd(POHCI pThis, uint32_t TdAddr, PCOHCITD pTd, const char *pszLogMsg)
{
#ifdef LOG_ENABLED
if (LogIs3Enabled())
{
OHCITD TdOld;
ohciGetDWords(pThis, TdAddr, (uint32_t *)&TdOld, sizeof(TdOld) >> 2);
uint32_t hichg = TdOld.hwinfo ^ pTd->hwinfo;
Log3(("ohciWriteTd(,%#010x,): %sR=%d %sDP=%d %sDI=%#x %sT=%d %sEC=%d %sCC=%#x %sCBP=%#010x %sNextTD=%#010x %sBE=%#010x (%s)\n",
TdAddr,
(hichg >> 18) & 1 ? "*" : "", (pTd->hwinfo >> 18) & 1,
(hichg >> 19) & 3 ? "*" : "", (pTd->hwinfo >> 19) & 3,
(hichg >> 21) & 7 ? "*" : "", (pTd->hwinfo >> 21) & 7,
(hichg >> 24) & 3 ? "*" : "", (pTd->hwinfo >> 24) & 3,
(hichg >> 26) & 3 ? "*" : "", (pTd->hwinfo >> 26) & 3,
(hichg >> 28) &15 ? "*" : "", (pTd->hwinfo >> 28) &15,
TdOld.cbp != pTd->cbp ? "*" : "", pTd->cbp,
TdOld.NextTD != pTd->NextTD ? "*" : "", pTd->NextTD,
TdOld.be != pTd->be ? "*" : "", pTd->be,
pszLogMsg));
}
#endif
ohciPutDWords(pThis, TdAddr, (uint32_t *)pTd, sizeof(*pTd) >> 2);
}
/**
* Writes an OHCIITD.
*/
DECLINLINE(void) ohciWriteITd(POHCI pThis, uint32_t ITdAddr, PCOHCIITD pITd, const char *pszLogMsg)
{
#ifdef LOG_ENABLED
if (LogIs3Enabled())
{
OHCIITD ITdOld;
ohciGetDWords(pThis, ITdAddr, (uint32_t *)&ITdOld, sizeof(ITdOld) / sizeof(uint32_t));
uint32_t HIChg = ITdOld.HwInfo ^ pITd->HwInfo;
Log3(("ohciWriteITd(,%#010x,): %sSF=%#x (now=%#RX32) %sDI=%#x %sFC=%d %sCC=%#x %sBP0=%#010x %sNextTD=%#010x %sBE=%#010x (%s)\n",
ITdAddr,
(HIChg & 0xffff) & 1 ? "*" : "", pITd->HwInfo & 0xffff, pThis->HcFmNumber,
(HIChg >> 21) & 7 ? "*" : "", (pITd->HwInfo >> 21) & 7,
(HIChg >> 24) & 7 ? "*" : "", (pITd->HwInfo >> 24) & 7,
(HIChg >> 28) &15 ? "*" : "", (pITd->HwInfo >> 28) &15,
ITdOld.BP0 != pITd->BP0 ? "*" : "", pITd->BP0,
ITdOld.NextTD != pITd->NextTD ? "*" : "", pITd->NextTD,
ITdOld.BE != pITd->BE ? "*" : "", pITd->BE,
pszLogMsg));
Log3(("psw0=%s%x:%s%03x psw1=%s%x:%s%03x psw2=%s%x:%s%03x psw3=%s%x:%s%03x psw4=%s%x:%s%03x psw5=%s%x:%s%03x psw6=%s%x:%s%03x psw7=%s%x:%s%03x\n",
(ITdOld.aPSW[0] >> 12) != (pITd->aPSW[0] >> 12) ? "*" : "", pITd->aPSW[0] >> 12, (ITdOld.aPSW[0] & 0xfff) != (pITd->aPSW[0] & 0xfff) ? "*" : "", pITd->aPSW[0] & 0xfff,
(ITdOld.aPSW[1] >> 12) != (pITd->aPSW[1] >> 12) ? "*" : "", pITd->aPSW[1] >> 12, (ITdOld.aPSW[1] & 0xfff) != (pITd->aPSW[1] & 0xfff) ? "*" : "", pITd->aPSW[1] & 0xfff,
(ITdOld.aPSW[2] >> 12) != (pITd->aPSW[2] >> 12) ? "*" : "", pITd->aPSW[2] >> 12, (ITdOld.aPSW[2] & 0xfff) != (pITd->aPSW[2] & 0xfff) ? "*" : "", pITd->aPSW[2] & 0xfff,
(ITdOld.aPSW[3] >> 12) != (pITd->aPSW[3] >> 12) ? "*" : "", pITd->aPSW[3] >> 12, (ITdOld.aPSW[3] & 0xfff) != (pITd->aPSW[3] & 0xfff) ? "*" : "", pITd->aPSW[3] & 0xfff,
(ITdOld.aPSW[4] >> 12) != (pITd->aPSW[4] >> 12) ? "*" : "", pITd->aPSW[4] >> 12, (ITdOld.aPSW[4] & 0xfff) != (pITd->aPSW[4] & 0xfff) ? "*" : "", pITd->aPSW[4] & 0xfff,
(ITdOld.aPSW[5] >> 12) != (pITd->aPSW[5] >> 12) ? "*" : "", pITd->aPSW[5] >> 12, (ITdOld.aPSW[5] & 0xfff) != (pITd->aPSW[5] & 0xfff) ? "*" : "", pITd->aPSW[5] & 0xfff,
(ITdOld.aPSW[6] >> 12) != (pITd->aPSW[6] >> 12) ? "*" : "", pITd->aPSW[6] >> 12, (ITdOld.aPSW[6] & 0xfff) != (pITd->aPSW[6] & 0xfff) ? "*" : "", pITd->aPSW[6] & 0xfff,
(ITdOld.aPSW[7] >> 12) != (pITd->aPSW[7] >> 12) ? "*" : "", pITd->aPSW[7] >> 12, (ITdOld.aPSW[7] & 0xfff) != (pITd->aPSW[7] & 0xfff) ? "*" : "", pITd->aPSW[7] & 0xfff));
}
#endif
ohciPutDWords(pThis, ITdAddr, (uint32_t *)pITd, sizeof(*pITd) / sizeof(uint32_t));
}
#ifdef LOG_ENABLED
/**
* Core TD queue dumper. LOG_ENABLED builds only.
*/
DECLINLINE(void) ohciDumpTdQueueCore(POHCI pThis, uint32_t GCPhysHead, uint32_t GCPhysTail, bool fFull)
{
uint32_t GCPhys = GCPhysHead;
int cMax = 100;
for (;;)
{
OHCITD Td;
Log4(("%#010x%s%s", GCPhys,
GCPhys && ohci_in_flight_find(pThis, GCPhys) >= 0 ? "~" : "",
GCPhys && ohci_in_done_queue_find(pThis, GCPhys) >= 0 ? "^" : ""));
if (GCPhys == 0 || GCPhys == GCPhysTail)
break;
/* can't use ohciReadTd() because of Log4. */
ohciGetDWords(pThis, GCPhys, (uint32_t *)&Td, sizeof(Td) >> 2);
if (fFull)
Log4((" [R=%d DP=%d DI=%d T=%d EC=%d CC=%#x CBP=%#010x NextTD=%#010x BE=%#010x] -> ",
(Td.hwinfo >> 18) & 1,
(Td.hwinfo >> 19) & 3,
(Td.hwinfo >> 21) & 7,
(Td.hwinfo >> 24) & 3,
(Td.hwinfo >> 26) & 3,
(Td.hwinfo >> 28) &15,
Td.cbp,
Td.NextTD,
Td.be));
else
Log4((" -> "));
GCPhys = Td.NextTD & ED_PTR_MASK;
Assert(GCPhys != GCPhysHead);
Assert(cMax-- > 0); NOREF(cMax);
}
}
/**
* Dumps a TD queue. LOG_ENABLED builds only.
*/
DECLINLINE(void) ohciDumpTdQueue(POHCI pThis, uint32_t GCPhysHead, const char *pszMsg)
{
if (pszMsg)
Log4(("%s: ", pszMsg));
ohciDumpTdQueueCore(pThis, GCPhysHead, 0, true);
Log4(("\n"));
}
/**
* Core ITD queue dumper. LOG_ENABLED builds only.
*/
DECLINLINE(void) ohciDumpITdQueueCore(POHCI pThis, uint32_t GCPhysHead, uint32_t GCPhysTail, bool fFull)
{
uint32_t GCPhys = GCPhysHead;
int cMax = 100;
for (;;)
{
OHCIITD ITd;
Log4(("%#010x%s%s", GCPhys,
GCPhys && ohci_in_flight_find(pThis, GCPhys) >= 0 ? "~" : "",
GCPhys && ohci_in_done_queue_find(pThis, GCPhys) >= 0 ? "^" : ""));
if (GCPhys == 0 || GCPhys == GCPhysTail)
break;
/* can't use ohciReadTd() because of Log4. */
ohciGetDWords(pThis, GCPhys, (uint32_t *)&ITd, sizeof(ITd) / sizeof(uint32_t));
/*if (fFull)
Log4((" [R=%d DP=%d DI=%d T=%d EC=%d CC=%#x CBP=%#010x NextTD=%#010x BE=%#010x] -> ",
(Td.hwinfo >> 18) & 1,
(Td.hwinfo >> 19) & 3,
(Td.hwinfo >> 21) & 7,
(Td.hwinfo >> 24) & 3,
(Td.hwinfo >> 26) & 3,
(Td.hwinfo >> 28) &15,
Td.cbp,
Td.NextTD,
Td.be));
else*/
Log4((" -> "));
GCPhys = ITd.NextTD & ED_PTR_MASK;
Assert(GCPhys != GCPhysHead);
Assert(cMax-- > 0); NOREF(cMax);
}
}
/**
* Dumps a ED list. LOG_ENABLED builds only.
*/
DECLINLINE(void) ohciDumpEdList(POHCI pThis, uint32_t GCPhysHead, const char *pszMsg, bool fTDs)
{
uint32_t GCPhys = GCPhysHead;
if (pszMsg)
Log4(("%s:", pszMsg));
for (;;)
{
OHCIED Ed;
/* ED */
Log4((" %#010x={", GCPhys));
if (!GCPhys)
{
Log4(("END}\n"));
return;
}
/* TDs */
ohciReadEd(pThis, GCPhys, &Ed);
if (Ed.hwinfo & ED_HWINFO_ISO)
Log4(("[I]"));
if ((Ed.HeadP & ED_HEAD_HALTED) || (Ed.hwinfo & ED_HWINFO_SKIP))
{
if ((Ed.HeadP & ED_HEAD_HALTED) && (Ed.hwinfo & ED_HWINFO_SKIP))
Log4(("SH}"));
else if (Ed.hwinfo & ED_HWINFO_SKIP)
Log4(("S-}"));
else
Log4(("-H}"));
}
else
{
if (Ed.hwinfo & ED_HWINFO_ISO)
ohciDumpITdQueueCore(pThis, Ed.HeadP & ED_PTR_MASK, Ed.TailP & ED_PTR_MASK, false);
else
ohciDumpTdQueueCore(pThis, Ed.HeadP & ED_PTR_MASK, Ed.TailP & ED_PTR_MASK, false);
Log4(("}"));
}
/* next */
GCPhys = Ed.NextED & ED_PTR_MASK;
Assert(GCPhys != GCPhysHead);
}
Log4(("\n"));
}
#endif /* LOG_ENABLED */
DECLINLINE(int) ohci_in_flight_find_free(POHCI pThis, const int iStart)
{
unsigned i = iStart;
while (i < RT_ELEMENTS(pThis->aInFlight))
{
if (pThis->aInFlight[i].GCPhysTD == 0)
return i;
i++;
}
i = iStart;
while (i-- > 0)
{
if (pThis->aInFlight[i].GCPhysTD == 0)
return i;
}
return -1;
}
/**
* Record an in-flight TD.
*
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
* @param pUrb The URB.
*/
static void ohci_in_flight_add(POHCI pThis, uint32_t GCPhysTD, PVUSBURB pUrb)
{
int i = ohci_in_flight_find_free(pThis, (GCPhysTD >> 4) % RT_ELEMENTS(pThis->aInFlight));
if (i >= 0)
{
#ifdef LOG_ENABLED
pUrb->Hci.u32FrameNo = pThis->HcFmNumber;
#endif
pThis->aInFlight[i].GCPhysTD = GCPhysTD;
pThis->aInFlight[i].pUrb = pUrb;
pThis->cInFlight++;
return;
}
AssertMsgFailed(("Out of space cInFlight=%d!\n", pThis->cInFlight));
}
/**
* Record in-flight TDs for an URB.
*
* @param pThis OHCI instance data.
* @param pUrb The URB.
*/
static void ohci_in_flight_add_urb(POHCI pThis, PVUSBURB pUrb)
{
for (unsigned iTd = 0; iTd < pUrb->Hci.cTds; iTd++)
ohci_in_flight_add(pThis, pUrb->Hci.paTds[iTd].TdAddr, pUrb);
}
/**
* Finds a in-flight TD.
*
* @returns Index of the record.
* @returns -1 if not found.
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
* @remark This has to be fast.
*/
static int ohci_in_flight_find(POHCI pThis, uint32_t GCPhysTD)
{
unsigned cLeft = pThis->cInFlight;
unsigned i = (GCPhysTD >> 4) % RT_ELEMENTS(pThis->aInFlight);
const int iLast = i;
while (i < RT_ELEMENTS(pThis->aInFlight))
{
if (pThis->aInFlight[i].GCPhysTD == GCPhysTD)
return i;
if (pThis->aInFlight[i].GCPhysTD)
if (cLeft-- <= 1)
return -1;
i++;
}
i = iLast;
while (i-- > 0)
{
if (pThis->aInFlight[i].GCPhysTD == GCPhysTD)
return i;
if (pThis->aInFlight[i].GCPhysTD)
if (cLeft-- <= 1)
return -1;
}
return -1;
}
/**
* Checks if a TD is in-flight.
*
* @returns true if in flight, false if not.
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
*/
static bool ohciIsTdInFlight(POHCI pThis, uint32_t GCPhysTD)
{
return ohci_in_flight_find(pThis, GCPhysTD) >= 0;
}
/**
* Returns a URB associated with an in-flight TD, if any.
*
* @returns pointer to URB if TD is in flight.
* @returns NULL if not in flight.
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
*/
static PVUSBURB ohciTdInFlightUrb(POHCI pThis, uint32_t GCPhysTD)
{
int i;
i = ohci_in_flight_find(pThis, GCPhysTD);
if ( i >= 0 )
return pThis->aInFlight[i].pUrb;
return NULL;
}
/**
* Removes a in-flight TD.
*
* @returns 0 if found. For logged builds this is the number of frames the TD has been in-flight.
* @returns -1 if not found.
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
*/
static int ohci_in_flight_remove(POHCI pThis, uint32_t GCPhysTD)
{
int i = ohci_in_flight_find(pThis, GCPhysTD);
if (i >= 0)
{
#ifdef LOG_ENABLED
const int cFramesInFlight = pThis->HcFmNumber - pThis->aInFlight[i].pUrb->Hci.u32FrameNo;
#else
const int cFramesInFlight = 0;
#endif
Log2(("ohci_in_flight_remove: reaping TD=%#010x %d frames (%#010x-%#010x)\n",
GCPhysTD, cFramesInFlight, pThis->aInFlight[i].pUrb->Hci.u32FrameNo, pThis->HcFmNumber));
pThis->aInFlight[i].GCPhysTD = 0;
pThis->aInFlight[i].pUrb = NULL;
pThis->cInFlight--;
return cFramesInFlight;
}
AssertMsgFailed(("TD %#010x is not in flight\n", GCPhysTD));
return -1;
}
/**
* Removes all TDs associated with a URB from the in-flight tracking.
*
* @returns 0 if found. For logged builds this is the number of frames the TD has been in-flight.
* @returns -1 if not found.
* @param pThis OHCI instance data.
* @param pUrb The URB.
*/
static int ohci_in_flight_remove_urb(POHCI pThis, PVUSBURB pUrb)
{
int cFramesInFlight = ohci_in_flight_remove(pThis, pUrb->Hci.paTds[0].TdAddr);
if (pUrb->Hci.cTds > 1)
{
for (unsigned iTd = 1; iTd < pUrb->Hci.cTds; iTd++)
if (ohci_in_flight_remove(pThis, pUrb->Hci.paTds[iTd].TdAddr) < 0)
cFramesInFlight = -1;
}
return cFramesInFlight;
}
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
/**
* Empties the in-done-queue.
* @param pThis OHCI instance data.
*/
static void ohci_in_done_queue_zap(POHCI pThis)
{
pThis->cInDoneQueue = 0;
}
/**
* Finds a TD in the in-done-queue.
* @returns >= 0 on success.
* @returns -1 if not found.
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
*/
static int ohci_in_done_queue_find(POHCI pThis, uint32_t GCPhysTD)
{
unsigned i = pThis->cInDoneQueue;
while (i-- > 0)
if (pThis->aInDoneQueue[i].GCPhysTD == GCPhysTD)
return i;
return -1;
}
/**
* Checks that the specified TD is not in the done queue.
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
*/
static bool ohci_in_done_queue_check(POHCI pThis, uint32_t GCPhysTD)
{
int i = ohci_in_done_queue_find(pThis, GCPhysTD);
#if 0
/* This condition has been observed with the USB tablet emulation or with
* a real USB mouse and an SMP XP guest. I am also not sure if this is
* really a problem for us. The assertion checks that the guest doesn't
* re-submit a TD which is still in the done queue. It seems to me that
* this should only be a problem if we either keep track of TDs in the done
* queue somewhere else as well (in which case we should also free those
* references in time, and I can't see any code doing that) or if we
* manipulate TDs in the done queue in some way that might fail if they are
* re-submitted (can't see anything like that either).
*/
AssertMsg(i < 0, ("TD %#010x (i=%d)\n", GCPhysTD, i));
#endif
return i < 0;
}
# ifdef VBOX_STRICT
/**
* Adds a TD to the in-done-queue tracking, checking that it's not there already.
* @param pThis OHCI instance data.
* @param GCPhysTD Physical address of the TD.
*/
static void ohci_in_done_queue_add(POHCI pThis, uint32_t GCPhysTD)
{
Assert(pThis->cInDoneQueue + 1 <= RT_ELEMENTS(pThis->aInDoneQueue));
if (ohci_in_done_queue_check(pThis, GCPhysTD))
pThis->aInDoneQueue[pThis->cInDoneQueue++].GCPhysTD = GCPhysTD;
}
# endif /* VBOX_STRICT */
#endif /* defined(VBOX_STRICT) || defined(LOG_ENABLED) */
/**
* OHCI Transport Buffer - represents a OHCI Transport Descriptor (TD).
* A TD may be split over max 2 pages.
*/
typedef struct OHCIBUF
{
/** Pages involved. */
struct OHCIBUFVEC
{
/** The 32-bit physical address of this part. */
uint32_t Addr;
/** The length. */
uint32_t cb;
} aVecs[2];
/** Number of valid entries in aVecs. */
uint32_t cVecs;
/** The total length. */
uint32_t cbTotal;
} OHCIBUF, *POHCIBUF;
/**
* Sets up a OHCI transport buffer.
*
* @param pBuf Ohci buffer.
* @param cbp Current buffer pointer. 32-bit physical address.
* @param be Last byte in buffer (BufferEnd). 32-bit physical address.
*/
static void ohciBufInit(POHCIBUF pBuf, uint32_t cbp, uint32_t be)
{
if (!cbp || !be)
{
pBuf->cVecs = 0;
pBuf->cbTotal = 0;
Log2(("ohci: cbp=%#010x be=%#010x cbTotal=0 EMPTY\n", cbp, be));
}
else if ((cbp & ~0xfff) == (be & ~0xfff))
{
pBuf->aVecs[0].Addr = cbp;
pBuf->aVecs[0].cb = (be - cbp) + 1;
pBuf->cVecs = 1;
pBuf->cbTotal = pBuf->aVecs[0].cb;
Log2(("ohci: cbp=%#010x be=%#010x cbTotal=%u\n", cbp, be, pBuf->cbTotal));
}
else
{
pBuf->aVecs[0].Addr = cbp;
pBuf->aVecs[0].cb = 0x1000 - (cbp & 0xfff);
pBuf->aVecs[1].Addr = be & ~0xfff;
pBuf->aVecs[1].cb = (be & 0xfff) + 1;
pBuf->cVecs = 2;
pBuf->cbTotal = pBuf->aVecs[0].cb + pBuf->aVecs[1].cb;
Log2(("ohci: cbp=%#010x be=%#010x cbTotal=%u PAGE FLIP\n", cbp, be, pBuf->cbTotal));
}
}
/**
* Updates a OHCI transport buffer.
*
* This is called upon completion to adjust the sector lengths if
* the total length has changed. (received less then we had space for
* or a partial transfer.)
*
* @param pBuf The buffer to update. cbTotal contains the new total on input.
* While the aVecs[*].cb members is updated upon return.
*/
static void ohciBufUpdate(POHCIBUF pBuf)
{
for (uint32_t i = 0, cbCur = 0; i < pBuf->cVecs; i++)
{
if (cbCur + pBuf->aVecs[i].cb > pBuf->cbTotal)
{
pBuf->aVecs[i].cb = pBuf->cbTotal - cbCur;
pBuf->cVecs = i + 1;
return;
}
cbCur += pBuf->aVecs[i].cb;
}
}
/** A worker for ohciUnlinkTds(). */
static bool ohciUnlinkIsochronousTdInList(POHCI pThis, uint32_t TdAddr, POHCIITD pITd, POHCIED pEd)
{
const uint32_t LastTdAddr = pEd->TailP & ED_PTR_MASK;
Log(("ohciUnlinkIsocTdInList: Unlinking non-head ITD! TdAddr=%#010RX32 HeadTdAddr=%#010RX32 LastEdAddr=%#010RX32\n",
TdAddr, pEd->HeadP & ED_PTR_MASK, LastTdAddr));
AssertMsgReturn(LastTdAddr != TdAddr, ("TdAddr=%#010RX32\n", TdAddr), false);
uint32_t cMax = 256;
uint32_t CurTdAddr = pEd->HeadP & ED_PTR_MASK;
while ( CurTdAddr != LastTdAddr
&& cMax-- > 0)
{
OHCIITD ITd;
ohciReadITd(pThis, CurTdAddr, &ITd);
if ((ITd.NextTD & ED_PTR_MASK) == TdAddr)
{
ITd.NextTD = (pITd->NextTD & ED_PTR_MASK) | (ITd.NextTD & ~ED_PTR_MASK);
ohciWriteITd(pThis, CurTdAddr, &ITd, "ohciUnlinkIsocTdInList");
pITd->NextTD &= ~ED_PTR_MASK;
return true;
}
/* next */
CurTdAddr = ITd.NextTD & ED_PTR_MASK;
}
Log(("ohciUnlinkIsocTdInList: TdAddr=%#010RX32 wasn't found in the list!!! (cMax=%d)\n", TdAddr, cMax));
return false;
}
/** A worker for ohciUnlinkTds(). */
static bool ohciUnlinkGeneralTdInList(POHCI pThis, uint32_t TdAddr, POHCITD pTd, POHCIED pEd)
{
const uint32_t LastTdAddr = pEd->TailP & ED_PTR_MASK;
Log(("ohciUnlinkGeneralTdInList: Unlinking non-head TD! TdAddr=%#010RX32 HeadTdAddr=%#010RX32 LastEdAddr=%#010RX32\n",
TdAddr, pEd->HeadP & ED_PTR_MASK, LastTdAddr));
AssertMsgReturn(LastTdAddr != TdAddr, ("TdAddr=%#010RX32\n", TdAddr), false);
uint32_t cMax = 256;
uint32_t CurTdAddr = pEd->HeadP & ED_PTR_MASK;
while ( CurTdAddr != LastTdAddr
&& cMax-- > 0)
{
OHCITD Td;
ohciReadTd(pThis, CurTdAddr, &Td);
if ((Td.NextTD & ED_PTR_MASK) == TdAddr)
{
Td.NextTD = (pTd->NextTD & ED_PTR_MASK) | (Td.NextTD & ~ED_PTR_MASK);
ohciWriteTd(pThis, CurTdAddr, &Td, "ohciUnlinkGeneralTdInList");
pTd->NextTD &= ~ED_PTR_MASK;
return true;
}
/* next */
CurTdAddr = Td.NextTD & ED_PTR_MASK;
}
Log(("ohciUnlinkGeneralTdInList: TdAddr=%#010RX32 wasn't found in the list!!! (cMax=%d)\n", TdAddr, cMax));
return false;
}
/**
* Unlinks the TDs that makes up the URB from the ED.
*
* @returns success indicator. true if successfully unlinked.
* @returns false if the TD was not found in the list.
*/
static bool ohciUnlinkTds(POHCI pThis, PVUSBURB pUrb, POHCIED pEd)
{
/*
* Don't unlink more than once.
*/
if (pUrb->Hci.fUnlinked)
return true;
pUrb->Hci.fUnlinked = true;
if (pUrb->enmType == VUSBXFERTYPE_ISOC)
{
for (unsigned iTd = 0; iTd < pUrb->Hci.cTds; iTd++)
{
POHCIITD pITd = (POHCIITD)&pUrb->Hci.paTds[iTd].TdCopy[0];
const uint32_t ITdAddr = pUrb->Hci.paTds[iTd].TdAddr;
/*
* Unlink the TD from the ED list.
* The normal case is that it's at the head of the list.
*/
Assert((ITdAddr & ED_PTR_MASK) == ITdAddr);
if ((pEd->HeadP & ED_PTR_MASK) == ITdAddr)
{
pEd->HeadP = (pITd->NextTD & ED_PTR_MASK) | (pEd->HeadP & ~ED_PTR_MASK);
pITd->NextTD &= ~ED_PTR_MASK;
}
else
{
/*
* It's probably somewhere in the list, not a unlikely situation with
* the current isochronous code.
*/
if (!ohciUnlinkIsochronousTdInList(pThis, ITdAddr, pITd, pEd))
return false;
}
}
}
else
{
for (unsigned iTd = 0; iTd < pUrb->Hci.cTds; iTd++)
{
POHCITD pTd = (POHCITD)&pUrb->Hci.paTds[iTd].TdCopy[0];
const uint32_t TdAddr = pUrb->Hci.paTds[iTd].TdAddr;
/** @todo r=bird: Messing with the toggle flag in prepare is probably not correct
* when we encounter a STALL error, 4.3.1.3.7.2: "If an endpoint returns a STALL
* PID, the Host Controller retires the General TD with the ConditionCode set
* to STALL and halts the endpoint. The CurrentBufferPointer, ErrorCount, and
* dataToggle fields retain the values that they had at the start of the
* transaction." */
/* update toggle and set data toggle carry */
pTd->hwinfo &= ~TD_HWINFO_TOGGLE;
if ( pTd->hwinfo & TD_HWINFO_TOGGLE_HI )
{
if ( !!(pTd->hwinfo & TD_HWINFO_TOGGLE_LO) ) /** @todo r=bird: is it just me or doesn't this make sense at all? */
pTd->hwinfo |= TD_HWINFO_TOGGLE_LO;
else
pTd->hwinfo &= ~TD_HWINFO_TOGGLE_LO;
}
else
{
if ( !!(pEd->HeadP & ED_HEAD_CARRY) ) /** @todo r=bird: is it just me or doesn't this make sense at all? */
pEd->HeadP |= ED_HEAD_CARRY;
else
pEd->HeadP &= ~ED_HEAD_CARRY;
}
/*
* Unlink the TD from the ED list.
* The normal case is that it's at the head of the list.
*/
Assert((TdAddr & ED_PTR_MASK) == TdAddr);
if ((pEd->HeadP & ED_PTR_MASK) == TdAddr)
{
pEd->HeadP = (pTd->NextTD & ED_PTR_MASK) | (pEd->HeadP & ~ED_PTR_MASK);
pTd->NextTD &= ~ED_PTR_MASK;
}
else
{
/*
* The TD is probably somewhere in the list.
*
* This shouldn't ever happen unless there was a failure! Even on failure,
* we can screw up the HCD state by picking out a TD from within the list
* like this! If this turns out to be a problem, we have to find a better
* solution. For now we'll hope the HCD handles it...
*/
if (!ohciUnlinkGeneralTdInList(pThis, TdAddr, pTd, pEd))
return false;
}
/*
* Only unlink the first TD on error.
* See comment in ohciRhXferCompleteGeneralURB().
*/
if (pUrb->enmStatus != VUSBSTATUS_OK)
break;
}
}
return true;
}
/**
* Checks that the transport descriptors associated with the URB
* hasn't been changed in any way indicating that they may have been canceled.
*
* This rountine also updates the TD copies contained within the URB.
*
* @returns true if the URB has been canceled, otherwise false.
* @param pThis The OHCI instance.
* @param pUrb The URB in question.
* @param pEd The ED pointer (optional).
*/
static bool ohciHasUrbBeenCanceled(POHCI pThis, PVUSBURB pUrb, PCOHCIED pEd)
{
if (!pUrb)
return true;
/*
* Make sure we've got an endpoint descriptor so we can
* check for tail TDs.
*/
OHCIED Ed;
if (!pEd)
{
ohciReadEd(pThis, pUrb->Hci.EdAddr, &Ed);
pEd = &Ed;
}
if (pUrb->enmType == VUSBXFERTYPE_ISOC)
{
for (unsigned iTd = 0; iTd < pUrb->Hci.cTds; iTd++)
{
union
{
OHCIITD ITd;
uint32_t au32[8];
} u;
if ( (pUrb->Hci.paTds[iTd].TdAddr & ED_PTR_MASK)
== (pEd->TailP & ED_PTR_MASK))
{
Log(("%s: ohciHasUrbBeenCanceled: iTd=%d cTds=%d TdAddr=%#010RX32 canceled (tail)! [iso]\n",
pUrb->pszDesc, iTd, pUrb->Hci.cTds, pUrb->Hci.paTds[iTd].TdAddr));
STAM_COUNTER_INC(&pThis->StatCanceledIsocUrbs);
return true;
}
ohciReadITd(pThis, pUrb->Hci.paTds[iTd].TdAddr, &u.ITd);
if ( u.au32[0] != pUrb->Hci.paTds[iTd].TdCopy[0] /* hwinfo */
|| u.au32[1] != pUrb->Hci.paTds[iTd].TdCopy[1] /* bp0 */
|| u.au32[3] != pUrb->Hci.paTds[iTd].TdCopy[3] /* be */
|| ( u.au32[2] != pUrb->Hci.paTds[iTd].TdCopy[2] /* NextTD */
&& iTd + 1 < pUrb->Hci.cTds /* ignore the last one */)
|| u.au32[4] != pUrb->Hci.paTds[iTd].TdCopy[4] /* psw0&1 */
|| u.au32[5] != pUrb->Hci.paTds[iTd].TdCopy[5] /* psw2&3 */
|| u.au32[6] != pUrb->Hci.paTds[iTd].TdCopy[6] /* psw4&5 */
|| u.au32[7] != pUrb->Hci.paTds[iTd].TdCopy[7] /* psw6&7 */
)
{
Log(("%s: ohciHasUrbBeenCanceled: iTd=%d cTds=%d TdAddr=%#010RX32 canceled! [iso]\n",
pUrb->pszDesc, iTd, pUrb->Hci.cTds, pUrb->Hci.paTds[iTd].TdAddr));
Log2((" %.*Rhxs (cur)\n"
"!= %.*Rhxs (copy)\n",
sizeof(u.ITd), &u.ITd, sizeof(u.ITd), &pUrb->Hci.paTds[iTd].TdCopy[0]));
STAM_COUNTER_INC(&pThis->StatCanceledIsocUrbs);
return true;
}
pUrb->Hci.paTds[iTd].TdCopy[2] = u.au32[2];
}
}
else
{
for (unsigned iTd = 0; iTd < pUrb->Hci.cTds; iTd++)
{
union
{
OHCITD Td;
uint32_t au32[4];
} u;
if ( (pUrb->Hci.paTds[iTd].TdAddr & ED_PTR_MASK)
== (pEd->TailP & ED_PTR_MASK))
{
Log(("%s: ohciHasUrbBeenCanceled: iTd=%d cTds=%d TdAddr=%#010RX32 canceled (tail)!\n",
pUrb->pszDesc, iTd, pUrb->Hci.cTds, pUrb->Hci.paTds[iTd].TdAddr));
STAM_COUNTER_INC(&pThis->StatCanceledGenUrbs);
return true;
}
ohciReadTd(pThis, pUrb->Hci.paTds[iTd].TdAddr, &u.Td);
if ( u.au32[0] != pUrb->Hci.paTds[iTd].TdCopy[0] /* hwinfo */
|| u.au32[1] != pUrb->Hci.paTds[iTd].TdCopy[1] /* cbp */
|| u.au32[3] != pUrb->Hci.paTds[iTd].TdCopy[3] /* be */
|| ( u.au32[2] != pUrb->Hci.paTds[iTd].TdCopy[2] /* NextTD */
&& iTd + 1 < pUrb->Hci.cTds /* ignore the last one */)
)
{
Log(("%s: ohciHasUrbBeenCanceled: iTd=%d cTds=%d TdAddr=%#010RX32 canceled!\n",
pUrb->pszDesc, iTd, pUrb->Hci.cTds, pUrb->Hci.paTds[iTd].TdAddr));
Log2((" %.*Rhxs (cur)\n"
"!= %.*Rhxs (copy)\n",
sizeof(u.Td), &u.Td, sizeof(u.Td), &pUrb->Hci.paTds[iTd].TdCopy[0]));
STAM_COUNTER_INC(&pThis->StatCanceledGenUrbs);
return true;
}
pUrb->Hci.paTds[iTd].TdCopy[2] = u.au32[2];
}
}
return false;
}
/**
* Returns the OHCI_CC_* corresponding to the VUSB status code.
*
* @returns OHCI_CC_* value.
* @param enmStatus The VUSB status code.
*/
static uint32_t ohciVUsbStatus2OhciStatus(VUSBSTATUS enmStatus)
{
switch (enmStatus)
{
case VUSBSTATUS_OK: return OHCI_CC_NO_ERROR;
case VUSBSTATUS_STALL: return OHCI_CC_STALL;
case VUSBSTATUS_CRC: return OHCI_CC_CRC;
case VUSBSTATUS_DATA_UNDERRUN: return OHCI_CC_DATA_UNDERRUN;
case VUSBSTATUS_DATA_OVERRUN: return OHCI_CC_DATA_OVERRUN;
case VUSBSTATUS_DNR: return OHCI_CC_DNR;
case VUSBSTATUS_NOT_ACCESSED: return OHCI_CC_NOT_ACCESSED_1;
default:
Log(("pUrb->enmStatus=%#x!!!\n", enmStatus));
return OHCI_CC_DNR;
}
}
/**
* Worker for ohciRhXferCompletion that handles the completion of
* a URB made up of isochronous TDs.
*
* In general, all URBs should have status OK.
*/
static void ohciRhXferCompleteIsochronousURB(POHCI pThis, PVUSBURB pUrb, POHCIED pEd, int cFmAge)
{
/*
* Copy the data back (if IN operation) and update the TDs.
*/
for (unsigned iTd = 0; iTd < pUrb->Hci.cTds; iTd++)
{
POHCIITD pITd = (POHCIITD)&pUrb->Hci.paTds[iTd].TdCopy[0];
const uint32_t ITdAddr = pUrb->Hci.paTds[iTd].TdAddr;
const unsigned cFrames = ((pITd->HwInfo & ITD_HWINFO_FC) >> ITD_HWINFO_FC_SHIFT) + 1;
unsigned R = (pUrb->Hci.u32FrameNo & ITD_HWINFO_SF) - (pITd->HwInfo & ITD_HWINFO_SF);
if (R >= 8)
R = 0; /* submitted ahead of time. */
/*
* Only one case of TD level condition code is document, so
* just set NO_ERROR here to reduce number duplicate code.
*/
pITd->HwInfo &= ~TD_HWINFO_CC;
AssertCompile(OHCI_CC_NO_ERROR == 0);
if (pUrb->enmStatus == VUSBSTATUS_OK)
{
/*
* Update the frames and copy back the data.
* We assume that we don't get incorrect lengths here.
*/
for (unsigned i = 0; i < cFrames; i++)
{
if ( i < R
|| pUrb->aIsocPkts[i - R].enmStatus == VUSBSTATUS_NOT_ACCESSED)
{
/* It should already be NotAccessed. */
pITd->aPSW[i] |= 0xe000; /* (Don't touch the 12th bit.) */
continue;
}
/* Update the PSW (save the offset first in case of a IN). */
uint32_t off = pITd->aPSW[i] & ITD_PSW_OFFSET;
pITd->aPSW[i] = ohciVUsbStatus2OhciStatus(pUrb->aIsocPkts[i - R].enmStatus)
>> (TD_HWINFO_CC_SHIFT - ITD_PSW_CC_SHIFT);
if ( pUrb->enmDir == VUSBDIRECTION_IN
&& ( pUrb->aIsocPkts[i - R].enmStatus == VUSBSTATUS_OK
|| pUrb->aIsocPkts[i - R].enmStatus == VUSBSTATUS_DATA_UNDERRUN
|| pUrb->aIsocPkts[i - R].enmStatus == VUSBSTATUS_DATA_OVERRUN))
{
/* Set the size. */
const unsigned cb = pUrb->aIsocPkts[i - R].cb;
pITd->aPSW[i] |= cb & ITD_PSW_SIZE;
/* Copy data. */
if (cb)
{
uint8_t *pb = &pUrb->abData[pUrb->aIsocPkts[i - R].off];
if (off + cb > 0x1000)
{
if (off < 0x1000)
{
/* both */
const unsigned cb0 = 0x1000 - off;
ohciPhysWrite(pThis, (pITd->BP0 & ITD_BP0_MASK) + off, pb, cb0);
ohciPhysWrite(pThis, pITd->BE & ITD_BP0_MASK, pb + cb0, cb - cb0);
}
else /* only in the 2nd page */
ohciPhysWrite(pThis, (pITd->BE & ITD_BP0_MASK) + (off & ITD_BP0_MASK), pb, cb);
}
else /* only in the 1st page */
ohciPhysWrite(pThis, (pITd->BP0 & ITD_BP0_MASK) + off, pb, cb);
Log5(("packet %d: off=%#x cb=%#x pb=%p (%#x)\n"
"%.*Rhxd\n",
i + R, off, cb, pb, pb - &pUrb->abData[0], cb, pb));
//off += cb;
}
}
}
/*
* If the last package ended with a NotAccessed status, set ITD CC
* to DataOverrun to indicate scheduling overrun.
*/
if (pUrb->aIsocPkts[pUrb->cIsocPkts - 1].enmStatus == VUSBSTATUS_NOT_ACCESSED)
pITd->HwInfo |= OHCI_CC_DATA_OVERRUN;
}
else
{
Log(("DevOHCI: Taking untested code path at line %d...\n", __LINE__));
/*
* Most status codes only applies to the individual packets.
*
* If we get a URB level error code of this kind, we'll distribute
* it to all the packages unless some other status is available for
* a package. This is a bit fuzzy, and we will get rid of this code
* before long!
*/
//if (pUrb->enmStatus != VUSBSTATUS_DATA_OVERRUN)
{
const unsigned uCC = ohciVUsbStatus2OhciStatus(pUrb->enmStatus)
>> (TD_HWINFO_CC_SHIFT - ITD_PSW_CC_SHIFT);
for (unsigned i = 0; i < cFrames; i++)
pITd->aPSW[i] = uCC;
}
//else
// pITd->HwInfo |= ohciVUsbStatus2OhciStatus(pUrb->enmStatus);
}
/*
* Update the done queue interrupt timer.
*/
uint32_t DoneInt = (pITd->HwInfo & ITD_HWINFO_DI) >> ITD_HWINFO_DI_SHIFT;
if ((pITd->HwInfo & TD_HWINFO_CC) != OHCI_CC_NO_ERROR)
DoneInt = 0; /* It's cleared on error. */
if ( DoneInt != 0x7
&& DoneInt < pThis->dqic)
pThis->dqic = DoneInt;
/*
* Move on to the done list and write back the modified TD.
*/
#ifdef LOG_ENABLED
if (!pThis->done)
pThis->u32FmDoneQueueTail = pThis->HcFmNumber;
# ifdef VBOX_STRICT
ohci_in_done_queue_add(pThis, ITdAddr);
# endif
#endif
pITd->NextTD = pThis->done;
pThis->done = ITdAddr;
Log(("%s: ohciRhXferCompleteIsochronousURB: ITdAddr=%#010x EdAddr=%#010x SF=%#x (%#x) CC=%#x FC=%d "
"psw0=%x:%x psw1=%x:%x psw2=%x:%x psw3=%x:%x psw4=%x:%x psw5=%x:%x psw6=%x:%x psw7=%x:%x R=%d\n",
pUrb->pszDesc, ITdAddr,
pUrb->Hci.EdAddr,
pITd->HwInfo & ITD_HWINFO_SF, pThis->HcFmNumber,
(pITd->HwInfo & ITD_HWINFO_CC) >> ITD_HWINFO_CC_SHIFT,
(pITd->HwInfo & ITD_HWINFO_FC) >> ITD_HWINFO_FC_SHIFT,
pITd->aPSW[0] >> ITD_PSW_CC_SHIFT, pITd->aPSW[0] & ITD_PSW_SIZE,
pITd->aPSW[1] >> ITD_PSW_CC_SHIFT, pITd->aPSW[1] & ITD_PSW_SIZE,
pITd->aPSW[2] >> ITD_PSW_CC_SHIFT, pITd->aPSW[2] & ITD_PSW_SIZE,
pITd->aPSW[3] >> ITD_PSW_CC_SHIFT, pITd->aPSW[3] & ITD_PSW_SIZE,
pITd->aPSW[4] >> ITD_PSW_CC_SHIFT, pITd->aPSW[4] & ITD_PSW_SIZE,
pITd->aPSW[5] >> ITD_PSW_CC_SHIFT, pITd->aPSW[5] & ITD_PSW_SIZE,
pITd->aPSW[6] >> ITD_PSW_CC_SHIFT, pITd->aPSW[6] & ITD_PSW_SIZE,
pITd->aPSW[7] >> ITD_PSW_CC_SHIFT, pITd->aPSW[7] & ITD_PSW_SIZE,
R));
ohciWriteITd(pThis, ITdAddr, pITd, "retired");
}
}
/**
* Worker for ohciRhXferCompletion that handles the completion of
* a URB made up of general TDs.
*/
static void ohciRhXferCompleteGeneralURB(POHCI pThis, PVUSBURB pUrb, POHCIED pEd, int cFmAge)
{
/*
* Copy the data back (if IN operation) and update the TDs.
*/
unsigned cbLeft = pUrb->cbData;
uint8_t *pb = &pUrb->abData[0];
for (unsigned iTd = 0; iTd < pUrb->Hci.cTds; iTd++)
{
POHCITD pTd = (POHCITD)&pUrb->Hci.paTds[iTd].TdCopy[0];
const uint32_t TdAddr = pUrb->Hci.paTds[iTd].TdAddr;
/*
* Setup a ohci transfer buffer and calc the new cbp value.
*/
OHCIBUF Buf;
ohciBufInit(&Buf, pTd->cbp, pTd->be);
uint32_t NewCbp;
if (cbLeft >= Buf.cbTotal)
NewCbp = 0;
else
{
/* (len may have changed for short transfers) */
Buf.cbTotal = cbLeft;
ohciBufUpdate(&Buf);
Assert(Buf.cVecs >= 1);
NewCbp = Buf.aVecs[Buf.cVecs-1].Addr + Buf.aVecs[Buf.cVecs-1].cb;
}
/*
* Write back IN buffers.
*/
if ( pUrb->enmDir == VUSBDIRECTION_IN
&& ( pUrb->enmStatus == VUSBSTATUS_OK
|| pUrb->enmStatus == VUSBSTATUS_DATA_OVERRUN
|| pUrb->enmStatus == VUSBSTATUS_DATA_UNDERRUN)
&& Buf.cbTotal > 0)
{
Assert(Buf.cVecs > 0);
ohciPhysWrite(pThis, Buf.aVecs[0].Addr, pb, Buf.aVecs[0].cb);
if (Buf.cVecs > 1)
ohciPhysWrite(pThis, Buf.aVecs[1].Addr, pb + Buf.aVecs[0].cb, Buf.aVecs[1].cb);
}
/* advance the data buffer. */
cbLeft -= Buf.cbTotal;
pb += Buf.cbTotal;
/*
* Set writeback field.
*/
/* zero out writeback fields for retirement */
pTd->hwinfo &= ~TD_HWINFO_CC;
/* always update the CurrentBufferPointer; essential for underrun/overrun errors */
pTd->cbp = NewCbp;
if (pUrb->enmStatus == VUSBSTATUS_OK)
{
pTd->hwinfo &= ~TD_HWINFO_ERRORS;
/* update done queue interrupt timer */
uint32_t DoneInt = (pTd->hwinfo & TD_HWINFO_DI) >> 21;
if ( DoneInt != 0x7
&& DoneInt < pThis->dqic)
pThis->dqic = DoneInt;
Log(("%s: ohciRhXferCompleteGeneralURB: ED=%#010x TD=%#010x Age=%d cbTotal=%#x NewCbp=%#010RX32 dqic=%d\n",
pUrb->pszDesc, pUrb->Hci.EdAddr, TdAddr, cFmAge, pUrb->enmStatus, Buf.cbTotal, NewCbp, pThis->dqic));
}
else
{
Log(("%s: ohciRhXferCompleteGeneralURB: HALTED ED=%#010x TD=%#010x (age %d) pUrb->enmStatus=%d\n",
pUrb->pszDesc, pUrb->Hci.EdAddr, TdAddr, cFmAge, pUrb->enmStatus));
pEd->HeadP |= ED_HEAD_HALTED;
pThis->dqic = 0; /* "If the Transfer Descriptor is being retired with an error,
* then the Done Queue Interrupt Counter is cleared as if the
* InterruptDelay field were zero."
*/
switch (pUrb->enmStatus)
{
case VUSBSTATUS_STALL:
pTd->hwinfo |= OHCI_CC_STALL;
break;
case VUSBSTATUS_CRC:
pTd->hwinfo |= OHCI_CC_CRC;
break;
case VUSBSTATUS_DATA_UNDERRUN:
pTd->hwinfo |= OHCI_CC_DATA_UNDERRUN;
break;
case VUSBSTATUS_DATA_OVERRUN:
pTd->hwinfo |= OHCI_CC_DATA_OVERRUN;
break;
default: /* what the hell */
Log(("pUrb->enmStatus=%#x!!!\n", pUrb->enmStatus));
case VUSBSTATUS_DNR:
pTd->hwinfo |= OHCI_CC_DNR;
break;
}
}
/*
* Move on to the done list and write back the modified TD.
*/
#ifdef LOG_ENABLED
if (!pThis->done)
pThis->u32FmDoneQueueTail = pThis->HcFmNumber;
# ifdef VBOX_STRICT
ohci_in_done_queue_add(pThis, TdAddr);
# endif
#endif
pTd->NextTD = pThis->done;
pThis->done = TdAddr;
ohciWriteTd(pThis, TdAddr, pTd, "retired");
/*
* If we've halted the endpoint, we stop here.
* ohciUnlinkTds() will make sure we've only unliked the first TD.
*
* The reason for this is that while we can have more than one TD in a URB, real
* OHCI hardware will only deal with one TD at the time and it's therefore incorrect
* to retire TDs after the endpoint has been halted. Win2k will crash or enter infinite
* kernel loop if we don't behave correctly. (See @bugref{1646}.)
*/
if (pEd->HeadP & ED_HEAD_HALTED)
break;
}
}
/**
* Transfer completion callback routine.
*
* VUSB will call this when a transfer have been completed
* in a one or another way.
*
* @param pInterface Pointer to OHCI::ROOTHUB::IRhPort.
* @param pUrb Pointer to the URB in question.
*/
static DECLCALLBACK(void) ohciRhXferCompletion(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb)
{
POHCI pThis = VUSBIROOTHUBPORT_2_OHCI(pInterface);
LogFlow(("%s: ohciRhXferCompletion: EdAddr=%#010RX32 cTds=%d TdAddr0=%#010RX32\n",
pUrb->pszDesc, pUrb->Hci.EdAddr, pUrb->Hci.cTds, pUrb->Hci.paTds[0].TdAddr));
Assert(PDMCritSectIsOwner(pThis->pDevInsR3->pCritSectRoR3));
pThis->fIdle = false; /* Mark as active */
/* get the current end point descriptor. */
OHCIED Ed;
ohciReadEd(pThis, pUrb->Hci.EdAddr, &Ed);
/*
* Check that the URB hasn't been canceled and then try unlink the TDs.
*
* We drop the URB if the ED is marked halted/skip ASSUMING that this
* means the HCD has canceled the URB.
*
* If we succeed here (i.e. not dropping the URB), the TdCopy members will
* be updated but not yet written. We will delay the writing till we're done
* with the data copying, buffer pointer advancing and error handling.
*/
int cFmAge = ohci_in_flight_remove_urb(pThis, pUrb);
if (pUrb->enmStatus == VUSBSTATUS_UNDO)
{
/* Leave the TD alone - the HCD doesn't want us talking to the device. */
Log(("%s: ohciRhXferCompletion: CANCELED {ED=%#010x cTds=%d TD0=%#010x age %d}\n",
pUrb->pszDesc, pUrb->Hci.EdAddr, pUrb->Hci.cTds, pUrb->Hci.paTds[0].TdAddr, cFmAge));
STAM_COUNTER_INC(&pThis->StatDroppedUrbs);
return;
}
bool fHasBeenCanceled = false;
if ( (Ed.HeadP & ED_HEAD_HALTED)
|| (Ed.hwinfo & ED_HWINFO_SKIP)
|| cFmAge < 0
|| (fHasBeenCanceled = ohciHasUrbBeenCanceled(pThis, pUrb, &Ed))
|| !ohciUnlinkTds(pThis, pUrb, &Ed)
)
{
Log(("%s: ohciRhXferCompletion: DROPPED {ED=%#010x cTds=%d TD0=%#010x age %d} because:%s%s%s%s%s!!!\n",
pUrb->pszDesc, pUrb->Hci.EdAddr, pUrb->Hci.cTds, pUrb->Hci.paTds[0].TdAddr, cFmAge,
(Ed.HeadP & ED_HEAD_HALTED) ? " ep halted" : "",
(Ed.hwinfo & ED_HWINFO_SKIP) ? " ep skip" : "",
(Ed.HeadP & ED_PTR_MASK) != pUrb->Hci.paTds[0].TdAddr ? " ep head-changed" : "",
cFmAge < 0 ? " td not-in-flight" : "",
fHasBeenCanceled ? " td canceled" : ""));
NOREF(fHasBeenCanceled);
STAM_COUNTER_INC(&pThis->StatDroppedUrbs);
return;
}
/*
* Complete the TD updating and write the back.
* When appropriate also copy data back to the guest memory.
*/
if (pUrb->enmType == VUSBXFERTYPE_ISOC)
ohciRhXferCompleteIsochronousURB(pThis, pUrb, &Ed, cFmAge);
else
ohciRhXferCompleteGeneralURB(pThis, pUrb, &Ed, cFmAge);
/* finally write back the endpoint descriptor. */
ohciWriteEd(pThis, pUrb->Hci.EdAddr, &Ed);
}
/**
* Handle transfer errors.
*
* VUSB calls this when a transfer attempt failed. This function will respond
* indicating whether to retry or complete the URB with failure.
*
* @returns true if the URB should be retired.
* @returns false if the URB should be retried.
* @param pInterface Pointer to OHCI::ROOTHUB::IRhPort.
* @param pUrb Pointer to the URB in question.
*/
static DECLCALLBACK(bool) ohciRhXferError(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb)
{
POHCI pThis = VUSBIROOTHUBPORT_2_OHCI(pInterface);
Assert(PDMCritSectIsOwner(pThis->pDevInsR3->pCritSectRoR3));
/*
* Isochronous URBs can't be retried.
*/
if (pUrb->enmType == VUSBXFERTYPE_ISOC)
return true;
/*
* Don't retry on stall.
*/
if (pUrb->enmStatus == VUSBSTATUS_STALL)
{
Log2(("%s: ohciRhXferError: STALL, giving up.\n", pUrb->pszDesc, pUrb->enmStatus));
return true;
}
/*
* Check if the TDs still are valid.
* This will make sure the TdCopy is up to date.
*/
const uint32_t TdAddr = pUrb->Hci.paTds[0].TdAddr;
/** @todo IMPORTANT! we must check if the ED is still valid at this point!!! */
if (ohciHasUrbBeenCanceled(pThis, pUrb, NULL))
{
Log(("%s: ohciRhXferError: TdAddr0=%#x canceled!\n", pUrb->pszDesc, TdAddr));
return true;
}
/*
* Get and update the error counter.
*/
POHCITD pTd = (POHCITD)&pUrb->Hci.paTds[0].TdCopy[0];
unsigned cErrs = (pTd->hwinfo & TD_HWINFO_ERRORS) >> TD_ERRORS_SHIFT;
pTd->hwinfo &= ~TD_HWINFO_ERRORS;
cErrs++;
pTd->hwinfo |= (cErrs % TD_ERRORS_MAX) << TD_ERRORS_SHIFT;
ohciWriteTd(pThis, TdAddr, pTd, "ohciRhXferError");
if (cErrs >= TD_ERRORS_MAX - 1)
{
Log2(("%s: ohciRhXferError: too many errors, giving up!\n", pUrb->pszDesc));
return true;
}
Log2(("%s: ohciRhXferError: cErrs=%d: retrying...\n", pUrb->pszDesc, cErrs));
return false;
}
/**
* Service a general transport descriptor.
*/
static bool ohciServiceTd(POHCI pThis, VUSBXFERTYPE enmType, PCOHCIED pEd, uint32_t EdAddr, uint32_t TdAddr, uint32_t *pNextTdAddr, const char *pszListName)
{
/*
* Read the TD and setup the buffer data.
*/
OHCITD Td;
ohciReadTd(pThis, TdAddr, &Td);
OHCIBUF Buf;
ohciBufInit(&Buf, Td.cbp, Td.be);
*pNextTdAddr = Td.NextTD & ED_PTR_MASK;
/*
* Determine the direction.
*/
VUSBDIRECTION enmDir;
switch (pEd->hwinfo & ED_HWINFO_DIR)
{
case ED_HWINFO_OUT: enmDir = VUSBDIRECTION_OUT; break;
case ED_HWINFO_IN: enmDir = VUSBDIRECTION_IN; break;
default:
switch (Td.hwinfo & TD_HWINFO_DIR)
{
case TD_HWINFO_OUT: enmDir = VUSBDIRECTION_OUT; break;
case TD_HWINFO_IN: enmDir = VUSBDIRECTION_IN; break;
case 0: enmDir = VUSBDIRECTION_SETUP; break;
default:
Log(("ohciServiceTd: Invalid direction!!!! Td.hwinfo=%#x Ed.hwdinfo=%#x\n", Td.hwinfo, pEd->hwinfo));
/* TODO: Do the correct thing here */
return false;
}
break;
}
pThis->fIdle = false; /* Mark as active */
/*
* Allocate and initialize a new URB.
*/
PVUSBURB pUrb = VUSBIRhNewUrb(pThis->RootHub.pIRhConn, pEd->hwinfo & ED_HWINFO_FUNCTION, Buf.cbTotal, 1);
if (!pUrb)
return false; /* retry later... */
Assert(pUrb->Hci.cTds == 1);
pUrb->enmType = enmType;
pUrb->EndPt = (pEd->hwinfo & ED_HWINFO_ENDPOINT) >> ED_HWINFO_ENDPOINT_SHIFT;
pUrb->enmDir = enmDir;
pUrb->fShortNotOk = !(Td.hwinfo & TD_HWINFO_ROUNDING);
pUrb->enmStatus = VUSBSTATUS_OK;
pUrb->Hci.EdAddr = EdAddr;
pUrb->Hci.fUnlinked = false;
pUrb->Hci.paTds[0].TdAddr = TdAddr;
pUrb->Hci.u32FrameNo = pThis->HcFmNumber;
AssertCompile(sizeof(pUrb->Hci.paTds[0].TdCopy) >= sizeof(Td));
memcpy(pUrb->Hci.paTds[0].TdCopy, &Td, sizeof(Td));
#ifdef LOG_ENABLED
static unsigned s_iSerial = 0;
s_iSerial = (s_iSerial + 1) % 10000;
RTStrAPrintf(&pUrb->pszDesc, "URB %p %10s/s%c%04d", pUrb, pszListName,
enmDir == VUSBDIRECTION_IN ? '<' : enmDir == VUSBDIRECTION_OUT ? '>' : '-', s_iSerial);
#endif
/* copy data if out bound transfer. */
pUrb->cbData = Buf.cbTotal;
if ( Buf.cbTotal
&& Buf.cVecs > 0
&& enmDir != VUSBDIRECTION_IN)
{
ohciPhysRead(pThis, Buf.aVecs[0].Addr, pUrb->abData, Buf.aVecs[0].cb);
if (Buf.cVecs > 1)
ohciPhysRead(pThis, Buf.aVecs[1].Addr, &pUrb->abData[Buf.aVecs[0].cb], Buf.aVecs[1].cb);
}
/*
* Submit the URB.
*/
ohci_in_flight_add(pThis, TdAddr, pUrb);
Log(("%s: ohciServiceTd: submitting TdAddr=%#010x EdAddr=%#010x cbData=%#x\n",
pUrb->pszDesc, TdAddr, EdAddr, pUrb->cbData));
int rc = VUSBIRhSubmitUrb(pThis->RootHub.pIRhConn, pUrb, &pThis->RootHub.Led);
if (RT_SUCCESS(rc))
return true;
/* Failure cleanup. Can happen if we're still resetting the device or out of resources. */
Log(("ohciServiceTd: failed submitting TdAddr=%#010x EdAddr=%#010x pUrb=%p!!\n",
TdAddr, EdAddr, pUrb));
ohci_in_flight_remove(pThis, TdAddr);
return false;
}
/**
* Service a the head TD of an endpoint.
*/
static bool ohciServiceHeadTd(POHCI pThis, VUSBXFERTYPE enmType, PCOHCIED pEd, uint32_t EdAddr, const char *pszListName)
{
/*
* Read the TD, after first checking if it's already in-flight.
*/
uint32_t TdAddr = pEd->HeadP & ED_PTR_MASK;
if (ohciIsTdInFlight(pThis, TdAddr))
return false;
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
ohci_in_done_queue_check(pThis, TdAddr);
#endif
return ohciServiceTd(pThis, enmType, pEd, EdAddr, TdAddr, &TdAddr, pszListName);
}
/**
* Service one or more general transport descriptors (bulk or interrupt).
*/
static bool ohciServiceTdMultiple(POHCI pThis, VUSBXFERTYPE enmType, PCOHCIED pEd, uint32_t EdAddr,
uint32_t TdAddr, uint32_t *pNextTdAddr, const char *pszListName)
{
/*
* Read the TDs involved in this URB.
*/
struct OHCITDENTRY
{
/** The TD. */
OHCITD Td;
/** The associated OHCI buffer tracker. */
OHCIBUF Buf;
/** The TD address. */
uint32_t TdAddr;
/** Pointer to the next element in the chain (stack). */
struct OHCITDENTRY *pNext;
} Head;
/* read the head */
ohciReadTd(pThis, TdAddr, &Head.Td);
ohciBufInit(&Head.Buf, Head.Td.cbp, Head.Td.be);
Head.TdAddr = TdAddr;
Head.pNext = NULL;
/* combine with more TDs. */
struct OHCITDENTRY *pTail = &Head;
unsigned cbTotal = pTail->Buf.cbTotal;
unsigned cTds = 1;
while ( (pTail->Buf.cbTotal == 0x1000 || pTail->Buf.cbTotal == 0x2000)
&& !(pTail->Td.hwinfo & TD_HWINFO_ROUNDING) /* This isn't right for *BSD, but let's not . */
&& (pTail->Td.NextTD & ED_PTR_MASK) != (pEd->TailP & ED_PTR_MASK)
&& cTds < 128)
{
struct OHCITDENTRY *pCur = (struct OHCITDENTRY *)alloca(sizeof(*pCur));
pCur->pNext = NULL;
pCur->TdAddr = pTail->Td.NextTD & ED_PTR_MASK;
ohciReadTd(pThis, pCur->TdAddr, &pCur->Td);
ohciBufInit(&pCur->Buf, pCur->Td.cbp, pCur->Td.be);
/* don't combine if the direction doesn't match up. */
if ( (pCur->Td.hwinfo & (TD_HWINFO_DIR))
!= (pCur->Td.hwinfo & (TD_HWINFO_DIR)))
break;
pTail->pNext = pCur;
pTail = pCur;
cbTotal += pCur->Buf.cbTotal;
cTds++;
}
/* calc next TD address */
*pNextTdAddr = pTail->Td.NextTD & ED_PTR_MASK;
/*
* Determine the direction.
*/
VUSBDIRECTION enmDir;
switch (pEd->hwinfo & ED_HWINFO_DIR)
{
case ED_HWINFO_OUT: enmDir = VUSBDIRECTION_OUT; break;
case ED_HWINFO_IN: enmDir = VUSBDIRECTION_IN; break;
default:
Log(("ohciServiceTdMultiple: WARNING! Ed.hwdinfo=%#x bulk or interrupt EP shouldn't rely on the TD for direction...\n", pEd->hwinfo));
switch (Head.Td.hwinfo & TD_HWINFO_DIR)
{
case TD_HWINFO_OUT: enmDir = VUSBDIRECTION_OUT; break;
case TD_HWINFO_IN: enmDir = VUSBDIRECTION_IN; break;
default:
Log(("ohciServiceTdMultiple: Invalid direction!!!! Head.Td.hwinfo=%#x Ed.hwdinfo=%#x\n", Head.Td.hwinfo, pEd->hwinfo));
/* TODO: Do the correct thing here */
return false;
}
break;
}
pThis->fIdle = false; /* Mark as active */
/*
* Allocate and initialize a new URB.
*/
PVUSBURB pUrb = VUSBIRhNewUrb(pThis->RootHub.pIRhConn, pEd->hwinfo & ED_HWINFO_FUNCTION, cbTotal, cTds);
if (!pUrb)
/* retry later... */
return false;
Assert(pUrb->Hci.cTds == cTds);
Assert(pUrb->cbData == cbTotal);
pUrb->enmType = enmType;
pUrb->EndPt = (pEd->hwinfo & ED_HWINFO_ENDPOINT) >> ED_HWINFO_ENDPOINT_SHIFT;
pUrb->enmDir = enmDir;
pUrb->fShortNotOk = !(pTail->Td.hwinfo & TD_HWINFO_ROUNDING);
pUrb->enmStatus = VUSBSTATUS_OK;
pUrb->Hci.EdAddr = EdAddr;
pUrb->Hci.fUnlinked = false;
pUrb->Hci.u32FrameNo = pThis->HcFmNumber;
#ifdef LOG_ENABLED
static unsigned s_iSerial = 0;
s_iSerial = (s_iSerial + 1) % 10000;
RTStrAPrintf(&pUrb->pszDesc, "URB %p %10s/m%c%04d", pUrb, pszListName,
enmDir == VUSBDIRECTION_IN ? '<' : enmDir == VUSBDIRECTION_OUT ? '>' : '-', s_iSerial);
#endif
/* Copy data and TD information. */
unsigned iTd = 0;
uint8_t *pb = &pUrb->abData[0];
for (struct OHCITDENTRY *pCur = &Head; pCur; pCur = pCur->pNext, iTd++)
{
/* data */
if ( cbTotal
&& enmDir != VUSBDIRECTION_IN
&& pCur->Buf.cVecs > 0)
{
ohciPhysRead(pThis, pCur->Buf.aVecs[0].Addr, pb, pCur->Buf.aVecs[0].cb);
if (pCur->Buf.cVecs > 1)
ohciPhysRead(pThis, pCur->Buf.aVecs[1].Addr, pb + pCur->Buf.aVecs[0].cb, pCur->Buf.aVecs[1].cb);
}
pb += pCur->Buf.cbTotal;
/* TD info */
pUrb->Hci.paTds[iTd].TdAddr = pCur->TdAddr;
AssertCompile(sizeof(pUrb->Hci.paTds[iTd].TdCopy) >= sizeof(pCur->Td));
memcpy(pUrb->Hci.paTds[iTd].TdCopy, &pCur->Td, sizeof(pCur->Td));
}
/*
* Submit the URB.
*/
ohci_in_flight_add_urb(pThis, pUrb);
Log(("%s: ohciServiceTdMultiple: submitting cbData=%#x EdAddr=%#010x cTds=%d TdAddr0=%#010x\n",
pUrb->pszDesc, pUrb->cbData, EdAddr, cTds, TdAddr));
int rc = VUSBIRhSubmitUrb(pThis->RootHub.pIRhConn, pUrb, &pThis->RootHub.Led);
if (RT_SUCCESS(rc))
return true;
/* Failure cleanup. Can happen if we're still resetting the device or out of resources. */
Log(("ohciServiceTdMultiple: failed submitting pUrb=%p cbData=%#x EdAddr=%#010x cTds=%d TdAddr0=%#010x - rc=%Rrc\n",
pUrb, cbTotal, EdAddr, cTds, TdAddr, rc));
for (struct OHCITDENTRY *pCur = &Head; pCur; pCur = pCur->pNext, iTd++)
ohci_in_flight_remove(pThis, pCur->TdAddr);
return false;
}
/**
* Service the head TD of an endpoint.
*/
static bool ohciServiceHeadTdMultiple(POHCI pThis, VUSBXFERTYPE enmType, PCOHCIED pEd, uint32_t EdAddr, const char *pszListName)
{
/*
* First, check that it's not already in-flight.
*/
uint32_t TdAddr = pEd->HeadP & ED_PTR_MASK;
if (ohciIsTdInFlight(pThis, TdAddr))
return false;
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
ohci_in_done_queue_check(pThis, TdAddr);
#endif
return ohciServiceTdMultiple(pThis, enmType, pEd, EdAddr, TdAddr, &TdAddr, pszListName);
}
/**
* A worker for ohciServiceIsochronousEndpoint which unlinks a ITD
* that belongs to the past.
*/
static bool ohciServiceIsochronousTdUnlink(POHCI pThis, POHCIITD pITd, uint32_t ITdAddr, uint32_t ITdAddrPrev,
PVUSBURB pUrb, POHCIED pEd, uint32_t EdAddr)
{
LogFlow(("%s%sohciServiceIsochronousTdUnlink: Unlinking ITD: ITdAddr=%#010x EdAddr=%#010x ITdAddrPrev=%#010x\n",
pUrb ? pUrb->pszDesc : "", pUrb ? ": " : "", ITdAddr, EdAddr, ITdAddrPrev));
/*
* Do the unlinking.
*/
const uint32_t ITdAddrNext = pITd->NextTD & ED_PTR_MASK;
if (ITdAddrPrev)
{
/* Get validate the previous TD */
int iInFlightPrev = ohci_in_flight_find(pThis, ITdAddr);
AssertMsgReturn(iInFlightPrev >= 0, ("ITdAddr=%#RX32\n", ITdAddr), false);
PVUSBURB pUrbPrev = pThis->aInFlight[iInFlightPrev].pUrb;
if (ohciHasUrbBeenCanceled(pThis, pUrbPrev, pEd)) /* ensures the copy is correct. */
return false;
/* Update the copy and write it back. */
POHCIITD pITdPrev = ((POHCIITD)pUrbPrev->Hci.paTds[0].TdCopy);
pITdPrev->NextTD = (pITdPrev->NextTD & ~ED_PTR_MASK) | ITdAddrNext;
ohciWriteITd(pThis, ITdAddrPrev, pITdPrev, "ohciServiceIsochronousEndpoint");
}
else
{
/* It's the head node. update the copy from the caller and write it back. */
pEd->HeadP = (pEd->HeadP & ~ED_PTR_MASK) | ITdAddrNext;
ohciWriteEd(pThis, EdAddr, pEd);
}
/*
* If it's in flight, just mark the URB as unlinked (there is only one ITD per URB atm).
* Otherwise, retire it to the done queue with an error and cause a done line interrupt (?).
*/
if (pUrb)
{
pUrb->Hci.fUnlinked = true;
if (ohciHasUrbBeenCanceled(pThis, pUrb, pEd)) /* ensures the copy is correct (paranoia). */
return false;
POHCIITD pITdCopy = ((POHCIITD)pUrb->Hci.paTds[0].TdCopy);
pITd->NextTD = pITdCopy->NextTD &= ~ED_PTR_MASK;
}
else
{
pITd->HwInfo &= ~ITD_HWINFO_CC;
pITd->HwInfo |= OHCI_CC_DATA_OVERRUN;
pITd->NextTD = pThis->done;
pThis->done = ITdAddr;
pThis->dqic = 0;
}
ohciWriteITd(pThis, ITdAddr, pITd, "ohciServiceIsochronousTdUnlink");
return true;
}
/**
* A worker for ohciServiceIsochronousEndpoint which submits the specified TD.
*
* @returns true on success.
* @returns false on failure to submit.
* @param R The start packet (frame) relative to the start of frame in HwInfo.
*/
static bool ohciServiceIsochronousTd(POHCI pThis, POHCIITD pITd, uint32_t ITdAddr, const unsigned R, PCOHCIED pEd, uint32_t EdAddr)
{
/*
* Determine the endpoint direction.
*/
VUSBDIRECTION enmDir;
switch (pEd->hwinfo & ED_HWINFO_DIR)
{
case ED_HWINFO_OUT: enmDir = VUSBDIRECTION_OUT; break;
case ED_HWINFO_IN: enmDir = VUSBDIRECTION_IN; break;
default:
Log(("ohciServiceIsochronousTd: Invalid direction!!!! Ed.hwdinfo=%#x\n", pEd->hwinfo));
/* Should probably raise an unrecoverable HC error here */
return false;
}
/*
* Extract the packet sizes and calc the total URB size.
*/
struct
{
uint16_t cb;
uint16_t off;
} aPkts[ITD_NUM_PSW];
/* first entry (R) */
uint32_t cbTotal = 0;
if (((uint32_t)pITd->aPSW[R] >> ITD_PSW_CC_SHIFT) < (OHCI_CC_NOT_ACCESSED_0 >> TD_HWINFO_CC_SHIFT))
Log(("ITdAddr=%RX32 PSW%d.CC=%#x < 'Not Accessed'!\n", ITdAddr, R, pITd->aPSW[R] >> ITD_PSW_CC_SHIFT)); /* => Unrecoverable Error*/
uint16_t offPrev = aPkts[0].off = (pITd->aPSW[R] & ITD_PSW_OFFSET);
/* R+1..cFrames */
const unsigned cFrames = ((pITd->HwInfo & ITD_HWINFO_FC) >> ITD_HWINFO_FC_SHIFT) + 1;
for (unsigned iR = R + 1; iR < cFrames; iR++)
{
const uint16_t PSW = pITd->aPSW[iR];
const uint16_t off = aPkts[iR - R].off = (PSW & ITD_PSW_OFFSET);
cbTotal += aPkts[iR - R - 1].cb = off - offPrev;
if (off < offPrev)
Log(("ITdAddr=%RX32 PSW%d.offset=%#x < offPrev=%#x!\n", ITdAddr, iR, off, offPrev)); /* => Unrecoverable Error*/
if (((uint32_t)PSW >> ITD_PSW_CC_SHIFT) < (OHCI_CC_NOT_ACCESSED_0 >> TD_HWINFO_CC_SHIFT))
Log(("ITdAddr=%RX32 PSW%d.CC=%#x < 'Not Accessed'!\n", ITdAddr, iR, PSW >> ITD_PSW_CC_SHIFT)); /* => Unrecoverable Error*/
offPrev = off;
}
/* calc offEnd and figure out the size of the last packet. */
const uint32_t offEnd = (pITd->BE & 0xfff)
+ (((pITd->BE & ITD_BP0_MASK) != (pITd->BP0 & ITD_BP0_MASK)) << 12)
+ 1 /* BE is inclusive */;
if (offEnd < offPrev)
Log(("ITdAddr=%RX32 offEnd=%#x < offPrev=%#x!\n", ITdAddr, offEnd, offPrev)); /* => Unrecoverable Error*/
cbTotal += aPkts[cFrames - 1 - R].cb = offEnd - offPrev;
Assert(cbTotal <= 0x2000);
pThis->fIdle = false; /* Mark as active */
/*
* Allocate and initialize a new URB.
*/
PVUSBURB pUrb = VUSBIRhNewUrb(pThis->RootHub.pIRhConn, pEd->hwinfo & ED_HWINFO_FUNCTION, cbTotal, 1);
if (!pUrb)
/* retry later... */
return false;
pUrb->enmType = VUSBXFERTYPE_ISOC;
pUrb->EndPt = (pEd->hwinfo & ED_HWINFO_ENDPOINT) >> ED_HWINFO_ENDPOINT_SHIFT;
pUrb->enmDir = enmDir;
pUrb->fShortNotOk = false;
pUrb->enmStatus = VUSBSTATUS_OK;
pUrb->Hci.EdAddr = EdAddr;
pUrb->Hci.fUnlinked = false;
pUrb->Hci.u32FrameNo = pThis->HcFmNumber;
pUrb->Hci.paTds[0].TdAddr = ITdAddr;
AssertCompile(sizeof(pUrb->Hci.paTds[0].TdCopy) >= sizeof(*pITd));
memcpy(pUrb->Hci.paTds[0].TdCopy, pITd, sizeof(*pITd));
#if 0 /* color the data */
memset(pUrb->abData, 0xfe, cbTotal);
#endif
#ifdef LOG_ENABLED
static unsigned s_iSerial = 0;
s_iSerial = (s_iSerial + 1) % 10000;
RTStrAPrintf(&pUrb->pszDesc, "URB %p isoc%c%04d", pUrb, enmDir == VUSBDIRECTION_IN ? '<' : '>', s_iSerial);
#endif
/* copy the data */
if ( cbTotal
&& enmDir != VUSBDIRECTION_IN)
{
const uint32_t off0 = pITd->aPSW[R] & ITD_PSW_OFFSET;
if (off0 < 0x1000)
{
if (offEnd > 0x1000)
{
/* both pages. */
const unsigned cb0 = 0x1000 - off0;
ohciPhysRead(pThis, (pITd->BP0 & ITD_BP0_MASK) + off0, &pUrb->abData[0], cb0);
ohciPhysRead(pThis, pITd->BE & ITD_BP0_MASK, &pUrb->abData[cb0], offEnd & 0xfff);
}
else /* a portion of the 1st page. */
ohciPhysRead(pThis, (pITd->BP0 & ITD_BP0_MASK) + off0, pUrb->abData, offEnd - off0);
}
else /* a portion of the 2nd page. */
ohciPhysRead(pThis, (pITd->BE & UINT32_C(0xfffff000)) + (off0 & 0xfff), pUrb->abData, cbTotal);
}
/* setup the packets */
pUrb->cIsocPkts = cFrames - R;
unsigned off = 0;
for (unsigned i = 0; i < pUrb->cIsocPkts; i++)
{
pUrb->aIsocPkts[i].enmStatus = VUSBSTATUS_NOT_ACCESSED;
pUrb->aIsocPkts[i].off = off;
off += pUrb->aIsocPkts[i].cb = aPkts[i].cb;
}
Assert(off == cbTotal);
/*
* Submit the URB.
*/
ohci_in_flight_add_urb(pThis, pUrb);
Log(("%s: ohciServiceIsochronousTd: submitting cbData=%#x cIsocPkts=%d EdAddr=%#010x TdAddr=%#010x SF=%#x (%#x)\n",
pUrb->pszDesc, pUrb->cbData, pUrb->cIsocPkts, EdAddr, ITdAddr, pITd->HwInfo & ITD_HWINFO_SF, pThis->HcFmNumber));
int rc = VUSBIRhSubmitUrb(pThis->RootHub.pIRhConn, pUrb, &pThis->RootHub.Led);
if (RT_SUCCESS(rc))
return true;
/* Failure cleanup. Can happen if we're still resetting the device or out of resources. */
Log(("ohciServiceIsochronousTd: failed submitting pUrb=%p cbData=%#x EdAddr=%#010x cTds=%d ITdAddr0=%#010x - rc=%Rrc\n",
pUrb, cbTotal, EdAddr, 1, ITdAddr, rc));
ohci_in_flight_remove(pThis, ITdAddr);
return false;
}
/**
* Service an isochronous endpoint.
*/
static void ohciServiceIsochronousEndpoint(POHCI pThis, POHCIED pEd, uint32_t EdAddr)
{
/*
* We currently process this as if the guest follows the interrupt end point chaining
* hierarchy described in the documenation. This means that for an isochronous endpoint
* with a 1 ms interval we expect to find in-flight TDs at the head of the list. We will
* skip over all in-flight TDs which timeframe has been exceed. Those which aren't in
* flight but which are too late will be retired (possibly out of order, but, we don't
* care right now).
*
* When we reach a TD which still has a buffer which is due for take off, we will
* stop iterating TDs. If it's in-flight, there isn't anything to be done. Otherwise
* we will push it onto the runway for immediate take off. In this process we
* might have to complete buffers which didn't make it on time, something which
* complicates the kind of status info we need to keep around for the TD.
*
* Note: We're currently not making any attempt at reassembling ITDs into URBs.
* However, this will become necessary because of EMT scheduling and guest
* like linux using one TD for each frame (simple but inefficient for us).
*/
OHCIITD ITd;
uint32_t ITdAddr = pEd->HeadP & ED_PTR_MASK;
uint32_t ITdAddrPrev = 0;
uint32_t u32NextFrame = UINT32_MAX;
const uint16_t u16CurFrame = pThis->HcFmNumber;
for (;;)
{
/* check for end-of-chain. */
if ( ITdAddr == (pEd->TailP & ED_PTR_MASK)
|| !ITdAddr)
break;
/*
* If isochronous endpoints are around, don't slow down the timer. Getting the timing right
* is difficult enough as it is.
*/
pThis->fIdle = false;
/*
* Read the current ITD and check what we're supposed to do about it.
*/
ohciReadITd(pThis, ITdAddr, &ITd);
const uint32_t ITdAddrNext = ITd.NextTD & ED_PTR_MASK;
const int16_t R = u16CurFrame - (uint16_t)(ITd.HwInfo & ITD_HWINFO_SF); /* 4.3.2.3 */
const int16_t cFrames = ((ITd.HwInfo & ITD_HWINFO_FC) >> ITD_HWINFO_FC_SHIFT) + 1;
if (R < cFrames)
{
/*
* It's inside the current or a future launch window.
*
* We will try maximize the TD in flight here to deal with EMT scheduling
* issues and similar stuff which will screw up the time. So, we will only
* stop submitting TD when we reach a gap (in time) or end of the list.
*/
if ( R < 0 /* (a future frame) */
&& (uint16_t)u32NextFrame != (uint16_t)(ITd.HwInfo & ITD_HWINFO_SF))
break;
if (ohci_in_flight_find(pThis, ITdAddr) < 0)
if (!ohciServiceIsochronousTd(pThis, &ITd, ITdAddr, R < 0 ? 0 : R, pEd, EdAddr))
break;
ITdAddrPrev = ITdAddr;
}
else
{
#if 1
/*
* Ok, the launch window for this TD has passed.
* If it's not in flight it should be retired with a DataOverrun status (TD).
*
* Don't remove in-flight TDs before they complete.
* Windows will, upon the completion of another ITD it seems, check for if
* any other TDs has been unlinked. If we unlink them before they really
* complete all the packet status codes will be NotAccessed and Windows
* will fail the URB with status USBD_STATUS_ISOCH_REQUEST_FAILED.
*
* I don't know if unlinking TDs out of order could cause similar problems,
* time will show.
*/
int iInFlight = ohci_in_flight_find(pThis, ITdAddr);
if (iInFlight >= 0)
ITdAddrPrev = ITdAddr;
else if (!ohciServiceIsochronousTdUnlink(pThis, &ITd, ITdAddr, ITdAddrPrev,
NULL, pEd, EdAddr))
{
Log(("ohciServiceIsochronousEndpoint: Failed unlinking old ITD.\n"));
break;
}
#else /* BAD IDEA: */
/*
* Ok, the launch window for this TD has passed.
* If it's not in flight it should be retired with a DataOverrun status (TD).
*
* If it's in flight we will try unlink it from the list prematurely to
* help the guest to move on and shorten the list we have to walk. We currently
* are successful with the first URB but then it goes too slowly...
*/
int iInFlight = ohci_in_flight_find(pThis, ITdAddr);
if (!ohciServiceIsochronousTdUnlink(pThis, &ITd, ITdAddr, ITdAddrPrev,
iInFlight < 0 ? NULL : pThis->aInFlight[iInFlight].pUrb,
pEd, EdAddr))
{
Log(("ohciServiceIsochronousEndpoint: Failed unlinking old ITD.\n"));
break;
}
#endif
}
/* advance to the next ITD */
ITdAddr = ITdAddrNext;
u32NextFrame = (ITd.HwInfo & ITD_HWINFO_SF) + cFrames;
}
}
/**
* Checks if a endpoints has TDs queued and is ready to have them processed.
*
* @returns true if it's ok to process TDs.
* @param pEd The endpoint data.
*/
DECLINLINE(bool) ohciIsEdReady(PCOHCIED pEd)
{
return (pEd->HeadP & ED_PTR_MASK) != (pEd->TailP & ED_PTR_MASK)
&& !(pEd->HeadP & ED_HEAD_HALTED)
&& !(pEd->hwinfo & ED_HWINFO_SKIP);
}
/**
* Checks if an endpoint has TDs queued (not necessarily ready to have them processed).
*
* @returns true if endpoint may have TDs queued.
* @param pEd The endpoint data.
*/
DECLINLINE(bool) ohciIsEdPresent(PCOHCIED pEd)
{
return (pEd->HeadP & ED_PTR_MASK) != (pEd->TailP & ED_PTR_MASK)
&& !(pEd->HeadP & ED_HEAD_HALTED);
}
/**
* Services the bulk list.
*
* On the bulk list we must reassemble URBs from multiple TDs using heuristics
* derived from USB tracing done in the guests and guest source code (when available).
*/
static void ohciServiceBulkList(POHCI pThis)
{
#ifdef LOG_ENABLED
if (g_fLogBulkEPs)
ohciDumpEdList(pThis, pThis->bulk_head, "Bulk before", true);
if (pThis->bulk_cur)
Log(("ohciServiceBulkList: bulk_cur=%#010x before listprocessing!!! HCD have positioned us!!!\n", pThis->bulk_cur));
#endif
/*
* ", HC will start processing the Bulk list and will set BF [BulkListFilled] to 0"
* - We've simplified and are always starting at the head of the list and working
* our way thru to the end each time.
*/
pThis->status &= ~OHCI_STATUS_BLF;
pThis->fBulkNeedsCleaning = false;
pThis->bulk_cur = 0;
uint32_t EdAddr = pThis->bulk_head;
while (EdAddr)
{
OHCIED Ed;
ohciReadEd(pThis, EdAddr, &Ed);
Assert(!(Ed.hwinfo & ED_HWINFO_ISO)); /* the guest is screwing us */
if (ohciIsEdReady(&Ed))
{
pThis->status |= OHCI_STATUS_BLF;
pThis->fBulkNeedsCleaning = true;
#if 1
/*
* After we figured out that all the TDs submitted for dealing with MSD
* read/write data really makes up on single URB, and that we must
* reassemble these TDs into an URB before submitting it, there is no
* longer any need for servicing anything other than the head *URB*
* on a bulk endpoint.
*/
ohciServiceHeadTdMultiple(pThis, VUSBXFERTYPE_BULK, &Ed, EdAddr, "Bulk");
#else
/*
* This alternative code was used before we started reassembling URBs from
* multiple TDs. We keep it handy for debugging.
*/
uint32_t TdAddr = Ed.HeadP & ED_PTR_MASK;
if (!ohciIsTdInFlight(pThis, TdAddr))
{
do
{
if (!ohciServiceTdMultiple(pThis, VUSBXFERTYPE_BULK, &Ed, EdAddr, TdAddr, &TdAddr, "Bulk"))
{
LogFlow(("ohciServiceBulkList: ohciServiceTdMultiple -> false\n"));
break;
}
if ( (TdAddr & ED_PTR_MASK) == (Ed.TailP & ED_PTR_MASK)
|| !TdAddr /* paranoia */)
{
LogFlow(("ohciServiceBulkList: TdAddr=%#010RX32 Ed.TailP=%#010RX32\n", TdAddr, Ed.TailP));
break;
}
ohciReadEd(pThis, EdAddr, &Ed); /* It might have been updated on URB completion. */
} while (ohciIsEdReady(&Ed));
}
#endif
}
else
{
if (Ed.hwinfo & ED_HWINFO_SKIP)
{
LogFlow(("ohciServiceBulkList: Ed=%#010RX32 Ed.TailP=%#010RX32 SKIP\n", EdAddr, Ed.TailP));
/* If the ED is in 'skip' state, no transactions on it are allowed and we must
* cancel outstanding URBs, if any.
*/
uint32_t TdAddr = Ed.HeadP & ED_PTR_MASK;
PVUSBURB pUrb = ohciTdInFlightUrb(pThis, TdAddr);
if (pUrb)
pThis->RootHub.pIRhConn->pfnCancelUrbsEp(pThis->RootHub.pIRhConn, pUrb);
}
}
/* next end point */
EdAddr = Ed.NextED & ED_PTR_MASK;
}
#ifdef LOG_ENABLED
if (g_fLogBulkEPs)
ohciDumpEdList(pThis, pThis->bulk_head, "Bulk after ", true);
#endif
}
/**
* Abort outstanding transfers on the bulk list.
*
* If the guest disabled bulk list processing, we must abort any outstanding transfers
* (that is, cancel in-flight URBs associated with the list). This is required because
* there may be outstanding read URBs that will never get a response from the device
* and would block further communication.
*/
static void ohciUndoBulkList(POHCI pThis)
{
#ifdef LOG_ENABLED
if (g_fLogBulkEPs)
ohciDumpEdList(pThis, pThis->bulk_head, "Bulk before", true);
if (pThis->bulk_cur)
Log(("ohciUndoBulkList: bulk_cur=%#010x before list processing!!! HCD has positioned us!!!\n", pThis->bulk_cur));
#endif
/* This flag follows OHCI_STATUS_BLF, but BLF doesn't change when list processing is disabled. */
pThis->fBulkNeedsCleaning = false;
uint32_t EdAddr = pThis->bulk_head;
while (EdAddr)
{
OHCIED Ed;
ohciReadEd(pThis, EdAddr, &Ed);
Assert(!(Ed.hwinfo & ED_HWINFO_ISO)); /* the guest is screwing us */
if (ohciIsEdPresent(&Ed))
{
uint32_t TdAddr = Ed.HeadP & ED_PTR_MASK;
if (ohciIsTdInFlight(pThis, TdAddr))
{
LogFlow(("ohciUndoBulkList: Ed=%#010RX32 Ed.TailP=%#010RX32 UNDO\n", EdAddr, Ed.TailP));
PVUSBURB pUrb = ohciTdInFlightUrb(pThis, TdAddr);
if (pUrb)
pThis->RootHub.pIRhConn->pfnCancelUrbsEp(pThis->RootHub.pIRhConn, pUrb);
}
}
/* next endpoint */
EdAddr = Ed.NextED & ED_PTR_MASK;
}
}
/**
* Services the control list.
*
* The control list has complex URB assembling, but that's taken
* care of at VUSB level (unlike the other transfer types).
*/
static void ohciServiceCtrlList(POHCI pThis)
{
#ifdef LOG_ENABLED
if (g_fLogControlEPs)
ohciDumpEdList(pThis, pThis->ctrl_head, "Ctrl before", true);
if (pThis->ctrl_cur)
Log(("ohciServiceCtrlList: ctrl_cur=%010x before list processing!!! HCD have positioned us!!!\n", pThis->ctrl_cur));
#endif
/*
* ", HC will start processing the list and will set ControlListFilled to 0"
* - We've simplified and are always starting at the head of the list and working
* our way thru to the end each time.
*/
pThis->status &= ~OHCI_STATUS_CLF;
pThis->ctrl_cur = 0;
uint32_t EdAddr = pThis->ctrl_head;
while (EdAddr)
{
OHCIED Ed;
ohciReadEd(pThis, EdAddr, &Ed);
Assert(!(Ed.hwinfo & ED_HWINFO_ISO)); /* the guest is screwing us */
if (ohciIsEdReady(&Ed))
{
#if 1
/*
* Control TDs depends on order and stage. Only one can be in-flight
* at any given time. OTOH, some stages are completed immediately,
* so we process the list until we've got a head which is in-flight
* or reach the end of the list.
*/
do
{
if ( !ohciServiceHeadTd(pThis, VUSBXFERTYPE_CTRL, &Ed, EdAddr, "Control")
|| ohciIsTdInFlight(pThis, Ed.HeadP & ED_PTR_MASK))
{
pThis->status |= OHCI_STATUS_CLF;
break;
}
ohciReadEd(pThis, EdAddr, &Ed); /* It might have been updated on URB completion. */
} while (ohciIsEdReady(&Ed));
#else
/* Simplistic, for debugging. */
ohciServiceHeadTd(pThis, VUSBXFERTYPE_CTRL, &Ed, EdAddr, "Control");
pThis->status |= OHCI_STATUS_CLF;
#endif
}
/* next end point */
EdAddr = Ed.NextED & ED_PTR_MASK;
}
#ifdef LOG_ENABLED
if (g_fLogControlEPs)
ohciDumpEdList(pThis, pThis->ctrl_head, "Ctrl after ", true);
#endif
}
/**
* Services the periodic list.
*
* On the interrupt portion of the periodic list we must reassemble URBs from multiple
* TDs using heuristics derived from USB tracing done in the guests and guest source
* code (when available).
*/
static void ohciServicePeriodicList(POHCI pThis)
{
/*
* Read the list head from the HCCA.
*/
const unsigned iList = pThis->HcFmNumber % OHCI_HCCA_NUM_INTR;
uint32_t EdAddr;
ohciGetDWords(pThis, pThis->hcca + iList * sizeof(EdAddr), &EdAddr, 1);
#ifdef LOG_ENABLED
const uint32_t EdAddrHead = EdAddr;
if (g_fLogInterruptEPs)
{
char sz[48];
RTStrPrintf(sz, sizeof(sz), "Int%02x before", iList);
ohciDumpEdList(pThis, EdAddrHead, sz, true);
}
#endif
/*
* Iterate the endpoint list.
*/
while (EdAddr)
{
OHCIED Ed;
ohciReadEd(pThis, EdAddr, &Ed);
if (ohciIsEdReady(&Ed))
{
/*
* "There is no separate head pointer of isochronous transfers. The first
* isochronous Endpoint Descriptor simply links to the last interrupt
* Endpoint Descriptor."
*/
if (!(Ed.hwinfo & ED_HWINFO_ISO))
{
/*
* Presently we will only process the head URB on an interrupt endpoint.
*/
ohciServiceHeadTdMultiple(pThis, VUSBXFERTYPE_INTR, &Ed, EdAddr, "Periodic");
}
else if (pThis->ctl & OHCI_CTL_IE)
{
/*
* Presently only the head ITD.
*/
ohciServiceIsochronousEndpoint(pThis, &Ed, EdAddr);
}
else
break;
}
else
{
if (Ed.hwinfo & ED_HWINFO_SKIP)
{
LogFlow(("ohciServicePeriodicList: Ed=%#010RX32 Ed.TailP=%#010RX32 SKIP\n", EdAddr, Ed.TailP));
/* If the ED is in 'skip' state, no transactions on it are allowed and we must
* cancel outstanding URBs, if any.
*/
uint32_t TdAddr = Ed.HeadP & ED_PTR_MASK;
PVUSBURB pUrb = ohciTdInFlightUrb(pThis, TdAddr);
if (pUrb)
pThis->RootHub.pIRhConn->pfnCancelUrbsEp(pThis->RootHub.pIRhConn, pUrb);
}
}
/* next end point */
EdAddr = Ed.NextED & ED_PTR_MASK;
}
#ifdef LOG_ENABLED
if (g_fLogInterruptEPs)
{
char sz[48];
RTStrPrintf(sz, sizeof(sz), "Int%02x after ", iList);
ohciDumpEdList(pThis, EdAddrHead, sz, true);
}
#endif
}
/**
* Update the HCCA.
*
* @param pThis The OHCI instance data.
*/
static void ohciUpdateHCCA(POHCI pThis)
{
struct ohci_hcca hcca;
ohciPhysRead(pThis, pThis->hcca + OHCI_HCCA_OFS, &hcca, sizeof(hcca));
hcca.frame = RT_H2LE_U16((uint16_t)pThis->HcFmNumber);
hcca.pad = 0;
bool fWriteDoneHeadInterrupt = false;
if ( pThis->dqic == 0
&& (pThis->intr_status & OHCI_INTR_WRITE_DONE_HEAD) == 0)
{
uint32_t done = pThis->done;
if (pThis->intr_status & ~( OHCI_INTR_MASTER_INTERRUPT_ENABLED | OHCI_INTR_OWNERSHIP_CHANGE
| OHCI_INTR_WRITE_DONE_HEAD) )
done |= 0x1;
hcca.done = RT_H2LE_U32(done);
pThis->done = 0;
pThis->dqic = 0x7;
Log(("ohci: Writeback Done (%#010x) on frame %#x (age %#x)\n", hcca.done,
pThis->HcFmNumber, pThis->HcFmNumber - pThis->u32FmDoneQueueTail));
#ifdef LOG_ENABLED
ohciDumpTdQueue(pThis, hcca.done & ED_PTR_MASK, "DoneQueue");
#endif
Assert(RT_OFFSETOF(struct ohci_hcca, done) == 4);
#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
ohci_in_done_queue_zap(pThis);
#endif
fWriteDoneHeadInterrupt = true;
}
ohciPhysWrite(pThis, pThis->hcca + OHCI_HCCA_OFS, (uint8_t *)&hcca, sizeof(hcca));
if (fWriteDoneHeadInterrupt)
ohciSetInterrupt(pThis, OHCI_INTR_WRITE_DONE_HEAD);
}
/**
* Calculate frame timer variables given a frame rate (1,000 Hz is the full speed).
*/
static void ohciCalcTimerIntervals(POHCI pThis, uint32_t u32FrameRate)
{
Assert(u32FrameRate <= OHCI_DEFAULT_TIMER_FREQ);
pThis->cTicksPerFrame = pThis->u64TimerHz / u32FrameRate;
if (!pThis->cTicksPerFrame)
pThis->cTicksPerFrame = 1;
pThis->cTicksPerUsbTick = pThis->u64TimerHz >= VUSB_BUS_HZ ? pThis->u64TimerHz / VUSB_BUS_HZ : 1;
pThis->uFrameRate = u32FrameRate;
}
/**
* Go over the in-flight URB list and cancel any URBs that are no longer in use.
* This occurs when the host removes EDs or TDs from the lists and we don't notice
* the sKip bit. Such URBs must be promptly canceled, otherwise there is a risk
* they might "steal" data destined for another URB.
*/
static void ohciCancelOrphanedURBs(POHCI pThis)
{
bool fValidHCCA = !( pThis->hcca >= OHCI_HCCA_MASK
|| pThis->hcca < ~OHCI_HCCA_MASK);
unsigned i, cLeft;
int j;
uint32_t EdAddr;
PVUSBURB pUrb;
/* If the HCCA is not currently valid, or there are no in-flight URBs,
* there's nothing to do.
*/
if (!fValidHCCA || !pThis->cInFlight)
return;
/* Initially mark all in-flight URBs as inactive. */
for (i = 0, cLeft = pThis->cInFlight; cLeft && i < RT_ELEMENTS(pThis->aInFlight); i++)
{
if (pThis->aInFlight[i].pUrb)
{
pThis->aInFlight[i].fInactive = true;
cLeft--;
}
}
Assert(cLeft == 0);
/* Go over all bulk/control/interrupt endpoint lists; any URB found in these lists
* is marked as active again.
*/
for (i = 0; i < OHCI_HCCA_NUM_INTR + 2; i++)
{
switch (i)
{
case OHCI_HCCA_NUM_INTR:
EdAddr = pThis->bulk_head;
break;
case OHCI_HCCA_NUM_INTR + 1:
EdAddr = pThis->ctrl_head;
break;
default:
ohciGetDWords(pThis, pThis->hcca + i * sizeof(EdAddr), &EdAddr, 1);
break;
}
while (EdAddr)
{
OHCIED Ed;
OHCITD Td;
ohciReadEd(pThis, EdAddr, &Ed);
uint32_t TdAddr = Ed.HeadP & ED_PTR_MASK;
uint32_t TailP = Ed.TailP & ED_PTR_MASK;
unsigned k = 0;
if ( !(Ed.hwinfo & ED_HWINFO_SKIP)
&& (TdAddr != TailP))
{
do
{
ohciReadTd(pThis, TdAddr, &Td);
j = ohci_in_flight_find(pThis, TdAddr);
if (j > -1)
pThis->aInFlight[j].fInactive = false;
TdAddr = Td.NextTD & ED_PTR_MASK;
/* Failsafe for temporarily looped lists. */
if (++k == 128)
break;
} while (TdAddr != (Ed.TailP & ED_PTR_MASK));
}
EdAddr = Ed.NextED & ED_PTR_MASK;
}
}
/* In-flight URBs still marked as inactive are not used anymore and need
* to be canceled.
*/
for (i = 0, cLeft = pThis->cInFlight; cLeft && i < RT_ELEMENTS(pThis->aInFlight); i++)
{
if (pThis->aInFlight[i].pUrb)
{
cLeft--;
pUrb = pThis->aInFlight[i].pUrb;
if (pThis->aInFlight[i].fInactive
&& pUrb->enmState == VUSBURBSTATE_IN_FLIGHT
&& !pUrb->enmType == VUSBXFERTYPE_CTRL)
pThis->RootHub.pIRhConn->pfnCancelUrbsEp(pThis->RootHub.pIRhConn, pUrb);
}
}
Assert(cLeft == 0);
}
/**
* Generate a Start-Of-Frame event, and set a timer for End-Of-Frame.
*/
static void ohciStartOfFrame(POHCI pThis)
{
uint32_t uNewFrameRate = pThis->uFrameRate;
#ifdef LOG_ENABLED
const uint32_t status_old = pThis->status;
#endif
/*
* Update HcFmRemaining.FRT and re-arm the timer.
*/
pThis->frt = pThis->fit;
#if 1 /* This is required for making the quickcam work on the mac. Should really look
into that adaptive polling stuff... */
pThis->SofTime += pThis->cTicksPerFrame;
const uint64_t u64Now = TMTimerGet(pThis->CTX_SUFF(pEndOfFrameTimer));
if (pThis->SofTime + pThis->cTicksPerFrame < u64Now)
pThis->SofTime = u64Now - pThis->cTicksPerFrame / 2;
#else
pThis->SofTime = TMTimerGet(pThis->CTX_SUFF(pEndOfFrameTimer));
#endif
TMTimerSet(pThis->CTX_SUFF(pEndOfFrameTimer), pThis->SofTime + pThis->cTicksPerFrame);
/*
* Check that the HCCA address isn't bogus. Linux 2.4.x is known to start
* the bus with a hcca of 0 to work around problem with a specific controller.
*/
bool fValidHCCA = !( pThis->hcca >= OHCI_HCCA_MASK
|| pThis->hcca < ~OHCI_HCCA_MASK);
#if 0 /* moved down for higher speed. */
/*
* Update the HCCA.
* Should be done after SOF but before HC read first ED in this frame.
*/
if (fValidHCCA)
ohciUpdateHCCA(pThis);
#endif
/* "After writing to HCCA, HC will set SF in HcInterruptStatus" - guest isn't executing, so ignore the order! */
ohciSetInterrupt(pThis, OHCI_INTR_START_OF_FRAME);
if (pThis->fno)
{
ohciSetInterrupt(pThis, OHCI_INTR_FRAMENUMBER_OVERFLOW);
pThis->fno = 0;
}
/* If the HCCA address is invalid, we're quitting here to avoid doing something which cannot be reported to the HCD. */
if (!fValidHCCA)
{
Log(("ohciStartOfFrame: skipping hcca part because hcca=%RX32 (our 'valid' range: %RX32-%RX32)\n",
pThis->hcca, ~OHCI_HCCA_MASK, OHCI_HCCA_MASK));
return;
}
/*
* Periodic EPs.
*/
if (pThis->ctl & OHCI_CTL_PLE)
ohciServicePeriodicList(pThis);
/*
* Control EPs.
*/
if ( (pThis->ctl & OHCI_CTL_CLE)
&& (pThis->status & OHCI_STATUS_CLF) )
ohciServiceCtrlList(pThis);
/*
* Bulk EPs.
*/
if ( (pThis->ctl & OHCI_CTL_BLE)
&& (pThis->status & OHCI_STATUS_BLF))
ohciServiceBulkList(pThis);
else if ((pThis->status & OHCI_STATUS_BLF)
&& pThis->fBulkNeedsCleaning)
ohciUndoBulkList(pThis); /* If list disabled but not empty, abort endpoints. */
#if 1
/*
* Update the HCCA after processing the lists and everything. A bit experimental.
*
* ASSUME the guest won't be very upset if a TD is completed, retired and handed
* back immediately. The idea is to be able to retire the data and/or status stages
* of a control transfer together with the setup stage, thus saving a frame. This
* behaviour is should be perfectly ok, since the setup (and maybe data) stages
* have already taken at least one frame to complete.
*
* But, when implementing the first synchronous virtual USB devices, we'll have to
* verify that the guest doesn't choke when having a TD returned in the same frame
* as it was submitted.
*/
ohciUpdateHCCA(pThis);
#endif
#ifdef LOG_ENABLED
if (pThis->status ^ status_old)
{
uint32_t val = pThis->status;
uint32_t chg = val ^ status_old; NOREF(chg);
Log2(("ohciStartOfFrame: HcCommandStatus=%#010x: %sHCR=%d %sCLF=%d %sBLF=%d %sOCR=%d %sSOC=%d\n",
val,
chg & RT_BIT(0) ? "*" : "", val & 1,
chg & RT_BIT(1) ? "*" : "", (val >> 1) & 1,
chg & RT_BIT(2) ? "*" : "", (val >> 2) & 1,
chg & RT_BIT(3) ? "*" : "", (val >> 3) & 1,
chg & (3<<16)? "*" : "", (val >> 16) & 3));
}
#endif
/*
* Adjust the frame timer interval based on idle detection.
*/
if (pThis->fIdle)
{
pThis->cIdleCycles++;
/* Set the new frame rate based on how long we've been idle. Tunable. */
switch (pThis->cIdleCycles)
{
case 4: uNewFrameRate = 500; break; /* 2ms interval */
case 16:uNewFrameRate = 125; break; /* 8ms interval */
case 24:uNewFrameRate = 50; break; /* 20ms interval */
default: break;
}
/* Avoid overflow. */
if (pThis->cIdleCycles > 60000)
pThis->cIdleCycles = 20000;
}
else
{
if (pThis->cIdleCycles)
{
pThis->cIdleCycles = 0;
uNewFrameRate = OHCI_DEFAULT_TIMER_FREQ;
}
}
if (uNewFrameRate != pThis->uFrameRate)
{
ohciCalcTimerIntervals(pThis, uNewFrameRate);
if (uNewFrameRate == OHCI_DEFAULT_TIMER_FREQ)
{
/* If we're switching back to full speed, re-program the timer immediately to minimize latency. */
TMTimerSet(pThis->CTX_SUFF(pEndOfFrameTimer), pThis->SofTime + pThis->cTicksPerFrame);
}
}
}
/**
* Updates the HcFmNumber and FNO registers.
*/
static void bump_frame_number(POHCI pThis)
{
const uint16_t u16OldFmNumber = pThis->HcFmNumber++;
if ((u16OldFmNumber ^ pThis->HcFmNumber) & RT_BIT(15))
pThis->fno = 1;
}
/**
* Do frame processing on frame boundary
*/
static void ohciFrameBoundaryTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
{
POHCI pThis = (POHCI)pvUser;
STAM_PROFILE_START(&pThis->StatTimer, a);
/* Reset idle detection flag */
pThis->fIdle = true;
VUSBIRhReapAsyncUrbs(pThis->RootHub.pIRhConn, 0);
/* Frame boundary, so do EOF stuff here */
bump_frame_number(pThis);
if ( (pThis->dqic != 0x7) && (pThis->dqic != 0) )
pThis->dqic--;
/* Clean up any URBs that have been removed */
ohciCancelOrphanedURBs(pThis);
/* Start the next frame */
ohciStartOfFrame(pThis);
STAM_PROFILE_STOP(&pThis->StatTimer, a);
}
/**
* Start sending SOF tokens across the USB bus, lists are processed in
* next frame
*/
static void ohciBusStart(POHCI pThis)
{
VUSBIDevPowerOn(pThis->RootHub.pIDev);
bump_frame_number(pThis);
pThis->dqic = 0x7;
Log(("ohci: %s: Bus started\n", pThis->PciDev.name));
pThis->SofTime = TMTimerGet(pThis->CTX_SUFF(pEndOfFrameTimer)) - pThis->cTicksPerFrame;
pThis->fIdle = false; /* Assume we won't be idle */
ohciStartOfFrame(pThis);
}
/**
* Stop sending SOF tokens on the bus
*/
static void ohciBusStop(POHCI pThis)
{
if (pThis->CTX_SUFF(pEndOfFrameTimer))
TMTimerStop(pThis->CTX_SUFF(pEndOfFrameTimer));
VUSBIDevPowerOff(pThis->RootHub.pIDev);
}
/**
* Move in to resume state
*/
static void ohciBusResume(POHCI pThis, bool fHardware)
{
pThis->ctl &= ~OHCI_CTL_HCFS;
pThis->ctl |= OHCI_USB_RESUME;
Log(("pThis: ohciBusResume fHardware=%RTbool RWE=%s\n",
fHardware, (pThis->ctl & OHCI_CTL_RWE) ? "on" : "off"));
if (fHardware && (pThis->ctl & OHCI_CTL_RWE))
ohciSetInterrupt(pThis, OHCI_INTR_RESUME_DETECT);
ohciBusStart(pThis);
}
/* Power a port up or down */
static void rhport_power(POHCIROOTHUB pRh, unsigned iPort, bool fPowerUp)
{
POHCIHUBPORT pPort = &pRh->aPorts[iPort];
bool fOldPPS = !!(pPort->fReg & OHCI_PORT_PPS);
if (fPowerUp)
{
/* power up */
if (pPort->pDev)
pPort->fReg |= OHCI_PORT_R_CURRENT_CONNECT_STATUS;
if (pPort->fReg & OHCI_PORT_R_CURRENT_CONNECT_STATUS)
pPort->fReg |= OHCI_PORT_R_POWER_STATUS;
if (pPort->pDev && !fOldPPS)
VUSBIDevPowerOn(pPort->pDev);
}
else
{
/* power down */
pPort->fReg &= ~( OHCI_PORT_R_POWER_STATUS
| OHCI_PORT_R_CURRENT_CONNECT_STATUS
| OHCI_PORT_R_SUSPEND_STATUS
| OHCI_PORT_R_RESET_STATUS);
if (pPort->pDev && fOldPPS)
VUSBIDevPowerOff(pPort->pDev);
}
}
#endif /* IN_RING3 */
/**
* Read the HcRevision register.
*/
static int HcRevision_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcRevision_r() -> 0x10\n"));
*pu32Value = 0x10; /* OHCI revision 1.0, no emulation. */
return VINF_SUCCESS;
}
/**
* Write to the HcRevision register.
*/
static int HcRevision_w(POHCI pThis, uint32_t iReg, uint32_t u32Value)
{
Log2(("HcRevision_w(%#010x) - denied\n", u32Value));
AssertMsgFailed(("Invalid operation!!! u32Value=%#010x\n", u32Value));
return VINF_SUCCESS;
}
/**
* Read the HcControl register.
*/
static int HcControl_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t ctl = pThis->ctl;
Log2(("HcControl_r -> %#010x - CBSR=%d PLE=%d IE=%d CLE=%d BLE=%d HCFS=%#x IR=%d RWC=%d RWE=%d\n",
ctl, ctl & 3, (ctl >> 2) & 1, (ctl >> 3) & 1, (ctl >> 4) & 1, (ctl >> 5) & 1, (ctl >> 6) & 3, (ctl >> 8) & 1,
(ctl >> 9) & 1, (ctl >> 10) & 1));
*pu32Value = ctl;
return VINF_SUCCESS;
}
/**
* Write the HcControl register.
*/
static int HcControl_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
/* log it. */
uint32_t chg = pThis->ctl ^ val; NOREF(chg);
Log2(("HcControl_w(%#010x) => %sCBSR=%d %sPLE=%d %sIE=%d %sCLE=%d %sBLE=%d %sHCFS=%#x %sIR=%d %sRWC=%d %sRWE=%d\n",
val,
chg & 3 ? "*" : "", val & 3,
chg & RT_BIT(2) ? "*" : "", (val >> 2) & 1,
chg & RT_BIT(3) ? "*" : "", (val >> 3) & 1,
chg & RT_BIT(4) ? "*" : "", (val >> 4) & 1,
chg & RT_BIT(5) ? "*" : "", (val >> 5) & 1,
chg & (3 << 6)? "*" : "", (val >> 6) & 3,
chg & RT_BIT(8) ? "*" : "", (val >> 8) & 1,
chg & RT_BIT(9) ? "*" : "", (val >> 9) & 1,
chg & RT_BIT(10) ? "*" : "", (val >> 10) & 1));
if (val & ~0x07ff)
Log2(("Unknown bits %#x are set!!!\n", val & ~0x07ff));
/* see what changed and take action on that. */
uint32_t old_state = pThis->ctl & OHCI_CTL_HCFS;
uint32_t new_state = val & OHCI_CTL_HCFS;
#ifdef IN_RING3
pThis->ctl = val;
if (new_state != old_state)
{
switch (new_state)
{
case OHCI_USB_OPERATIONAL:
LogRel(("OHCI: USB Operational\n"));
ohciBusStart(pThis);
break;
case OHCI_USB_SUSPEND:
ohciBusStop(pThis);
LogRel(("OHCI: USB Suspended\n"));
break;
case OHCI_USB_RESUME:
LogRel(("OHCI: USB Resume\n"));
ohciBusResume(pThis, false /* not hardware */);
break;
case OHCI_USB_RESET:
{
LogRel(("OHCI: USB Reset\n"));
ohciBusStop(pThis);
/** @todo This should probably do a real reset, but we don't implement
* that correctly in the roothub reset callback yet. check it's
* comments and argument for more details. */
VUSBIDevReset(pThis->RootHub.pIDev, false /* don't do a real reset */, NULL, NULL, NULL);
break;
}
}
}
#else /* !IN_RING3 */
if ( new_state != old_state )
{
Log2(("HcControl_w: state changed -> VINF_IOM_R3_MMIO_WRITE\n"));
return VINF_IOM_R3_MMIO_WRITE;
}
pThis->ctl = val;
#endif /* !IN_RING3 */
return VINF_SUCCESS;
}
/**
* Read the HcCommandStatus register.
*/
static int HcCommandStatus_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t status = pThis->status;
Log2(("HcCommandStatus_r() -> %#010x - HCR=%d CLF=%d BLF=%d OCR=%d SOC=%d\n",
status, status & 1, (status >> 1) & 1, (status >> 2) & 1, (status >> 3) & 1, (status >> 16) & 3));
*pu32Value = status;
return VINF_SUCCESS;
}
/**
* Write to the HcCommandStatus register.
*/
static int HcCommandStatus_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
/* log */
uint32_t chg = pThis->status ^ val; NOREF(chg);
Log2(("HcCommandStatus_w(%#010x) => %sHCR=%d %sCLF=%d %sBLF=%d %sOCR=%d %sSOC=%d\n",
val,
chg & RT_BIT(0) ? "*" : "", val & 1,
chg & RT_BIT(1) ? "*" : "", (val >> 1) & 1,
chg & RT_BIT(2) ? "*" : "", (val >> 2) & 1,
chg & RT_BIT(3) ? "*" : "", (val >> 3) & 1,
chg & (3<<16)? "!!!":"", (pThis->status >> 16) & 3));
if (val & ~0x0003000f)
Log2(("Unknown bits %#x are set!!!\n", val & ~0x0003000f));
/* SOC is read-only */
val = (val & ~OHCI_STATUS_SOC);
#ifdef IN_RING3
/* "bits written as '0' remain unchanged in the register" */
pThis->status |= val;
if (pThis->status & OHCI_STATUS_HCR)
{
LogRel(("OHCI: Software reset\n"));
ohciDoReset(pThis, OHCI_USB_SUSPEND, false /* N/A */);
}
#else
if ((pThis->status | val) & OHCI_STATUS_HCR)
{
LogFlow(("HcCommandStatus_w: reset -> VINF_IOM_R3_MMIO_WRITE\n"));
return VINF_IOM_R3_MMIO_WRITE;
}
pThis->status |= val;
#endif
return VINF_SUCCESS;
}
/**
* Read the HcInterruptStatus register.
*/
static int HcInterruptStatus_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t val = pThis->intr_status;
Log2(("HcInterruptStatus_r() -> %#010x - SO=%d WDH=%d SF=%d RD=%d UE=%d FNO=%d RHSC=%d OC=%d\n",
val, val & 1, (val >> 1) & 1, (val >> 2) & 1, (val >> 3) & 1, (val >> 4) & 1, (val >> 5) & 1,
(val >> 6) & 1, (val >> 30) & 1));
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Write to the HcInterruptStatus register.
*/
static int HcInterruptStatus_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
uint32_t res = pThis->intr_status & ~val;
uint32_t chg = pThis->intr_status ^ res; NOREF(chg);
Log2(("HcInterruptStatus_w(%#010x) => %sSO=%d %sWDH=%d %sSF=%d %sRD=%d %sUE=%d %sFNO=%d %sRHSC=%d %sOC=%d\n",
val,
chg & RT_BIT(0) ? "*" : "", res & 1,
chg & RT_BIT(1) ? "*" : "", (res >> 1) & 1,
chg & RT_BIT(2) ? "*" : "", (res >> 2) & 1,
chg & RT_BIT(3) ? "*" : "", (res >> 3) & 1,
chg & RT_BIT(4) ? "*" : "", (res >> 4) & 1,
chg & RT_BIT(5) ? "*" : "", (res >> 5) & 1,
chg & RT_BIT(6) ? "*" : "", (res >> 6) & 1,
chg & RT_BIT(30)? "*" : "", (res >> 30) & 1));
if ( (val & ~0xc000007f)
&& val != 0xffffffff /* ignore clear-all-like requests from xp. */)
Log2(("Unknown bits %#x are set!!!\n", val & ~0xc000007f));
/* "The Host Controller Driver may clear specific bits in this
* register by writing '1' to bit positions to be cleared"
*/
pThis->intr_status &= ~val;
ohciUpdateInterrupt(pThis, "HcInterruptStatus_w");
return VINF_SUCCESS;
}
/**
* Read the HcInterruptEnable register
*/
static int HcInterruptEnable_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t val = pThis->intr;
Log2(("HcInterruptEnable_r() -> %#010x - SO=%d WDH=%d SF=%d RD=%d UE=%d FNO=%d RHSC=%d OC=%d MIE=%d\n",
val, val & 1, (val >> 1) & 1, (val >> 2) & 1, (val >> 3) & 1, (val >> 4) & 1, (val >> 5) & 1,
(val >> 6) & 1, (val >> 30) & 1, (val >> 31) & 1));
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Writes to the HcInterruptEnable register.
*/
static int HcInterruptEnable_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
uint32_t res = pThis->intr | val;
uint32_t chg = pThis->intr ^ res; NOREF(chg);
Log2(("HcInterruptEnable_w(%#010x) => %sSO=%d %sWDH=%d %sSF=%d %sRD=%d %sUE=%d %sFNO=%d %sRHSC=%d %sOC=%d %sMIE=%d\n",
val,
chg & RT_BIT(0) ? "*" : "", res & 1,
chg & RT_BIT(1) ? "*" : "", (res >> 1) & 1,
chg & RT_BIT(2) ? "*" : "", (res >> 2) & 1,
chg & RT_BIT(3) ? "*" : "", (res >> 3) & 1,
chg & RT_BIT(4) ? "*" : "", (res >> 4) & 1,
chg & RT_BIT(5) ? "*" : "", (res >> 5) & 1,
chg & RT_BIT(6) ? "*" : "", (res >> 6) & 1,
chg & RT_BIT(30) ? "*" : "", (res >> 30) & 1,
chg & RT_BIT(31) ? "*" : "", (res >> 31) & 1));
if (val & ~0xc000007f)
Log2(("Uknown bits %#x are set!!!\n", val & ~0xc000007f));
pThis->intr |= val;
ohciUpdateInterrupt(pThis, "HcInterruptEnable_w");
return VINF_SUCCESS;
}
/**
* Reads the HcInterruptDisable register.
*/
static int HcInterruptDisable_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
#if 1 /** @todo r=bird: "On read, the current value of the HcInterruptEnable register is returned." */
uint32_t val = pThis->intr;
#else /* old code. */
uint32_t val = ~pThis->intr;
#endif
Log2(("HcInterruptDisable_r() -> %#010x - SO=%d WDH=%d SF=%d RD=%d UE=%d FNO=%d RHSC=%d OC=%d MIE=%d\n",
val, val & 1, (val >> 1) & 1, (val >> 2) & 1, (val >> 3) & 1, (val >> 4) & 1, (val >> 5) & 1,
(val >> 6) & 1, (val >> 30) & 1, (val >> 31) & 1));
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Writes to the HcInterruptDisable register.
*/
static int HcInterruptDisable_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
uint32_t res = pThis->intr & ~val;
uint32_t chg = pThis->intr ^ res; NOREF(chg);
Log2(("HcInterruptDisable_w(%#010x) => %sSO=%d %sWDH=%d %sSF=%d %sRD=%d %sUE=%d %sFNO=%d %sRHSC=%d %sOC=%d %sMIE=%d\n",
val,
chg & RT_BIT(0) ? "*" : "", res & 1,
chg & RT_BIT(1) ? "*" : "", (res >> 1) & 1,
chg & RT_BIT(2) ? "*" : "", (res >> 2) & 1,
chg & RT_BIT(3) ? "*" : "", (res >> 3) & 1,
chg & RT_BIT(4) ? "*" : "", (res >> 4) & 1,
chg & RT_BIT(5) ? "*" : "", (res >> 5) & 1,
chg & RT_BIT(6) ? "*" : "", (res >> 6) & 1,
chg & RT_BIT(30) ? "*" : "", (res >> 30) & 1,
chg & RT_BIT(31) ? "*" : "", (res >> 31) & 1));
/* Don't bitch about invalid bits here since it makes sense to disable
* interrupts you don't know about. */
pThis->intr &= ~val;
ohciUpdateInterrupt(pThis, "HcInterruptDisable_w");
return VINF_SUCCESS;
}
/**
* Read the HcHCCA register (Host Controller Communications Area physical address).
*/
static int HcHCCA_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcHCCA_r() -> %#010x\n", pThis->hcca));
*pu32Value = pThis->hcca;
return VINF_SUCCESS;
}
/**
* Write to the HcHCCA register (Host Controller Communications Area physical address).
*/
static int HcHCCA_w(POHCI pThis, uint32_t iReg, uint32_t Value)
{
Log2(("HcHCCA_w(%#010x) - old=%#010x new=%#010x\n", Value, pThis->hcca, Value & OHCI_HCCA_MASK));
pThis->hcca = Value & OHCI_HCCA_MASK;
return VINF_SUCCESS;
}
/**
* Read the HcPeriodCurrentED register.
*/
static int HcPeriodCurrentED_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcPeriodCurrentED_r() -> %#010x\n", pThis->per_cur));
*pu32Value = pThis->per_cur;
return VINF_SUCCESS;
}
/**
* Write to the HcPeriodCurrentED register.
*/
static int HcPeriodCurrentED_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log(("HcPeriodCurrentED_w(%#010x) - old=%#010x new=%#010x (This is a read only register, only the linux guys don't respect that!)\n",
val, pThis->per_cur, val & ~7));
//AssertMsgFailed(("HCD (Host Controller Driver) should not write to HcPeriodCurrentED! val=%#010x (old=%#010x)\n", val, pThis->per_cur));
AssertMsg(!(val & 7), ("Invalid alignment, val=%#010x\n", val));
pThis->per_cur = val & ~7;
return VINF_SUCCESS;
}
/**
* Read the HcControlHeadED register.
*/
static int HcControlHeadED_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcControlHeadED_r() -> %#010x\n", pThis->ctrl_head));
*pu32Value = pThis->ctrl_head;
return VINF_SUCCESS;
}
/**
* Write to the HcControlHeadED register.
*/
static int HcControlHeadED_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcControlHeadED_w(%#010x) - old=%#010x new=%#010x\n", val, pThis->ctrl_head, val & ~7));
AssertMsg(!(val & 7), ("Invalid alignment, val=%#010x\n", val));
pThis->ctrl_head = val & ~7;
return VINF_SUCCESS;
}
/**
* Read the HcControlCurrentED register.
*/
static int HcControlCurrentED_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcControlCurrentED_r() -> %#010x\n", pThis->ctrl_cur));
*pu32Value = pThis->ctrl_cur;
return VINF_SUCCESS;
}
/**
* Write to the HcControlCurrentED register.
*/
static int HcControlCurrentED_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcControlCurrentED_w(%#010x) - old=%#010x new=%#010x\n", val, pThis->ctrl_cur, val & ~7));
AssertMsg(!(pThis->ctl & OHCI_CTL_CLE), ("Illegal write! HcControl.ControlListEnabled is set! val=%#010x\n", val));
AssertMsg(!(val & 7), ("Invalid alignment, val=%#010x\n", val));
pThis->ctrl_cur = val & ~7;
return VINF_SUCCESS;
}
/**
* Read the HcBulkHeadED register.
*/
static int HcBulkHeadED_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcBulkHeadED_r() -> %#010x\n", pThis->bulk_head));
*pu32Value = pThis->bulk_head;
return VINF_SUCCESS;
}
/**
* Write to the HcBulkHeadED register.
*/
static int HcBulkHeadED_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcBulkHeadED_w(%#010x) - old=%#010x new=%#010x\n", val, pThis->bulk_head, val & ~7));
AssertMsg(!(val & 7), ("Invalid alignment, val=%#010x\n", val));
pThis->bulk_head = val & ~7; /** @todo The ATI OHCI controller on my machine enforces 16-byte address alignment. */
return VINF_SUCCESS;
}
/**
* Read the HcBulkCurrentED register.
*/
static int HcBulkCurrentED_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcBulkCurrentED_r() -> %#010x\n", pThis->bulk_cur));
*pu32Value = pThis->bulk_cur;
return VINF_SUCCESS;
}
/**
* Write to the HcBulkCurrentED register.
*/
static int HcBulkCurrentED_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcBulkCurrentED_w(%#010x) - old=%#010x new=%#010x\n", val, pThis->bulk_cur, val & ~7));
AssertMsg(!(pThis->ctl & OHCI_CTL_BLE), ("Illegal write! HcControl.BulkListEnabled is set! val=%#010x\n", val));
AssertMsg(!(val & 7), ("Invalid alignment, val=%#010x\n", val));
pThis->bulk_cur = val & ~7;
return VINF_SUCCESS;
}
/**
* Read the HcDoneHead register.
*/
static int HcDoneHead_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcDoneHead_r() -> 0x%#08x\n", pThis->done));
*pu32Value = pThis->done;
return VINF_SUCCESS;
}
/**
* Write to the HcDoneHead register.
*/
static int HcDoneHead_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcDoneHead_w(0x%#08x) - denied!!!\n", val));
/*AssertMsgFailed(("Illegal operation!!! val=%#010x\n", val)); - OS/2 does this */
return VINF_SUCCESS;
}
/**
* Read the HcFmInterval (Fm=Frame) register.
*/
static int HcFmInterval_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t val = (pThis->fit << 31) | (pThis->fsmps << 16) | (pThis->fi);
Log2(("HcFmInterval_r() -> 0x%#08x - FI=%d FSMPS=%d FIT=%d\n",
val, val & 0x3fff, (val >> 16) & 0x7fff, val >> 31));
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Write to the HcFmInterval (Fm = Frame) register.
*/
static int HcFmInterval_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
/* log */
uint32_t chg = val ^ ((pThis->fit << 31) | (pThis->fsmps << 16) | pThis->fi); NOREF(chg);
Log2(("HcFmInterval_w(%#010x) => %sFI=%d %sFSMPS=%d %sFIT=%d\n",
val,
chg & 0x00003fff ? "*" : "", val & 0x3fff,
chg & 0x7fff0000 ? "*" : "", (val >> 16) & 0x7fff,
chg >> 31 ? "*" : "", (val >> 31) & 1));
if ( pThis->fi != (val & OHCI_FMI_FI) )
{
Log(("ohci: FrameInterval: %#010x -> %#010x\n", pThis->fi, val & OHCI_FMI_FI));
AssertMsg(pThis->fit != ((val >> OHCI_FMI_FIT_SHIFT) & 1), ("HCD didn't toggle the FIT bit!!!\n"));
}
/* update */
pThis->fi = val & OHCI_FMI_FI;
pThis->fit = (val & OHCI_FMI_FIT) >> OHCI_FMI_FIT_SHIFT;
pThis->fsmps = (val & OHCI_FMI_FSMPS) >> OHCI_FMI_FSMPS_SHIFT;
return VINF_SUCCESS;
}
/**
* Read the HcFmRemaining (Fm = Frame) register.
*/
static int HcFmRemaining_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t Value = pThis->frt << 31;
if ((pThis->ctl & OHCI_CTL_HCFS) == OHCI_USB_OPERATIONAL)
{
/*
* Being in USB operational state guarantees SofTime was set already.
*/
uint64_t tks = TMTimerGet(pThis->CTX_SUFF(pEndOfFrameTimer)) - pThis->SofTime;
if (tks < pThis->cTicksPerFrame) /* avoid muldiv if possible */
{
uint16_t fr;
tks = ASMMultU64ByU32DivByU32(1, tks, pThis->cTicksPerUsbTick);
fr = (uint16_t)(pThis->fi - tks);
Value |= fr;
}
}
Log2(("HcFmRemaining_r() -> %#010x - FR=%d FRT=%d\n", Value, Value & 0x3fff, Value >> 31));
*pu32Value = Value;
return VINF_SUCCESS;
}
/**
* Write to the HcFmRemaining (Fm = Frame) register.
*/
static int HcFmRemaining_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcFmRemaining_w(%#010x) - denied\n", val));
AssertMsgFailed(("Invalid operation!!! val=%#010x\n", val));
return VINF_SUCCESS;
}
/**
* Read the HcFmNumber (Fm = Frame) register.
*/
static int HcFmNumber_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t val = (uint16_t)pThis->HcFmNumber;
Log2(("HcFmNumber_r() -> %#010x - FN=%#x(%d) (32-bit=%#x(%d))\n", val, val, val, pThis->HcFmNumber, pThis->HcFmNumber));
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Write to the HcFmNumber (Fm = Frame) register.
*/
static int HcFmNumber_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcFmNumber_w(%#010x) - denied\n", val));
AssertMsgFailed(("Invalid operation!!! val=%#010x\n", val));
return VINF_SUCCESS;
}
/**
* Read the HcPeriodicStart register.
* The register determines when in a frame to switch from control&bulk to periodic lists.
*/
static int HcPeriodicStart_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcPeriodicStart_r() -> %#010x - PS=%d\n", pThis->pstart, pThis->pstart & 0x3fff));
*pu32Value = pThis->pstart;
return VINF_SUCCESS;
}
/**
* Write to the HcPeriodicStart register.
* The register determines when in a frame to switch from control&bulk to periodic lists.
*/
static int HcPeriodicStart_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcPeriodicStart_w(%#010x) => PS=%d\n", val, val & 0x3fff));
if (val & ~0x3fff)
Log2(("Unknown bits %#x are set!!!\n", val & ~0x3fff));
pThis->pstart = val; /** @todo r=bird: should we support setting the other bits? */
return VINF_SUCCESS;
}
/**
* Read the HcLSThreshold register.
*/
static int HcLSThreshold_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
Log2(("HcLSThreshold_r() -> %#010x\n", OHCI_LS_THRESH));
*pu32Value = OHCI_LS_THRESH;
return VINF_SUCCESS;
}
/**
* Write to the HcLSThreshold register.
*
* Docs are inconsistent here:
*
* "Neither the Host Controller nor the Host Controller Driver are allowed to change this value."
*
* "This value is calculated by HCD with the consideration of transmission and setup overhead."
*
* The register is marked "R/W" the HCD column.
*
*/
static int HcLSThreshold_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
Log2(("HcLSThreshold_w(%#010x) => LST=0x%03x(%d)\n", val, val & 0x0fff));
AssertMsg(val == OHCI_LS_THRESH,
("HCD tried to write bad LS threshold: 0x%x (see function header)\n", val));
/** @todo the HCD can change this. */
return VINF_SUCCESS;
}
/**
* Read the HcRhDescriptorA register.
*/
static int HcRhDescriptorA_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t val = pThis->RootHub.desc_a;
#if 0 /* annoying */
Log2(("HcRhDescriptorA_r() -> %#010x - NDP=%d PSM=%d NPS=%d DT=%d OCPM=%d NOCP=%d POTGT=%#x\n",
val, val & 0xff, (val >> 8) & 1, (val >> 9) & 1, (val >> 10) & 1, (val >> 11) & 1,
(val >> 12) & 1, (val >> 24) & 0xff));
#endif
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Write to the HcRhDescriptorA register.
*/
static int HcRhDescriptorA_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
uint32_t chg = val ^ pThis->RootHub.desc_a; NOREF(chg);
Log2(("HcRhDescriptorA_w(%#010x) => %sNDP=%d %sPSM=%d %sNPS=%d %sDT=%d %sOCPM=%d %sNOCP=%d %sPOTGT=%#x - %sPowerSwitching Set%sPower\n",
val,
chg & 0xff ?"!!!": "", OHCI_NDP,
(chg >> 8) & 1 ? "*" : "", (val >> 8) & 1,
(chg >> 9) & 1 ? "*" : "", (val >> 9) & 1,
(chg >> 10) & 1 ?"!!!": "", 0,
(chg >> 11) & 1 ? "*" : "", (val >> 11) & 1,
(chg >> 12) & 1 ? "*" : "", (val >> 12) & 1,
(chg >> 24)&0xff? "*" : "", (val >> 24) & 0xff,
val & OHCI_RHA_NPS ? "No" : "",
val & OHCI_RHA_PSM ? "Port" : "Global"));
if (val & ~0xff001fff)
Log2(("Unknown bits %#x are set!!!\n", val & ~0xff001fff));
if ((val & (OHCI_RHA_NDP | OHCI_RHA_DT)) != OHCI_NDP)
{
Log(("ohci: %s: invalid write to NDP or DT in roothub descriptor A!!! val=0x%.8x\n",
pThis->PciDev.name, val));
val &= ~(OHCI_RHA_NDP | OHCI_RHA_DT);
val |= OHCI_NDP;
}
pThis->RootHub.desc_a = val;
return VINF_SUCCESS;
}
/**
* Read the HcRhDescriptorB register.
*/
static int HcRhDescriptorB_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t val = pThis->RootHub.desc_b;
Log2(("HcRhDescriptorB_r() -> %#010x - DR=0x%04x PPCM=0x%04x\n",
val, val & 0xffff, val >> 16));
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Write to the HcRhDescriptorB register.
*/
static int HcRhDescriptorB_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
uint32_t chg = pThis->RootHub.desc_b ^ val; NOREF(chg);
Log2(("HcRhDescriptorB_w(%#010x) => %sDR=0x%04x %sPPCM=0x%04x\n",
val,
chg & 0xffff ? "!!!" : "", val & 0xffff,
chg >> 16 ? "!!!" : "", val >> 16));
if ( pThis->RootHub.desc_b != val )
Log(("ohci: %s: unsupported write to root descriptor B!!! 0x%.8x -> 0x%.8x\n",
pThis->PciDev.name,
pThis->RootHub.desc_b, val));
pThis->RootHub.desc_b = val;
return VINF_SUCCESS;
}
/**
* Read the HcRhStatus (Rh = Root Hub) register.
*/
static int HcRhStatus_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t val = pThis->RootHub.status;
if (val & (OHCI_RHS_LPSC | OHCI_RHS_OCIC))
Log2(("HcRhStatus_r() -> %#010x - LPS=%d OCI=%d DRWE=%d LPSC=%d OCIC=%d CRWE=%d\n",
val, val & 1, (val >> 1) & 1, (val >> 15) & 1, (val >> 16) & 1, (val >> 17) & 1, (val >> 31) & 1));
*pu32Value = val;
return VINF_SUCCESS;
}
/**
* Write to the HcRhStatus (Rh = Root Hub) register.
*/
static int HcRhStatus_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
#ifdef IN_RING3
/* log */
uint32_t old = pThis->RootHub.status;
uint32_t chg;
if (val & ~0x80038003)
Log2(("HcRhStatus_w: Unknown bits %#x are set!!!\n", val & ~0x80038003));
if ( (val & OHCI_RHS_LPSC) && (val & OHCI_RHS_LPS) )
Log2(("HcRhStatus_w: Warning both CGP and SGP are set! (Clear/Set Global Power)\n"));
if ( (val & OHCI_RHS_DRWE) && (val & OHCI_RHS_CRWE) )
Log2(("HcRhStatus_w: Warning both CRWE and SRWE are set! (Clear/Set Remote Wakeup Enable)\n"));
/* write 1 to clear OCIC */
if ( val & OHCI_RHS_OCIC )
pThis->RootHub.status &= ~OHCI_RHS_OCIC;
/* SetGlobalPower */
if ( val & OHCI_RHS_LPSC )
{
int i;
Log2(("ohci: %s: global power up\n", pThis->PciDev.name));
for (i = 0; i < OHCI_NDP; i++)
rhport_power(&pThis->RootHub, i, true /* power up */);
}
/* ClearGlobalPower */
if ( val & OHCI_RHS_LPS )
{
int i;
Log2(("ohci: %s: global power down\n", pThis->PciDev.name));
for (i = 0; i < OHCI_NDP; i++)
rhport_power(&pThis->RootHub, i, false /* power down */);
}
if ( val & OHCI_RHS_DRWE )
pThis->RootHub.status |= OHCI_RHS_DRWE;
if ( val & OHCI_RHS_CRWE )
pThis->RootHub.status &= ~OHCI_RHS_DRWE;
chg = pThis->RootHub.status ^ old;
Log2(("HcRhStatus_w(%#010x) => %sCGP=%d %sOCI=%d %sSRWE=%d %sSGP=%d %sOCIC=%d %sCRWE=%d\n",
val,
chg & 1 ? "*" : "", val & 1,
(chg >> 1) & 1 ?"!!!": "", (val >> 1) & 1,
(chg >> 15) & 1 ? "*" : "", (val >> 15) & 1,
(chg >> 16) & 1 ? "*" : "", (val >> 16) & 1,
(chg >> 17) & 1 ? "*" : "", (val >> 17) & 1,
(chg >> 31) & 1 ? "*" : "", (val >> 31) & 1));
return VINF_SUCCESS;
#else /* !IN_RING3 */
return VINF_IOM_R3_MMIO_WRITE;
#endif /* !IN_RING3 */
}
/**
* Read the HcRhPortStatus register of a port.
*/
static int HcRhPortStatus_r(PCOHCI pThis, uint32_t iReg, uint32_t *pu32Value)
{
const unsigned i = iReg - 21;
uint32_t val = pThis->RootHub.aPorts[i].fReg | OHCI_PORT_R_POWER_STATUS; /* PortPowerStatus: see todo on power in _w function. */
if (val & OHCI_PORT_R_RESET_STATUS)
{
#ifdef IN_RING3
RTThreadYield();
#else
Log2(("HcRhPortStatus_r: yield -> VINF_IOM_R3_MMIO_READ\n"));
return VINF_IOM_R3_MMIO_READ;
#endif
}
if (val & (OHCI_PORT_R_RESET_STATUS | OHCI_PORT_CSC | OHCI_PORT_PESC | OHCI_PORT_PSSC | OHCI_PORT_OCIC | OHCI_PORT_PRSC))
Log2(("HcRhPortStatus_r(): port %u: -> %#010x - CCS=%d PES=%d PSS=%d POCI=%d RRS=%d PPS=%d LSDA=%d CSC=%d PESC=%d PSSC=%d OCIC=%d PRSC=%d\n",
i, val, val & 1, (val >> 1) & 1, (val >> 2) & 1, (val >> 3) & 1, (val >> 4) & 1, (val >> 8) & 1, (val >> 9) & 1,
(val >> 16) & 1, (val >> 17) & 1, (val >> 18) & 1, (val >> 19) & 1, (val >> 20) & 1));
*pu32Value = val;
return VINF_SUCCESS;
}
#ifdef IN_RING3
/**
* Completion callback for the vusb_dev_reset() operation.
* @thread EMT.
*/
static DECLCALLBACK(void) uchi_port_reset_done(PVUSBIDEVICE pDev, int rc, void *pvUser)
{
POHCI pThis = (POHCI)pvUser;
/*
* Find the port in question
*/
POHCIHUBPORT pPort = NULL;
unsigned iPort;
for (iPort = 0; iPort < RT_ELEMENTS(pThis->RootHub.aPorts); iPort++) /* lazy bird */
if (pThis->RootHub.aPorts[iPort].pDev == pDev)
{
pPort = &pThis->RootHub.aPorts[iPort];
break;
}
if (!pPort)
{
Assert(pPort); /* sometimes happens because of @bugref{1510} */
return;
}
if (RT_SUCCESS(rc))
{
/*
* Successful reset.
*/
Log2(("uchi_port_reset_done: Reset completed.\n"));
pPort->fReg &= ~(OHCI_PORT_R_RESET_STATUS | OHCI_PORT_R_SUSPEND_STATUS | OHCI_PORT_R_SUSPEND_STATUS_CHANGE);
pPort->fReg |= OHCI_PORT_R_ENABLE_STATUS | OHCI_PORT_R_RESET_STATUS_CHANGE;
}
else
{
/* desperate measures. */
if ( pPort->pDev
&& VUSBIDevGetState(pPort->pDev) == VUSB_DEVICE_STATE_ATTACHED)
{
/*
* Damn, something weird happened during reset. We'll pretend the user did an
* incredible fast reconnect or something. (probably not gonna work)
*/
Log2(("uchi_port_reset_done: The reset failed (rc=%Rrc)!!! Pretending reconnect at the speed of light.\n", rc));
pPort->fReg = OHCI_PORT_R_CURRENT_CONNECT_STATUS | OHCI_PORT_R_CONNECT_STATUS_CHANGE;
}
else
{
/*
* The device have / will be disconnected.
*/
Log2(("uchi_port_reset_done: Disconnected (rc=%Rrc)!!!\n", rc));
pPort->fReg &= ~(OHCI_PORT_R_RESET_STATUS | OHCI_PORT_R_SUSPEND_STATUS | OHCI_PORT_R_SUSPEND_STATUS_CHANGE | OHCI_PORT_R_RESET_STATUS_CHANGE);
pPort->fReg |= OHCI_PORT_R_CONNECT_STATUS_CHANGE;
}
}
/* Raise roothub status change interrupt. */
ohciSetInterrupt(pThis, OHCI_INTR_ROOT_HUB_STATUS_CHANGE);
}
/**
* Sets a flag in a port status register but only set it if a device is
* connected, if not set ConnectStatusChange flag to force HCD to reevaluate
* connect status.
*
* @returns true if device was connected and the flag was cleared.
*/
static bool rhport_set_if_connected(POHCIROOTHUB pRh, int iPort, uint32_t fValue)
{
/*
* Writing a 0 has no effect
*/
if (fValue == 0)
return false;
/*
* If CurrentConnectStatus is cleared we set ConnectStatusChange.
*/
if (!(pRh->aPorts[iPort].fReg & OHCI_PORT_R_CURRENT_CONNECT_STATUS))
{
pRh->aPorts[iPort].fReg |= OHCI_PORT_R_CONNECT_STATUS_CHANGE;
ohciSetInterrupt(pRh->pOhci, OHCI_INTR_ROOT_HUB_STATUS_CHANGE);
return false;
}
bool fRc = !(pRh->aPorts[iPort].fReg & fValue);
/* set the bit */
pRh->aPorts[iPort].fReg |= fValue;
return fRc;
}
#endif /* IN_RING3 */
/**
* Write to the HcRhPortStatus register of a port.
*/
static int HcRhPortStatus_w(POHCI pThis, uint32_t iReg, uint32_t val)
{
#ifdef IN_RING3
const unsigned i = iReg - 21;
POHCIHUBPORT p = &pThis->RootHub.aPorts[i];
uint32_t old_state = p->fReg;
#ifdef LOG_ENABLED
/*
* Log it.
*/
static const char *apszCmdNames[32] =
{
"ClearPortEnable", "SetPortEnable", "SetPortSuspend", "!!!ClearSuspendStatus",
"SetPortReset", "!!!5", "!!!6", "!!!7",
"SetPortPower", "ClearPortPower", "!!!10", "!!!11",
"!!!12", "!!!13", "!!!14", "!!!15",
"ClearCSC", "ClearPESC", "ClearPSSC", "ClearOCIC",
"ClearPRSC", "!!!21", "!!!22", "!!!23",
"!!!24", "!!!25", "!!!26", "!!!27",
"!!!28", "!!!29", "!!!30", "!!!31"
};
Log2(("HcRhPortStatus_w(%#010x): port %u:", val, i));
for (unsigned j = 0; j < RT_ELEMENTS(apszCmdNames); j++)
if (val & (1 << j))
Log2((" %s", apszCmdNames[j]));
Log2(("\n"));
#endif
/* Write to clear any of the change bits: CSC, PESC, PSSC, OCIC and PRSC */
if (val & OHCI_PORT_W_CLEAR_CHANGE_MASK)
p->fReg &= ~(val & OHCI_PORT_W_CLEAR_CHANGE_MASK);
if (val & OHCI_PORT_W_CLEAR_ENABLE)
{
p->fReg &= ~OHCI_PORT_R_ENABLE_STATUS;
Log2(("HcRhPortStatus_w(): port %u: DISABLE\n", i));
}
if (rhport_set_if_connected(&pThis->RootHub, i, val & OHCI_PORT_W_SET_ENABLE))
Log2(("HcRhPortStatus_w(): port %u: ENABLE\n", i));
if (rhport_set_if_connected(&pThis->RootHub, i, val & OHCI_PORT_W_SET_SUSPEND))
Log2(("HcRhPortStatus_w(): port %u: SUSPEND - not implemented correctly!!!\n", i));
if (val & OHCI_PORT_W_SET_RESET)
{
if (rhport_set_if_connected(&pThis->RootHub, i, val & OHCI_PORT_W_SET_RESET))
{
PVM pVM = PDMDevHlpGetVM(pThis->CTX_SUFF(pDevIns));
p->fReg &= ~OHCI_PORT_R_RESET_STATUS_CHANGE;
VUSBIDevReset(p->pDev, false /* don't reset on linux */, uchi_port_reset_done, pThis, pVM);
}
else if (p->fReg & OHCI_PORT_R_RESET_STATUS)
{
/* the guest is getting impatient. */
Log2(("HcRhPortStatus_w(): port %u: Impatient guest!\n"));
RTThreadYield();
}
}
if (!(pThis->RootHub.desc_a & OHCI_RHA_NPS))
{
/** @todo To implement per-device power-switching
* we need to check PortPowerControlMask to make
* sure it isn't gang powered
*/
if (val & OHCI_PORT_W_CLEAR_POWER)
rhport_power(&pThis->RootHub, i, false /* power down */);
if (val & OHCI_PORT_W_SET_POWER)
rhport_power(&pThis->RootHub, i, true /* power up */);
}
/** @todo r=frank: ClearSuspendStatus. Timing? */
if (val & OHCI_PORT_W_CLEAR_SUSPEND_STATUS)
{
rhport_power(&pThis->RootHub, i, true /* power up */);
pThis->RootHub.aPorts[i].fReg &= ~OHCI_PORT_R_SUSPEND_STATUS;
pThis->RootHub.aPorts[i].fReg |= OHCI_PORT_R_SUSPEND_STATUS_CHANGE;
ohciSetInterrupt(pThis, OHCI_INTR_ROOT_HUB_STATUS_CHANGE);
}
if (p->fReg != old_state)
{
uint32_t res = p->fReg;
uint32_t chg = res ^ old_state; NOREF(chg);
Log2(("HcRhPortStatus_w(%#010x): port %u: => %sCCS=%d %sPES=%d %sPSS=%d %sPOCI=%d %sRRS=%d %sPPS=%d %sLSDA=%d %sCSC=%d %sPESC=%d %sPSSC=%d %sOCIC=%d %sPRSC=%d\n",
val, i,
chg & 1 ? "*" : "", res & 1,
(chg >> 1) & 1 ? "*" : "", (res >> 1) & 1,
(chg >> 2) & 1 ? "*" : "", (res >> 2) & 1,
(chg >> 3) & 1 ? "*" : "", (res >> 3) & 1,
(chg >> 4) & 1 ? "*" : "", (res >> 4) & 1,
(chg >> 8) & 1 ? "*" : "", (res >> 8) & 1,
(chg >> 9) & 1 ? "*" : "", (res >> 9) & 1,
(chg >> 16) & 1 ? "*" : "", (res >> 16) & 1,
(chg >> 17) & 1 ? "*" : "", (res >> 17) & 1,
(chg >> 18) & 1 ? "*" : "", (res >> 18) & 1,
(chg >> 19) & 1 ? "*" : "", (res >> 19) & 1,
(chg >> 20) & 1 ? "*" : "", (res >> 20) & 1));
}
return VINF_SUCCESS;
#else /* !IN_RING3 */
return VINF_IOM_R3_MMIO_WRITE;
#endif /* !IN_RING3 */
}
/**
* Register descriptor table
*/
static const OHCIOPREG g_aOpRegs[] =
{
{ "HcRevision", HcRevision_r, HcRevision_w }, /* 0 */
{ "HcControl", HcControl_r, HcControl_w }, /* 1 */
{ "HcCommandStatus", HcCommandStatus_r, HcCommandStatus_w }, /* 2 */
{ "HcInterruptStatus", HcInterruptStatus_r, HcInterruptStatus_w }, /* 3 */
{ "HcInterruptEnable", HcInterruptEnable_r, HcInterruptEnable_w }, /* 4 */
{ "HcInterruptDisable", HcInterruptDisable_r, HcInterruptDisable_w }, /* 5 */
{ "HcHCCA", HcHCCA_r, HcHCCA_w }, /* 6 */
{ "HcPeriodCurrentED", HcPeriodCurrentED_r, HcPeriodCurrentED_w }, /* 7 */
{ "HcControlHeadED", HcControlHeadED_r, HcControlHeadED_w }, /* 8 */
{ "HcControlCurrentED", HcControlCurrentED_r, HcControlCurrentED_w }, /* 9 */
{ "HcBulkHeadED", HcBulkHeadED_r, HcBulkHeadED_w }, /* 10 */
{ "HcBulkCurrentED", HcBulkCurrentED_r, HcBulkCurrentED_w }, /* 11 */
{ "HcDoneHead", HcDoneHead_r, HcDoneHead_w }, /* 12 */
{ "HcFmInterval", HcFmInterval_r, HcFmInterval_w }, /* 13 */
{ "HcFmRemaining", HcFmRemaining_r, HcFmRemaining_w }, /* 14 */
{ "HcFmNumber", HcFmNumber_r, HcFmNumber_w }, /* 15 */
{ "HcPeriodicStart", HcPeriodicStart_r, HcPeriodicStart_w }, /* 16 */
{ "HcLSThreshold", HcLSThreshold_r, HcLSThreshold_w }, /* 17 */
{ "HcRhDescriptorA", HcRhDescriptorA_r, HcRhDescriptorA_w }, /* 18 */
{ "HcRhDescriptorB", HcRhDescriptorB_r, HcRhDescriptorB_w }, /* 19 */
{ "HcRhStatus", HcRhStatus_r, HcRhStatus_w }, /* 20 */
/* The number of port status register depends on the definition
* of OHCI_NDP macro
*/
{ "HcRhPortStatus[0]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 21 */
{ "HcRhPortStatus[1]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 22 */
{ "HcRhPortStatus[2]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 23 */
{ "HcRhPortStatus[3]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 24 */
{ "HcRhPortStatus[4]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 25 */
{ "HcRhPortStatus[5]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 26 */
{ "HcRhPortStatus[6]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 27 */
{ "HcRhPortStatus[7]", HcRhPortStatus_r, HcRhPortStatus_w }, /* 28 */
};
/**
* @callback_method_impl{FNIOMMMIOREAD}
*/
PDMBOTHCBDECL(int) ohciMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
/* Paranoia: Assert that IOMMMIO_FLAGS_READ_DWORD works. */
AssertReturn(cb == sizeof(uint32_t), VERR_INTERNAL_ERROR_3);
AssertReturn(!(GCPhysAddr & 0x3), VERR_INTERNAL_ERROR_4);
/*
* Validate the register and call the read operator.
*/
int rc;
const uint32_t iReg = (GCPhysAddr - pThis->MMIOBase) >> 2;
if (iReg < RT_ELEMENTS(g_aOpRegs))
{
const OHCIOPREG *pReg = &g_aOpRegs[iReg];
rc = pReg->pfnRead(pThis, iReg, (uint32_t *)pv);
}
else
{
Log(("ohci: Trying to read register %u/%u!!!\n", iReg, RT_ELEMENTS(g_aOpRegs)));
rc = VINF_IOM_MMIO_UNUSED_FF;
}
return rc;
}
/**
* @callback_method_impl{FNIOMMMIOWRITE}
*/
PDMBOTHCBDECL(int) ohciMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
/* Paranoia: Assert that IOMMMIO_FLAGS_WRITE_DWORD_ZEROED works. */
AssertReturn(cb == sizeof(uint32_t), VERR_INTERNAL_ERROR_3);
AssertReturn(!(GCPhysAddr & 0x3), VERR_INTERNAL_ERROR_4);
/*
* Validate the register and call the read operator.
*/
int rc;
const uint32_t iReg = (GCPhysAddr - pThis->MMIOBase) >> 2;
if (iReg < RT_ELEMENTS(g_aOpRegs))
{
const OHCIOPREG *pReg = &g_aOpRegs[iReg];
rc = pReg->pfnWrite(pThis, iReg, *(uint32_t const *)pv);
}
else
{
Log(("ohci: Trying to write to register %u/%u!!!\n", iReg, RT_ELEMENTS(g_aOpRegs)));
rc = VINF_SUCCESS;
}
return rc;
}
#ifdef IN_RING3
/**
* @callback_method_impl{FNPCIIOREGIONMAP}
*/
static DECLCALLBACK(int) ohciR3Map(PPCIDEVICE pPciDev, int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType)
{
POHCI pThis = (POHCI)pPciDev;
int rc = PDMDevHlpMMIORegister(pThis->CTX_SUFF(pDevIns), GCPhysAddress, cb, NULL /*pvUser*/,
IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_DWORD_ZEROED
| IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_WRITE,
ohciMmioWrite, ohciMmioRead, "USB OHCI");
if (RT_FAILURE(rc))
return rc;
if (pThis->fRZEnabled)
{
rc = PDMDevHlpMMIORegisterRC(pThis->CTX_SUFF(pDevIns), GCPhysAddress, cb,
NIL_RTRCPTR /*pvUser*/, "ohciMmioWrite", "ohciMmioRead");
if (RT_FAILURE(rc))
return rc;
rc = PDMDevHlpMMIORegisterR0(pThis->CTX_SUFF(pDevIns), GCPhysAddress, cb,
NIL_RTR0PTR /*pvUser*/, "ohciMmioWrite", "ohciMmioRead");
if (RT_FAILURE(rc))
return rc;
}
pThis->MMIOBase = GCPhysAddress;
return VINF_SUCCESS;
}
/**
* Prepares for state saving.
* All URBs needs to be canceled.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSM The handle to save the state to.
*/
static DECLCALLBACK(int) ohciR3SavePrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
POHCIROOTHUB pRh = &pThis->RootHub;
LogFlow(("ohciR3SavePrep: \n"));
/*
* Detach all proxied devices.
*/
PDMCritSectEnter(pThis->pDevInsR3->pCritSectRoR3, VERR_IGNORED);
/** @todo we a) can't tell which are proxied, and b) this won't work well when continuing after saving! */
for (unsigned i = 0; i < RT_ELEMENTS(pRh->aPorts); i++)
{
PVUSBIDEVICE pDev = pRh->aPorts[i].pDev;
if (pDev)
{
VUSBIRhDetachDevice(pRh->pIRhConn, pDev);
/*
* Save the device pointers here so we can reattach them afterwards.
* This will work fine even if the save fails since the Done handler is
* called unconditionally if the Prep handler was called.
*/
pRh->aPorts[i].pDev = pDev;
}
}
PDMCritSectLeave(pThis->pDevInsR3->pCritSectRoR3);
/*
* Kill old load data which might be hanging around.
*/
if (pThis->pLoad)
{
TMR3TimerDestroy(pThis->pLoad->pTimer);
MMR3HeapFree(pThis->pLoad);
pThis->pLoad = NULL;
}
return VINF_SUCCESS;
}
/**
* Saves the state of the OHCI device.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSM The handle to save the state to.
*/
static DECLCALLBACK(int) ohciR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
LogFlow(("ohciR3SaveExec: \n"));
int rc = SSMR3PutStructEx(pSSM, pThis, sizeof(*pThis), 0 /*fFlags*/, &g_aOhciFields[0], NULL);
if (RT_SUCCESS(rc))
rc = TMR3TimerSave(pThis->CTX_SUFF(pEndOfFrameTimer), pSSM);
return rc;
}
/**
* Done state save operation.
*
* @returns VBox load code.
* @param pDevIns Device instance of the device which registered the data unit.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) ohciR3SaveDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
POHCIROOTHUB pRh = &pThis->RootHub;
OHCIROOTHUB Rh;
unsigned i;
LogFlow(("ohciR3SaveDone: \n"));
/*
* NULL the dev pointers.
*/
Rh = *pRh;
for (i = 0; i < RT_ELEMENTS(pRh->aPorts); i++)
pRh->aPorts[i].pDev = NULL;
/*
* Attach the devices.
*/
for (i = 0; i < RT_ELEMENTS(pRh->aPorts); i++)
{
PVUSBIDEVICE pDev = Rh.aPorts[i].pDev;
if (pDev)
VUSBIRhAttachDevice(pRh->pIRhConn, pDev);
}
return VINF_SUCCESS;
}
/**
* Prepare loading the state of the OHCI device.
* This must detach the devices currently attached and save
* the up for reconnect after the state load have been completed
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSM The handle to the saved state.
* @param u32Version The data unit version number.
*/
static DECLCALLBACK(int) ohciR3LoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
int rc = VINF_SUCCESS;
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
LogFlow(("ohciR3LoadPrep:\n"));
if (!pThis->pLoad)
{
POHCIROOTHUB pRh = &pThis->RootHub;
OHCILOAD Load;
unsigned i;
/*
* Detach all devices which are present in this session. Save them in the load
* structure so we can reattach them after restoring the guest.
*/
Load.pTimer = NULL;
Load.cDevs = 0;
for (i = 0; i < RT_ELEMENTS(pRh->aPorts); i++)
{
PVUSBIDEVICE pDev = pRh->aPorts[i].pDev;
if (pDev)
{
Load.apDevs[Load.cDevs++] = pDev;
VUSBIRhDetachDevice(pRh->pIRhConn, pDev);
Assert(!pRh->aPorts[i].pDev);
}
}
/*
* Any devices to reattach, if so duplicate the Load struct.
*/
if (Load.cDevs)
{
pThis->pLoad = (POHCILOAD)PDMDevHlpMMHeapAlloc(pDevIns, sizeof(Load));
if (!pThis->pLoad)
return VERR_NO_MEMORY;
*pThis->pLoad = Load;
}
}
/* else: we ASSUME no device can be attached or detach in the period
* between a state load and the pLoad stuff is processed. */
return rc;
}
/**
* Loads the state of the OHCI device.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSM The handle to the saved state.
* @param uVersion The data unit version number.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) ohciR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
int rc;
LogFlow(("ohciR3LoadExec:\n"));
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
if (uVersion == OHCI_SAVED_STATE_VERSION)
{
rc = SSMR3GetStructEx(pSSM, pThis, sizeof(*pThis), 0 /*fFlags*/, &g_aOhciFields[0], NULL);
if (RT_FAILURE(rc))
return rc;
}
else if (uVersion == OHCI_SAVED_STATE_VERSION_MEM_HELL)
{
static SSMFIELD const s_aOhciFields22[] =
{
SSMFIELD_ENTRY_OLD( PciDev.config, 256), /* DevPCI restores this. */
SSMFIELD_ENTRY_OLD( PciDev.Int, 224),
SSMFIELD_ENTRY_OLD( PciDev.devfn, 4),
SSMFIELD_ENTRY_OLD( PciDev.Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( PciDev.name),
SSMFIELD_ENTRY_OLD_HCPTR( PciDev.pDevIns),
SSMFIELD_ENTRY_OLD_HCPTR( pDevInsR3),
SSMFIELD_ENTRY_OLD_HCPTR( pEndOfFrameTimerR3),
SSMFIELD_ENTRY_OLD_HCPTR( pDevInsR0),
SSMFIELD_ENTRY_OLD_HCPTR( pEndOfFrameTimerR0),
SSMFIELD_ENTRY_OLD_RCPTR( pDevInsRC),
SSMFIELD_ENTRY_OLD_RCPTR( pEndOfFrameTimerRC),
SSMFIELD_ENTRY( OHCI, SofTime),
SSMFIELD_ENTRY_CUSTOM( dpic+fno, RT_OFFSETOF(OHCI, SofTime) + RT_SIZEOFMEMB(OHCI, SofTime), 4),
SSMFIELD_ENTRY_OLD( MMIOBase, 4), /* DevPCI implicitly restores this. */
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.pIBase),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.pIRhConn),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.pIDev),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IBase.pfnQueryInterface),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.pfnGetAvailablePorts),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.pfnGetUSBVersions),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.pfnAttach),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.pfnDetach),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.pfnReset),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.pfnXferCompletion),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.pfnXferError),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.IRhPort.Alignment),
SSMFIELD_ENTRY_OLD( RootHub.Led, 16), /* No device restored. */
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.ILeds.pfnQueryStatusLed),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.pLedsConnector),
SSMFIELD_ENTRY( OHCI, RootHub.status),
SSMFIELD_ENTRY( OHCI, RootHub.desc_a),
SSMFIELD_ENTRY( OHCI, RootHub.desc_b),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.Alignment0, 4),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[0].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[0].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[0].pDev),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[1].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[1].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[1].pDev),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[2].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[2].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[2].pDev),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[3].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[3].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[3].pDev),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[4].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[4].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[4].pDev),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[5].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[5].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[5].pDev),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[6].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[6].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[6].pDev),
SSMFIELD_ENTRY( OHCI, RootHub.aPorts[7].fReg),
SSMFIELD_ENTRY_OLD_PAD_HC64( RootHub.aPorts[7].Alignment0, 4),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.aPorts[7].pDev),
SSMFIELD_ENTRY_OLD_HCPTR( RootHub.pThis),
SSMFIELD_ENTRY( OHCI, ctl),
SSMFIELD_ENTRY( OHCI, status),
SSMFIELD_ENTRY( OHCI, intr_status),
SSMFIELD_ENTRY( OHCI, intr),
SSMFIELD_ENTRY( OHCI, hcca),
SSMFIELD_ENTRY( OHCI, per_cur),
SSMFIELD_ENTRY( OHCI, ctrl_cur),
SSMFIELD_ENTRY( OHCI, ctrl_head),
SSMFIELD_ENTRY( OHCI, bulk_cur),
SSMFIELD_ENTRY( OHCI, bulk_head),
SSMFIELD_ENTRY( OHCI, done),
SSMFIELD_ENTRY_CUSTOM( fsmps+fit+fi+frt, RT_OFFSETOF(OHCI, done) + RT_SIZEOFMEMB(OHCI, done), 4),
SSMFIELD_ENTRY( OHCI, HcFmNumber),
SSMFIELD_ENTRY( OHCI, pstart),
SSMFIELD_ENTRY_OLD( cTicksPerFrame, 8), /* done by the constructor */
SSMFIELD_ENTRY_OLD( cTicksPerUsbTick, 8), /* ditto */
SSMFIELD_ENTRY_OLD( cInFlight, 4), /* no in-flight stuff when saving. */
SSMFIELD_ENTRY_OLD( Alignment1, 4),
SSMFIELD_ENTRY_OLD( aInFlight, 257 * 8),
SSMFIELD_ENTRY_OLD_PAD_HC64( aInFlight, 257 * 8),
SSMFIELD_ENTRY_OLD( cInDoneQueue, 4), /* strict builds only, so don't bother. */
SSMFIELD_ENTRY_OLD( aInDoneQueue, 4*64),
SSMFIELD_ENTRY_OLD( u32FmDoneQueueTail, 4), /* logging only */
SSMFIELD_ENTRY_OLD_PAD_HC32( Alignment2, 4),
SSMFIELD_ENTRY_OLD_HCPTR( pLoad),
SSMFIELD_ENTRY_OLD( StatCanceledIsocUrbs, 8),
SSMFIELD_ENTRY_OLD( StatCanceledGenUrbs, 8),
SSMFIELD_ENTRY_OLD( StatDroppedUrbs, 8),
SSMFIELD_ENTRY_OLD( StatTimer, 32),
SSMFIELD_ENTRY_TERM()
};
/* deserialize the struct */
rc = SSMR3GetStructEx(pSSM, pThis, sizeof(*pThis), SSMSTRUCT_FLAGS_NO_MARKERS /*fFlags*/, &s_aOhciFields22[0], NULL);
if (RT_FAILURE(rc))
return rc;
/* check delimiter */
uint32_t u32;
rc = SSMR3GetU32(pSSM, &u32);
if (RT_FAILURE(rc))
return rc;
AssertMsgReturn(u32 == ~0U, ("%#x\n", u32), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
}
else
AssertMsgFailedReturn(("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
/*
* Finally restore the timer.
*/
return TMR3TimerLoad(pThis->pEndOfFrameTimerR3, pSSM);
}
/**
* Done state load operation.
*
* @returns VBox load code.
* @param pDevIns Device instance of the device which registered the data unit.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) ohciR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
LogFlow(("ohciR3LoadDone:\n"));
/*
* Start a timer if we've got devices to reattach
*/
if (pThis->pLoad)
{
int rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, ohciR3LoadReattachDevices, pThis,
TMTIMER_FLAGS_NO_CRIT_SECT, "OHCI reattach devices on load",
&pThis->pLoad->pTimer);
if (RT_SUCCESS(rc))
rc = TMTimerSetMillies(pThis->pLoad->pTimer, 250);
return rc;
}
return VINF_SUCCESS;
}
/**
* Reattaches devices after a saved state load.
*/
static DECLCALLBACK(void) ohciR3LoadReattachDevices(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
{
POHCI pThis = (POHCI)pvUser;
POHCILOAD pLoad = pThis->pLoad;
POHCIROOTHUB pRh = &pThis->RootHub;
LogFlow(("ohciR3LoadReattachDevices:\n"));
/*
* Reattach devices.
*/
for (unsigned i = 0; i < pLoad->cDevs; i++)
VUSBIRhAttachDevice(pRh->pIRhConn, pLoad->apDevs[i]);
/*
* Cleanup.
*/
TMR3TimerDestroy(pTimer);
MMR3HeapFree(pLoad);
pThis->pLoad = NULL;
}
/**
* Reset notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ohciR3Reset(PPDMDEVINS pDevIns)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
LogFlow(("ohciR3Reset:\n"));
/*
* There is no distinction between cold boot, warm reboot and software reboots,
* all of these are treated as cold boots. We are also doing the initialization
* job of a BIOS or SMM driver.
*
* Important: Don't confuse UsbReset with hardware reset. Hardware reset is
* just one way of getting into the UsbReset state.
*/
ohciBusStop(pThis);
ohciDoReset(pThis, OHCI_USB_RESET, true /* reset devices */);
}
/**
* Info handler, device version. Dumps OHCI control registers.
*
* @param pDevIns Device instance which registered the info.
* @param pHlp Callback functions for doing output.
* @param pszArgs Argument string. Optional and specific to the handler.
*/
static DECLCALLBACK(void) ohciR3InfoRegs(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
uint32_t val, ctl, status;
/* Control register */
ctl = pThis->ctl;
pHlp->pfnPrintf(pHlp, "HcControl: %08x - CBSR=%d PLE=%d IE=%d CLE=%d BLE=%d HCFS=%#x IR=%d RWC=%d RWE=%d\n",
ctl, ctl & 3, (ctl >> 2) & 1, (ctl >> 3) & 1, (ctl >> 4) & 1, (ctl >> 5) & 1, (ctl >> 6) & 3, (ctl >> 8) & 1,
(ctl >> 9) & 1, (ctl >> 10) & 1);
/* Command status register */
status = pThis->status;
pHlp->pfnPrintf(pHlp, "HcCommandStatus: %08x - HCR=%d CLF=%d BLF=%d OCR=%d SOC=%d\n",
status, status & 1, (status >> 1) & 1, (status >> 2) & 1, (status >> 3) & 1, (status >> 16) & 3);
/* Interrupt status register */
val = pThis->intr_status;
pHlp->pfnPrintf(pHlp, "HcInterruptStatus: %08x - SO=%d WDH=%d SF=%d RD=%d UE=%d FNO=%d RHSC=%d OC=%d\n",
val, val & 1, (val >> 1) & 1, (val >> 2) & 1, (val >> 3) & 1, (val >> 4) & 1, (val >> 5) & 1,
(val >> 6) & 1, (val >> 30) & 1);
/* Interrupt enable register */
val = pThis->intr;
pHlp->pfnPrintf(pHlp, "HcInterruptEnable: %08x - SO=%d WDH=%d SF=%d RD=%d UE=%d FNO=%d RHSC=%d OC=%d MIE=%d\n",
val, val & 1, (val >> 1) & 1, (val >> 2) & 1, (val >> 3) & 1, (val >> 4) & 1, (val >> 5) & 1,
(val >> 6) & 1, (val >> 30) & 1, (val >> 31) & 1);
/* HCCA address register */
pHlp->pfnPrintf(pHlp, "HcHCCA: %08x\n", pThis->hcca);
/* Current periodic ED register */
pHlp->pfnPrintf(pHlp, "HcPeriodCurrentED: %08x\n", pThis->per_cur);
/* Control ED registers */
pHlp->pfnPrintf(pHlp, "HcControlHeadED: %08x\n", pThis->ctrl_head);
pHlp->pfnPrintf(pHlp, "HcControlCurrentED: %08x\n", pThis->ctrl_cur);
/* Bulk ED registers */
pHlp->pfnPrintf(pHlp, "HcBulkHeadED: %08x\n", pThis->bulk_head);
pHlp->pfnPrintf(pHlp, "HcBulkCurrentED: %08x\n", pThis->bulk_cur);
/* Done head register */
pHlp->pfnPrintf(pHlp, "HcDoneHead: %08x\n", pThis->done);
pHlp->pfnPrintf(pHlp, "\n");
}
/**
* Relocate device instance data.
*
* @returns VBox status.
* @param pDevIns The device instance data.
* @param offDelta The relocation delta.
*/
static DECLCALLBACK(void) ohciR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
pThis->pEndOfFrameTimerRC = TMTimerRCPtr(pThis->pEndOfFrameTimerR3);
}
/**
* Destruct a device instance.
*
* Most VM resources are freed by the VM. This callback is provided so that any non-VM
* resources can be freed correctly.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(int) ohciR3Destruct(PPDMDEVINS pDevIns)
{
PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns);
/*
* Tear down the per endpoint in-flight tracking...
*/
return VINF_SUCCESS;
}
/**
* @interface_method_impl{PDMDEVREG,pfnConstruct,OHCI constructor}
*/
static DECLCALLBACK(int) ohciR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
{
POHCI pThis = PDMINS_2_DATA(pDevIns, POHCI);
PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
/*
* Init instance data.
*/
pThis->pDevInsR3 = pDevIns;
pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
PCIDevSetVendorId (&pThis->PciDev, 0x106b);
PCIDevSetDeviceId (&pThis->PciDev, 0x003f);
PCIDevSetClassProg (&pThis->PciDev, 0x10); /* OHCI */
PCIDevSetClassSub (&pThis->PciDev, 0x03);
PCIDevSetClassBase (&pThis->PciDev, 0x0c);
PCIDevSetInterruptPin (&pThis->PciDev, 0x01);
#ifdef VBOX_WITH_MSI_DEVICES
PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST);
PCIDevSetCapabilityList(&pThis->PciDev, 0x80);
#endif
pThis->RootHub.pOhci = pThis;
pThis->RootHub.IBase.pfnQueryInterface = ohciRhQueryInterface;
pThis->RootHub.IRhPort.pfnGetAvailablePorts = ohciRhGetAvailablePorts;
pThis->RootHub.IRhPort.pfnGetUSBVersions = ohciRhGetUSBVersions;
pThis->RootHub.IRhPort.pfnAttach = ohciRhAttach;
pThis->RootHub.IRhPort.pfnDetach = ohciRhDetach;
pThis->RootHub.IRhPort.pfnReset = ohciRhReset;
pThis->RootHub.IRhPort.pfnXferCompletion = ohciRhXferCompletion;
pThis->RootHub.IRhPort.pfnXferError = ohciRhXferError;
/* USB LED */
pThis->RootHub.Led.u32Magic = PDMLED_MAGIC;
pThis->RootHub.ILeds.pfnQueryStatusLed = ohciRhQueryStatusLed;
/*
* Read configuration. No configuration keys are currently supported.
*/
PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "RZEnabled", "");
int rc = CFGMR3QueryBoolDef(pCfg, "RZEnabled", &pThis->fRZEnabled, true);
AssertLogRelRCReturn(rc, rc);
/*
* Register PCI device and I/O region.
*/
rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev);
if (RT_FAILURE(rc))
return rc;
#ifdef VBOX_WITH_MSI_DEVICES
PDMMSIREG MsiReg;
RT_ZERO(MsiReg);
MsiReg.cMsiVectors = 1;
MsiReg.iMsiCapOffset = 0x80;
MsiReg.iMsiNextOffset = 0x00;
rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
if (RT_FAILURE(rc))
{
PCIDevSetCapabilityList(&pThis->PciDev, 0x0);
/* That's OK, we can work without MSI */
}
#endif
rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 4096, PCI_ADDRESS_SPACE_MEM, ohciR3Map);
if (RT_FAILURE(rc))
return rc;
/*
* Create the end-of-frame timer.
*/
rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, ohciFrameBoundaryTimer, pThis,
TMTIMER_FLAGS_DEFAULT_CRIT_SECT, "USB Frame Timer",
&pThis->pEndOfFrameTimerR3);
if (RT_FAILURE(rc))
return rc;
pThis->pEndOfFrameTimerR0 = TMTimerR0Ptr(pThis->pEndOfFrameTimerR3);
pThis->pEndOfFrameTimerRC = TMTimerRCPtr(pThis->pEndOfFrameTimerR3);
/*
* Register the saved state data unit.
*/
rc = PDMDevHlpSSMRegisterEx(pDevIns, OHCI_SAVED_STATE_VERSION, sizeof(*pThis), NULL,
NULL, NULL, NULL,
ohciR3SavePrep, ohciR3SaveExec, ohciR3SaveDone,
ohciR3LoadPrep, ohciR3LoadExec, ohciR3LoadDone);
if (RT_FAILURE(rc))
return rc;
/*
* Attach to the VBox USB RootHub Driver on LUN #0.
*/
rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThis->RootHub.IBase, &pThis->RootHub.pIBase, "RootHub");
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Configuration error: No roothub driver attached to LUN #0!\n"));
return rc;
}
pThis->RootHub.pIRhConn = PDMIBASE_QUERY_INTERFACE(pThis->RootHub.pIBase, VUSBIROOTHUBCONNECTOR);
AssertMsgReturn(pThis->RootHub.pIRhConn,
("Configuration error: The driver doesn't provide the VUSBIROOTHUBCONNECTOR interface!\n"),
VERR_PDM_MISSING_INTERFACE);
pThis->RootHub.pIDev = PDMIBASE_QUERY_INTERFACE(pThis->RootHub.pIBase, VUSBIDEVICE);
AssertMsgReturn(pThis->RootHub.pIDev,
("Configuration error: The driver doesn't provide the VUSBIDEVICE interface!\n"),
VERR_PDM_MISSING_INTERFACE);
/*
* Attach status driver (optional).
*/
PPDMIBASE pBase;
rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThis->RootHub.IBase, &pBase, "Status Port");
if (RT_SUCCESS(rc))
pThis->RootHub.pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS);
else if (rc != VERR_PDM_NO_ATTACHED_DRIVER)
{
AssertMsgFailed(("Failed to attach to status driver. rc=%Rrc\n", rc));
return rc;
}
/*
* Calculate the timer intervals.
* This assumes that the VM timer doesn't change frequency during the run.
*/
pThis->u64TimerHz = TMTimerGetFreq(pThis->CTX_SUFF(pEndOfFrameTimer));
ohciCalcTimerIntervals(pThis, OHCI_DEFAULT_TIMER_FREQ);
Log(("ohci: cTicksPerFrame=%RU64 cTicksPerUsbTick=%RU64\n",
pThis->cTicksPerFrame, pThis->cTicksPerUsbTick));
/*
* Do a hardware reset.
*/
ohciDoReset(pThis, OHCI_USB_RESET, false /* don't reset devices */);
#ifdef VBOX_WITH_STATISTICS
/*
* Register statistics.
*/
PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCanceledIsocUrbs, STAMTYPE_COUNTER, "/Devices/OHCI/CanceledIsocUrbs", STAMUNIT_OCCURENCES, "Detected canceled isochronous URBs.");
PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCanceledGenUrbs, STAMTYPE_COUNTER, "/Devices/OHCI/CanceledGenUrbs", STAMUNIT_OCCURENCES, "Detected canceled general URBs.");
PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDroppedUrbs, STAMTYPE_COUNTER, "/Devices/OHCI/DroppedUrbs", STAMUNIT_OCCURENCES, "Dropped URBs (endpoint halted, or URB canceled).");
PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTimer, STAMTYPE_PROFILE, "/Devices/OHCI/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling ohciFrameBoundaryTimer.");
#endif
/*
* Register debugger info callbacks.
*/
PDMDevHlpDBGFInfoRegister(pDevIns, "ohci", "OHCI control registers.", ohciR3InfoRegs);
#if 0/*def DEBUG_bird*/
// g_fLogInterruptEPs = true;
g_fLogControlEPs = true;
g_fLogBulkEPs = true;
#endif
return VINF_SUCCESS;
}
const PDMDEVREG g_DeviceOHCI =
{
/* u32version */
PDM_DEVREG_VERSION,
/* szName */
"usb-ohci",
/* szRCMod */
"VBoxDDGC.gc",
/* szR0Mod */
"VBoxDDR0.r0",
/* pszDescription */
"OHCI USB controller.\n",
/* fFlags */
PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_BUS_USB,
/* cMaxInstances */
~0U,
/* cbInstance */
sizeof(OHCI),
/* pfnConstruct */
ohciR3Construct,
/* pfnDestruct */
ohciR3Destruct,
/* pfnRelocate */
ohciR3Relocate,
/* pfnMemSetup */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
ohciR3Reset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
NULL,
/* pfnDetach */
NULL,
/* pfnQueryInterface */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
NULL,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */