DevFdc.cpp revision 0a6d755bc1e433527089985f19fec65ee6c9291a
/* $Id$ */
/** @file
* VBox storage devices: Floppy disk controller
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
* --------------------------------------------------------------------
*
* This code is based on:
*
* QEMU Floppy disk emulator (Intel 82078)
*
* Copyright (c) 2003 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DEV_FDC
#include <VBox/vmm/pdmdev.h>
#include <iprt/assert.h>
#include <iprt/string.h>
#include <iprt/uuid.h>
#include "VBoxDD.h"
#include "vl_vbox.h"
#define FDC_SAVESTATE_CURRENT 2 /* The new and improved saved state. */
#define FDC_SAVESTATE_OLD 1 /* The original saved state. */
#define MAX_FD 2
/********************************************************/
/* debug Floppy devices */
/* #define DEBUG_FLOPPY */
#ifndef VBOX
#ifdef DEBUG_FLOPPY
#define FLOPPY_DPRINTF(fmt, args...) \
do { printf("FLOPPY: " fmt , ##args); } while (0)
#endif
#else /* !VBOX */
# ifdef LOG_ENABLED
static void FLOPPY_DPRINTF (const char *fmt, ...)
{
if (LogIsEnabled ()) {
va_list args;
va_start (args, fmt);
RTLogLogger (NULL, NULL, "floppy: %N", fmt, &args); /* %N - nested va_list * type formatting call. */
va_end (args);
}
}
# else
DECLINLINE(void) FLOPPY_DPRINTF(const char *pszFmt, ...) {}
# endif
#endif /* !VBOX */
#ifndef VBOX
#define FLOPPY_ERROR(fmt, args...) \
do { printf("FLOPPY ERROR: %s: " fmt, __func__ , ##args); } while (0)
#else /* VBOX */
# define FLOPPY_ERROR RTLogPrintf
#endif /* VBOX */
#ifdef VBOX
typedef struct fdctrl_t fdctrl_t;
#endif /* VBOX */
/********************************************************/
/* Floppy drive emulation */
#define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
#define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
/* Will always be a fixed parameter for us */
#define FD_SECTOR_LEN 512
#define FD_SECTOR_SC 2 /* Sector size code */
#define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
/* Floppy disk drive emulation */
typedef enum fdisk_type_t {
FDRIVE_DISK_288 = 0x01, /* 2.88 MB disk */
FDRIVE_DISK_144 = 0x02, /* 1.44 MB disk */
FDRIVE_DISK_720 = 0x03, /* 720 kB disk */
FDRIVE_DISK_USER = 0x04, /* User defined geometry */
FDRIVE_DISK_NONE = 0x05 /* No disk */
} fdisk_type_t;
typedef enum fdrive_type_t {
FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */
FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */
FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */
FDRIVE_DRV_NONE = 0x03 /* No drive connected */
#ifdef VBOX
, FDRIVE_DRV_FAKE_15_6 = 0x0e /* Fake 15.6 MB drive. */
, FDRIVE_DRV_FAKE_63_5 = 0x0f /* Fake 63.5 MB drive. */
#endif
} fdrive_type_t;
typedef uint8_t fdrive_flags_t;
#define FDISK_DBL_SIDES UINT8_C(0x01)
typedef enum fdrive_rate_t {
FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
FDRIVE_RATE_1M = 0x03 /* 1 Mbps */
} fdrive_rate_t;
/**
* The status for one drive.
*
* @implements PDMIBASE
* @implements PDMIBLOCKPORT
* @implements PDMIMOUNTNOTIFY
*/
typedef struct fdrive_t {
#ifndef VBOX
BlockDriverState *bs;
#else /* VBOX */
/** Pointer to the attached driver's base interface. */
R3PTRTYPE(PPDMIBASE) pDrvBase;
/** Pointer to the attached driver's block interface. */
R3PTRTYPE(PPDMIBLOCK) pDrvBlock;
/** Pointer to the attached driver's block bios interface. */
R3PTRTYPE(PPDMIBLOCKBIOS) pDrvBlockBios;
/** Pointer to the attached driver's mount interface.
* This is NULL if the driver isn't a removable unit. */
R3PTRTYPE(PPDMIMOUNT) pDrvMount;
/** The base interface. */
PDMIBASE IBase;
/** The block port interface. */
PDMIBLOCKPORT IPort;
/** The mount notify interface. */
PDMIMOUNTNOTIFY IMountNotify;
/** The LUN #. */
RTUINT iLUN;
/** The LED for this LUN. */
PDMLED Led;
#endif
/* Drive status */
fdrive_type_t drive;
uint8_t perpendicular; /* 2.88 MB access mode */
uint8_t dsk_chg; /* Disk change line */
/* Position */
uint8_t head;
uint8_t track;
uint8_t sect;
uint8_t ltrk; /* Logical track */
/* Media */
fdrive_flags_t flags;
uint8_t last_sect; /* Nb sector per track */
uint8_t max_track; /* Nb of tracks */
uint16_t bps; /* Bytes per sector */
uint8_t ro; /* Is read-only */
uint8_t media_rate; /* Data rate of medium */
} fdrive_t;
#define NUM_SIDES(drv) (drv->flags & FDISK_DBL_SIDES ? 2 : 1)
static void fd_init(fdrive_t *drv, bool fInit)
{
/* Drive */
#ifndef VBOX
drv->drive = FDRIVE_DRV_NONE;
#else /* VBOX */
if (fInit) {
/* Fixate the drive type at init time if possible. */
if (drv->pDrvBlock) {
PDMBLOCKTYPE enmType = drv->pDrvBlock->pfnGetType(drv->pDrvBlock);
switch (enmType) {
case PDMBLOCKTYPE_FLOPPY_360:
case PDMBLOCKTYPE_FLOPPY_1_20:
drv->drive = FDRIVE_DRV_120;
break;
case PDMBLOCKTYPE_FLOPPY_720:
case PDMBLOCKTYPE_FLOPPY_1_44:
drv->drive = FDRIVE_DRV_144;
break;
default:
AssertFailed();
case PDMBLOCKTYPE_FLOPPY_2_88:
drv->drive = FDRIVE_DRV_288;
break;
case PDMBLOCKTYPE_FLOPPY_FAKE_15_6:
drv->drive = FDRIVE_DRV_FAKE_15_6;
break;
case PDMBLOCKTYPE_FLOPPY_FAKE_63_5:
drv->drive = FDRIVE_DRV_FAKE_63_5;
break;
}
} else {
drv->drive = FDRIVE_DRV_NONE;
}
} /* else: The BIOS (and others) get the drive type via the CMOS, so
don't change it after the VM has been constructed. */
#endif /* VBOX */
drv->perpendicular = 0;
/* Disk */
drv->last_sect = 0;
drv->max_track = 0;
}
static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
uint8_t last_sect, uint8_t num_sides)
{
return (((track * num_sides) + head) * last_sect) + sect - 1; /* sect >= 1 */
}
/* Returns current position, in sectors, for given drive */
static int fd_sector(fdrive_t *drv)
{
return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, NUM_SIDES(drv));
}
/* Seek to a new position:
* returns 0 if already on right track
* returns 1 if track changed
* returns 2 if track is invalid
* returns 3 if sector is invalid
* returns 4 if seek is disabled
*/
static int fd_seek(fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect,
int enable_seek)
{
int sector;
int ret;
if (track > drv->max_track ||
(head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 2;
}
if (sect > drv->last_sect || sect < 1) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 3;
}
sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
ret = 0;
if (sector != fd_sector(drv)) {
#if 0
if (!enable_seek) {
FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track, drv->last_sect);
return 4;
}
#endif
drv->head = head;
if (drv->track != track)
ret = 1;
drv->track = track;
drv->sect = sect;
}
drv->ltrk = drv->track;
return ret;
}
/* Set drive back to track 0 */
static void fd_recalibrate(fdrive_t *drv)
{
FLOPPY_DPRINTF("recalibrate\n");
drv->head = 0;
drv->track = 0;
drv->ltrk = 0;
drv->sect = 1;
}
/* Recognize floppy formats */
typedef struct fd_format_t {
fdrive_type_t drive;
fdisk_type_t disk;
uint8_t last_sect; /**< Number of sectors. */
uint8_t max_track; /**< Number of tracks. */
uint8_t max_head; /**< Max head number. */
fdrive_rate_t rate;
const char *str;
} fd_format_t;
/* Note: Low-density disks (160K/180K/320K/360K) use 250 Kbps data rate
* in 40-track drives, but 300 Kbps in high-capacity 80-track drives.
*/
static fd_format_t fd_formats[] = {
/* First entry is default format */
/* 1.44 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 80, 1, FDRIVE_RATE_500K, "1.68 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 82, 1, FDRIVE_RATE_500K, "1.72 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 83, 1, FDRIVE_RATE_500K, "1.74 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 22, 80, 1, FDRIVE_RATE_500K, "1.76 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 23, 80, 1, FDRIVE_RATE_500K, "1.84 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 24, 80, 1, FDRIVE_RATE_500K, "1.92 MB 3\"1/2", },
/* 2.88 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 36, 80, 1, FDRIVE_RATE_1M, "2.88 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 39, 80, 1, FDRIVE_RATE_1M, "3.12 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 40, 80, 1, FDRIVE_RATE_1M, "3.2 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 44, 80, 1, FDRIVE_RATE_1M, "3.52 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 48, 80, 1, FDRIVE_RATE_1M, "3.84 MB 3\"1/2", },
/* 720 kB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 1, FDRIVE_RATE_250K, "720 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 80, 1, FDRIVE_RATE_250K, "800 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 82, 1, FDRIVE_RATE_250K, "820 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 83, 1, FDRIVE_RATE_250K, "830 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 13, 80, 1, FDRIVE_RATE_250K, "1.04 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 14, 80, 1, FDRIVE_RATE_250K, "1.12 MB 3\"1/2", },
/* 1.2 MB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 15, 80, 1, FDRIVE_RATE_500K, "1.2 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 82, 1, FDRIVE_RATE_500K, "1.48 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 83, 1, FDRIVE_RATE_500K, "1.49 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB 5\"1/4", },
/* 720 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 80, 1, FDRIVE_RATE_250K, "720 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 11, 80, 1, FDRIVE_RATE_250K, "880 kB 5\"1/4", },
/* 360 kB 5"1/4 floppy disks (newer 9-sector formats) */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 1, FDRIVE_RATE_300K, "360 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 0, FDRIVE_RATE_300K, "180 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 41, 1, FDRIVE_RATE_300K, "410 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 42, 1, FDRIVE_RATE_300K, "420 kB 5\"1/4", },
/* 320 kB 5"1/4 floppy disks (old 8-sector formats) */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 1, FDRIVE_RATE_300K, "320 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 0, FDRIVE_RATE_300K, "160 kB 5\"1/4", },
/* 1.2 MB and low density 3"1/2 floppy 'aliases' */
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 15, 80, 1, FDRIVE_RATE_500K, " 1.2 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 40, 1, FDRIVE_RATE_300K, "360 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 40, 0, FDRIVE_RATE_300K, "180 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 8, 40, 1, FDRIVE_RATE_300K, "320 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 8, 40, 0, FDRIVE_RATE_300K, "160 kB 3\"1/2", },
#ifdef VBOX /* For larger than real life floppy images (see DrvBlock.cpp). */
/* 15.6 MB fake floppy disk (just need something big). */
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_USER, 63, 255, 1, FDRIVE_RATE_1M, "15.6 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_288, 36, 80, 1, FDRIVE_RATE_1M, "2.88 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_288, 39, 80, 1, FDRIVE_RATE_1M, "3.12 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_288, 40, 80, 1, FDRIVE_RATE_1M, "3.2 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_288, 44, 80, 1, FDRIVE_RATE_1M, "3.52 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_288, 48, 80, 1, FDRIVE_RATE_1M, "3.84 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 21, 80, 1, FDRIVE_RATE_500K, "1.68 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 21, 82, 1, FDRIVE_RATE_500K, "1.72 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 21, 83, 1, FDRIVE_RATE_500K, "1.74 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 22, 80, 1, FDRIVE_RATE_500K, "1.76 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 23, 80, 1, FDRIVE_RATE_500K, "1.84 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_144, 24, 80, 1, FDRIVE_RATE_500K, "1.92 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_720, 9, 80, 1, FDRIVE_RATE_250K, "720 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_720, 10, 80, 1, FDRIVE_RATE_250K, "800 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_720, 10, 82, 1, FDRIVE_RATE_250K, "820 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_720, 10, 83, 1, FDRIVE_RATE_250K, "830 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_720, 13, 80, 1, FDRIVE_RATE_250K, "1.04 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_720, 14, 80, 1, FDRIVE_RATE_250K, "1.12 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_15_6, FDRIVE_DISK_720, 9, 80, 0, FDRIVE_RATE_250K, "360 kB 3\"1/2", },
/* 63.5 MB fake floppy disk (just need something big). */
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_USER, 255, 255, 1, FDRIVE_RATE_1M, "63.5 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_USER, 63, 255, 1, FDRIVE_RATE_1M, "15.6 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_288, 36, 80, 1, FDRIVE_RATE_1M, "2.88 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_288, 39, 80, 1, FDRIVE_RATE_1M, "3.12 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_288, 40, 80, 1, FDRIVE_RATE_1M, "3.2 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_288, 44, 80, 1, FDRIVE_RATE_1M, "3.52 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_288, 48, 80, 1, FDRIVE_RATE_1M, "3.84 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 21, 80, 1, FDRIVE_RATE_500K, "1.68 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 21, 82, 1, FDRIVE_RATE_500K, "1.72 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 21, 83, 1, FDRIVE_RATE_500K, "1.74 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 22, 80, 1, FDRIVE_RATE_500K, "1.76 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 23, 80, 1, FDRIVE_RATE_500K, "1.84 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_144, 24, 80, 1, FDRIVE_RATE_500K, "1.92 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_720, 9, 80, 1, FDRIVE_RATE_250K, "720 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_720, 10, 80, 1, FDRIVE_RATE_250K, "800 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_720, 10, 82, 1, FDRIVE_RATE_250K, "820 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_720, 10, 83, 1, FDRIVE_RATE_250K, "830 kB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_720, 13, 80, 1, FDRIVE_RATE_250K, "1.04 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_720, 14, 80, 1, FDRIVE_RATE_250K, "1.12 MB 3\"1/2", },
{ FDRIVE_DRV_FAKE_63_5, FDRIVE_DISK_720, 9, 80, 0, FDRIVE_RATE_250K, "360 kB 3\"1/2", },
#endif
/* end */
{ FDRIVE_DRV_NONE, FDRIVE_DISK_NONE, (uint8_t)-1, (uint8_t)-1, 0, (fdrive_rate_t)0, NULL, },
};
/* Revalidate a disk drive after a disk change */
static void fd_revalidate(fdrive_t *drv)
{
const fd_format_t *parse;
uint64_t nb_sectors, size;
int i, first_match, match;
int nb_heads, max_track, last_sect, ro;
FLOPPY_DPRINTF("revalidate\n");
#ifndef VBOX
if (drv->bs != NULL && bdrv_is_inserted(drv->bs)) {
ro = bdrv_is_read_only(drv->bs);
bdrv_get_geometry_hint(drv->bs, &nb_heads, &max_track, &last_sect);
#else /* VBOX */
if ( drv->pDrvBlock
&& drv->pDrvMount
&& drv->pDrvMount->pfnIsMounted (drv->pDrvMount)) {
ro = drv->pDrvBlock->pfnIsReadOnly (drv->pDrvBlock);
nb_heads = max_track = last_sect = 0;
#endif /* VBOX */
if (nb_heads != 0 && max_track != 0 && last_sect != 0) {
FLOPPY_DPRINTF("User defined disk (%d %d %d)",
nb_heads - 1, max_track, last_sect);
} else {
#ifndef VBOX
bdrv_get_geometry(drv->bs, &nb_sectors);
#else /* VBOX */
{
uint64_t size2 = drv->pDrvBlock->pfnGetSize (drv->pDrvBlock);
nb_sectors = size2 / FD_SECTOR_LEN;
}
#endif /* VBOX */
match = -1;
first_match = -1;
for (i = 0;; i++) {
parse = &fd_formats[i];
if (parse->drive == FDRIVE_DRV_NONE)
break;
if (drv->drive == parse->drive ||
drv->drive == FDRIVE_DRV_NONE) {
size = (parse->max_head + 1) * parse->max_track *
parse->last_sect;
if (nb_sectors == size) {
match = i;
break;
}
if (first_match == -1)
first_match = i;
}
}
if (match == -1) {
if (first_match == -1)
match = 1;
else
match = first_match;
parse = &fd_formats[match];
}
nb_heads = parse->max_head + 1;
max_track = parse->max_track;
last_sect = parse->last_sect;
drv->drive = parse->drive;
#ifdef VBOX
drv->media_rate = parse->rate;
#endif
FLOPPY_DPRINTF("%s floppy disk (%d h %d t %d s) %s\n", parse->str,
nb_heads, max_track, last_sect, ro ? "ro" : "rw");
LogRel(("%s floppy disk (%d h %d t %d s) %s\n", parse->str,
nb_heads, max_track, last_sect, ro ? "ro" : "rw"));
}
if (nb_heads == 1) {
drv->flags &= ~FDISK_DBL_SIDES;
} else {
drv->flags |= FDISK_DBL_SIDES;
}
drv->max_track = max_track;
drv->last_sect = last_sect;
drv->ro = ro;
} else {
FLOPPY_DPRINTF("No disk in drive\n");
drv->last_sect = 0;
drv->max_track = 0;
drv->flags &= ~FDISK_DBL_SIDES;
drv->dsk_chg = true; /* Disk change line active. */
}
}
/********************************************************/
/* Intel 82078 floppy disk controller emulation */
static void fdctrl_reset(fdctrl_t *fdctrl, int do_irq);
static void fdctrl_reset_fifo(fdctrl_t *fdctrl);
#ifndef VBOX
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len);
#else /* VBOX: */
static DECLCALLBACK(uint32_t) fdctrl_transfer_handler (PPDMDEVINS pDevIns,
void *opaque,
unsigned nchan,
uint32_t dma_pos,
uint32_t dma_len);
#endif /* VBOX */
static void fdctrl_raise_irq(fdctrl_t *fdctrl, uint8_t status0);
static fdrive_t *get_cur_drv(fdctrl_t *fdctrl);
static void fdctrl_result_timer(void *opaque);
static uint32_t fdctrl_read_statusA(fdctrl_t *fdctrl);
static uint32_t fdctrl_read_statusB(fdctrl_t *fdctrl);
static uint32_t fdctrl_read_dor(fdctrl_t *fdctrl);
static void fdctrl_write_dor(fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_tape(fdctrl_t *fdctrl);
static void fdctrl_write_tape(fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_main_status(fdctrl_t *fdctrl);
static void fdctrl_write_rate(fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_data(fdctrl_t *fdctrl);
static void fdctrl_write_data(fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_dir(fdctrl_t *fdctrl);
static void fdctrl_write_ccr(fdctrl_t *fdctrl, uint32_t value);
enum {
FD_DIR_WRITE = 0,
FD_DIR_READ = 1,
FD_DIR_SCANE = 2,
FD_DIR_SCANL = 3,
FD_DIR_SCANH = 4,
FD_DIR_FORMAT = 5
};
enum {
FD_STATE_MULTI = 0x01, /* multi track flag */
FD_STATE_FORMAT = 0x02, /* format flag */
FD_STATE_SEEK = 0x04 /* seek flag */
};
enum {
FD_REG_SRA = 0x00,
FD_REG_SRB = 0x01,
FD_REG_DOR = 0x02,
FD_REG_TDR = 0x03,
FD_REG_MSR = 0x04,
FD_REG_DSR = 0x04,
FD_REG_FIFO = 0x05,
FD_REG_DIR = 0x07,
FD_REG_CCR = 0x07
};
enum {
FD_CMD_READ_TRACK = 0x02,
FD_CMD_SPECIFY = 0x03,
FD_CMD_SENSE_DRIVE_STATUS = 0x04,
FD_CMD_WRITE = 0x05,
FD_CMD_READ = 0x06,
FD_CMD_RECALIBRATE = 0x07,
FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
FD_CMD_WRITE_DELETED = 0x09,
FD_CMD_READ_ID = 0x0a,
FD_CMD_READ_DELETED = 0x0c,
FD_CMD_FORMAT_TRACK = 0x0d,
FD_CMD_DUMPREG = 0x0e,
FD_CMD_SEEK = 0x0f,
FD_CMD_VERSION = 0x10,
FD_CMD_SCAN_EQUAL = 0x11,
FD_CMD_PERPENDICULAR_MODE = 0x12,
FD_CMD_CONFIGURE = 0x13,
FD_CMD_LOCK = 0x14,
FD_CMD_VERIFY = 0x16,
FD_CMD_POWERDOWN_MODE = 0x17,
FD_CMD_PART_ID = 0x18,
FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
FD_CMD_SAVE = 0x2e,
FD_CMD_OPTION = 0x33,
FD_CMD_RESTORE = 0x4e,
FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
FD_CMD_FORMAT_AND_WRITE = 0xcd,
FD_CMD_RELATIVE_SEEK_IN = 0xcf
};
enum {
FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
FD_CONFIG_POLL = 0x10, /* Poll enabled */
FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
FD_CONFIG_EIS = 0x40 /* No implied seeks */
};
enum {
FD_SR0_EQPMT = 0x10,
FD_SR0_SEEK = 0x20,
FD_SR0_ABNTERM = 0x40,
FD_SR0_INVCMD = 0x80,
FD_SR0_RDYCHG = 0xc0
};
enum {
FD_SR1_MA = 0x01, /* Missing address mark */
FD_SR1_NW = 0x02, /* Not writable */
FD_SR1_ND = 0x04, /* No data */
FD_SR1_EC = 0x80 /* End of cylinder */
};
enum {
FD_SR2_MD = 0x01, /* Missing data address mark */
FD_SR2_SNS = 0x04, /* Scan not satisfied */
FD_SR2_SEH = 0x08 /* Scan equal hit */
};
enum {
FD_SRA_DIR = 0x01,
FD_SRA_nWP = 0x02,
FD_SRA_nINDX = 0x04,
FD_SRA_HDSEL = 0x08,
FD_SRA_nTRK0 = 0x10,
FD_SRA_STEP = 0x20,
FD_SRA_nDRV2 = 0x40,
FD_SRA_INTPEND = 0x80
};
enum {
FD_SRB_MTR0 = 0x01,
FD_SRB_MTR1 = 0x02,
FD_SRB_WGATE = 0x04,
FD_SRB_RDATA = 0x08,
FD_SRB_WDATA = 0x10,
FD_SRB_DR0 = 0x20
};
enum {
#if MAX_FD == 4
FD_DOR_SELMASK = 0x03,
#else
FD_DOR_SELMASK = 0x01,
#endif
FD_DOR_nRESET = 0x04,
FD_DOR_DMAEN = 0x08,
FD_DOR_MOTEN0 = 0x10,
FD_DOR_MOTEN1 = 0x20,
FD_DOR_MOTEN2 = 0x40,
FD_DOR_MOTEN3 = 0x80
};
enum {
#if MAX_FD == 4
FD_TDR_BOOTSEL = 0x0c
#else
FD_TDR_BOOTSEL = 0x04
#endif
};
enum {
FD_DSR_DRATEMASK= 0x03,
FD_DSR_PWRDOWN = 0x40,
FD_DSR_SWRESET = 0x80
};
enum {
FD_MSR_DRV0BUSY = 0x01,
FD_MSR_DRV1BUSY = 0x02,
FD_MSR_DRV2BUSY = 0x04,
FD_MSR_DRV3BUSY = 0x08,
FD_MSR_CMDBUSY = 0x10,
FD_MSR_NONDMA = 0x20,
FD_MSR_DIO = 0x40,
FD_MSR_RQM = 0x80
};
enum {
FD_DIR_DSKCHG = 0x80
};
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
#define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK)
#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
#ifdef VBOX
/**
* Floppy controller state.
*
* @implements PDMILEDPORTS
*/
#endif
struct fdctrl_t {
#ifndef VBOX
fdctrl_t *fdctrl;
#endif
/* Controller's identification */
uint8_t version;
/* HW */
#ifndef VBOX
int irq;
int dma_chann;
#else
uint8_t irq_lvl;
uint8_t dma_chann;
#endif
uint32_t io_base;
/* Controller state */
QEMUTimer *result_timer;
uint8_t sra;
uint8_t srb;
uint8_t dor;
uint8_t tdr;
uint8_t dsr;
uint8_t msr;
uint8_t cur_drv;
uint8_t status0;
uint8_t status1;
uint8_t status2;
/* Command FIFO */
uint8_t fifo[FD_SECTOR_LEN];
uint32_t data_pos;
uint32_t data_len;
uint8_t data_state;
uint8_t data_dir;
uint8_t eot; /* last wanted sector */
/* States kept only to be returned back */
/* Timers state */
uint8_t timer0;
uint8_t timer1;
/* precompensation */
uint8_t precomp_trk;
uint8_t config;
uint8_t lock;
/* Power down config (also with status regB access mode */
uint8_t pwrd;
/* Floppy drives */
uint8_t num_floppies;
fdrive_t drives[MAX_FD];
uint8_t reset_sensei;
#ifdef VBOX
/** Pointer to device instance. */
PPDMDEVINS pDevIns;
/** Status LUN: The base interface. */
PDMIBASE IBaseStatus;
/** Status LUN: The Leds interface. */
PDMILEDPORTS ILeds;
/** Status LUN: The Partner of ILeds. */
PPDMILEDCONNECTORS pLedsConnector;
#endif
};
static uint32_t fdctrl_read (void *opaque, uint32_t reg)
{
fdctrl_t *fdctrl = (fdctrl_t *)opaque;
uint32_t retval;
switch (reg) {
case FD_REG_SRA:
retval = fdctrl_read_statusA(fdctrl);
break;
case FD_REG_SRB:
retval = fdctrl_read_statusB(fdctrl);
break;
case FD_REG_DOR:
retval = fdctrl_read_dor(fdctrl);
break;
case FD_REG_TDR:
retval = fdctrl_read_tape(fdctrl);
break;
case FD_REG_MSR:
retval = fdctrl_read_main_status(fdctrl);
break;
case FD_REG_FIFO:
retval = fdctrl_read_data(fdctrl);
break;
case FD_REG_DIR:
retval = fdctrl_read_dir(fdctrl);
break;
default:
retval = (uint32_t)(-1);
break;
}
FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
return retval;
}
static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_t *fdctrl = (fdctrl_t *)opaque;
FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
switch (reg) {
case FD_REG_DOR:
fdctrl_write_dor(fdctrl, value);
break;
case FD_REG_TDR:
fdctrl_write_tape(fdctrl, value);
break;
case FD_REG_DSR:
fdctrl_write_rate(fdctrl, value);
break;
case FD_REG_FIFO:
fdctrl_write_data(fdctrl, value);
break;
case FD_REG_CCR:
fdctrl_write_ccr(fdctrl, value);
break;
default:
break;
}
}
/* Change IRQ state */
static void fdctrl_reset_irq(fdctrl_t *fdctrl)
{
if (!(fdctrl->sra & FD_SRA_INTPEND))
return;
FLOPPY_DPRINTF("Reset interrupt\n");
#ifdef VBOX
PDMDevHlpISASetIrq (fdctrl->pDevIns, fdctrl->irq_lvl, 0);
#else
qemu_set_irq(fdctrl->irq, 0);
#endif
fdctrl->sra &= ~FD_SRA_INTPEND;
}
static void fdctrl_raise_irq(fdctrl_t *fdctrl, uint8_t status0)
{
if (!(fdctrl->sra & FD_SRA_INTPEND)) {
FLOPPY_DPRINTF("Raising interrupt...\n");
#ifdef VBOX
PDMDevHlpISASetIrq (fdctrl->pDevIns, fdctrl->irq_lvl, 1);
#else
qemu_set_irq(fdctrl->irq, 1);
#endif
fdctrl->sra |= FD_SRA_INTPEND;
}
if (status0 & FD_SR0_SEEK) {
fdrive_t *cur_drv;
/* A seek clears the disk change line (if a disk is inserted). */
cur_drv = get_cur_drv(fdctrl);
if (cur_drv->max_track)
cur_drv->dsk_chg = false;
}
fdctrl->reset_sensei = 0;
fdctrl->status0 = status0;
FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
}
/* Reset controller */
static void fdctrl_reset(fdctrl_t *fdctrl, int do_irq)
{
int i;
FLOPPY_DPRINTF("reset controller\n");
fdctrl_reset_irq(fdctrl);
/* Initialise controller */
fdctrl->sra = 0;
fdctrl->srb = 0xc0;
#ifdef VBOX
if (!fdctrl->drives[1].pDrvBlock)
#else
if (!fdctrl->drives[1].bs)
#endif
fdctrl->sra |= FD_SRA_nDRV2;
fdctrl->cur_drv = 0;
fdctrl->dor = FD_DOR_nRESET;
fdctrl->dor |= (fdctrl->dma_chann != 0xff) ? FD_DOR_DMAEN : 0;
fdctrl->msr = FD_MSR_RQM;
/* FIFO state */
fdctrl->data_pos = 0;
fdctrl->data_len = 0;
fdctrl->data_state = 0;
fdctrl->data_dir = FD_DIR_WRITE;
for (i = 0; i < MAX_FD; i++)
fd_recalibrate(&fdctrl->drives[i]);
fdctrl_reset_fifo(fdctrl);
if (do_irq) {
fdctrl_raise_irq(fdctrl, FD_SR0_RDYCHG);
fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
}
}
static inline fdrive_t *drv0(fdctrl_t *fdctrl)
{
return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
}
static inline fdrive_t *drv1(fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
return &fdctrl->drives[1];
else
return &fdctrl->drives[0];
}
#if MAX_FD == 4
static inline fdrive_t *drv2(fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
return &fdctrl->drives[2];
else
return &fdctrl->drives[1];
}
static inline fdrive_t *drv3(fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
return &fdctrl->drives[3];
else
return &fdctrl->drives[2];
}
#endif
static fdrive_t *get_cur_drv(fdctrl_t *fdctrl)
{
switch (fdctrl->cur_drv) {
case 0: return drv0(fdctrl);
case 1: return drv1(fdctrl);
#if MAX_FD == 4
case 2: return drv2(fdctrl);
case 3: return drv3(fdctrl);
#endif
default: return NULL;
}
}
/* Status A register : 0x00 (read-only) */
static uint32_t fdctrl_read_statusA(fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->sra;
FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
return retval;
}
/* Status B register : 0x01 (read-only) */
static uint32_t fdctrl_read_statusB(fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->srb;
FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
return retval;
}
/* Digital output register : 0x02 */
static uint32_t fdctrl_read_dor(fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->dor;
/* Selected drive */
retval |= fdctrl->cur_drv;
FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_dor(fdctrl_t *fdctrl, uint32_t value)
{
FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
/* Motors */
if (value & FD_DOR_MOTEN0)
fdctrl->srb |= FD_SRB_MTR0;
else
fdctrl->srb &= ~FD_SRB_MTR0;
if (value & FD_DOR_MOTEN1)
fdctrl->srb |= FD_SRB_MTR1;
else
fdctrl->srb &= ~FD_SRB_MTR1;
/* Drive */
if (value & 1)
fdctrl->srb |= FD_SRB_DR0;
else
fdctrl->srb &= ~FD_SRB_DR0;
/* Reset */
if (!(value & FD_DOR_nRESET)) {
if (fdctrl->dor & FD_DOR_nRESET) {
FLOPPY_DPRINTF("controller enter RESET state\n");
}
} else {
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("controller out of RESET state\n");
fdctrl_reset(fdctrl, 1);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
}
}
/* Selected drive */
fdctrl->cur_drv = value & FD_DOR_SELMASK;
fdctrl->dor = value;
}
/* Tape drive register : 0x03 */
static uint32_t fdctrl_read_tape(fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->tdr;
FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_tape(fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
/* Disk boot selection indicator */
fdctrl->tdr = value & FD_TDR_BOOTSEL;
/* Tape indicators: never allow */
}
/* Main status register : 0x04 (read) */
static uint32_t fdctrl_read_main_status(fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->msr;
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
fdctrl->dor |= FD_DOR_nRESET;
FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
return retval;
}
/* Data select rate register : 0x04 (write) */
static void fdctrl_write_rate(fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
/* Reset: autoclear */
if (value & FD_DSR_SWRESET) {
fdctrl->dor &= ~FD_DOR_nRESET;
fdctrl_reset(fdctrl, 1);
fdctrl->dor |= FD_DOR_nRESET;
}
if (value & FD_DSR_PWRDOWN) {
fdctrl_reset(fdctrl, 1);
}
fdctrl->dsr = value;
}
/* Configuration control register : 0x07 (write) */
static void fdctrl_write_ccr(fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
/* Only the rate selection bits used in AT mode, and we
* store those in the DSR.
*/
fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | (value & FD_DSR_DRATEMASK);
}
static int fdctrl_media_changed(fdrive_t *drv)
{
#ifdef VBOX
return drv->dsk_chg;
#else
int ret;
if (!drv->bs)
return 0;
ret = bdrv_media_changed(drv->bs);
if (ret) {
fd_revalidate(drv);
}
return ret;
#endif
}
/* Digital input register : 0x07 (read-only) */
static uint32_t fdctrl_read_dir(fdctrl_t *fdctrl)
{
uint32_t retval = 0;
#ifdef VBOX
/* The change line signal is reported by the currently selected
* drive. If the corresponding motor on bit is not set, the drive
* is *not* selected!
*/
if (fdctrl_media_changed(get_cur_drv(fdctrl))
&& (fdctrl->dor & (0x10 << fdctrl->cur_drv)))
#else
if (fdctrl_media_changed(drv0(fdctrl))
|| fdctrl_media_changed(drv1(fdctrl))
#if MAX_FD == 4
|| fdctrl_media_changed(drv2(fdctrl))
|| fdctrl_media_changed(drv3(fdctrl))
#endif
)
#endif
retval |= FD_DIR_DSKCHG;
if (retval != 0)
FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
return retval;
}
/* FIFO state control */
static void fdctrl_reset_fifo(fdctrl_t *fdctrl)
{
fdctrl->data_dir = FD_DIR_WRITE;
fdctrl->data_pos = 0;
fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
}
/* Set FIFO status for the host to read */
static void fdctrl_set_fifo(fdctrl_t *fdctrl, int fifo_len, int do_irq)
{
fdctrl->data_dir = FD_DIR_READ;
fdctrl->data_len = fifo_len;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
if (do_irq)
fdctrl_raise_irq(fdctrl, 0x00);
}
/* Set an error: unimplemented/unknown command */
static void fdctrl_unimplemented(fdctrl_t *fdctrl, int direction)
{
FLOPPY_ERROR("unimplemented command 0x%02x\n", fdctrl->fifo[0]);
fdctrl->fifo[0] = FD_SR0_INVCMD;
fdctrl_set_fifo(fdctrl, 1, 0);
}
/* Seek to next sector */
static int fdctrl_seek_to_next_sect(fdctrl_t *fdctrl, fdrive_t *cur_drv)
{
FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track, cur_drv->sect,
fd_sector(cur_drv));
/* XXX: cur_drv->sect >= cur_drv->last_sect should be an
error in fact */
if (cur_drv->sect >= cur_drv->last_sect ||
cur_drv->sect == fdctrl->eot) {
cur_drv->sect = 1;
if (FD_MULTI_TRACK(fdctrl->data_state)) {
if (cur_drv->head == 0 &&
(cur_drv->flags & FDISK_DBL_SIDES) != 0) {
cur_drv->head = 1;
} else {
cur_drv->head = 0;
cur_drv->ltrk++;
if ((cur_drv->flags & FDISK_DBL_SIDES) == 0)
return 0;
}
} else {
cur_drv->ltrk++;
return 0;
}
FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track,
cur_drv->sect, fd_sector(cur_drv));
} else {
cur_drv->sect++;
}
return 1;
}
/* Callback for transfer end (stop or abort) */
static void fdctrl_stop_transfer(fdctrl_t *fdctrl, uint8_t status0,
uint8_t status1, uint8_t status2)
{
fdrive_t *cur_drv;
cur_drv = get_cur_drv(fdctrl);
FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
status0, status1, status2,
status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl));
fdctrl->fifo[0] = status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl->fifo[1] = status1;
fdctrl->fifo[2] = status2;
fdctrl->fifo[3] = cur_drv->ltrk;
fdctrl->fifo[4] = cur_drv->head;
fdctrl->fifo[5] = cur_drv->sect;
fdctrl->fifo[6] = FD_SECTOR_SC;
FLOPPY_DPRINTF("ST0:%02x ST1:%02x ST2:%02x C:%02x H:%02x R:%02x N:%02x\n",
fdctrl->fifo[0], fdctrl->fifo[1], fdctrl->fifo[2], fdctrl->fifo[3],
fdctrl->fifo[4], fdctrl->fifo[5], fdctrl->fifo[6]);
fdctrl->data_dir = FD_DIR_READ;
if (!(fdctrl->msr & FD_MSR_NONDMA)) {
#ifdef VBOX
PDMDevHlpDMASetDREQ (fdctrl->pDevIns, fdctrl->dma_chann, 0);
#else
DMA_release_DREQ(fdctrl->dma_chann);
#endif
}
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->msr &= ~FD_MSR_NONDMA;
fdctrl_set_fifo(fdctrl, 7, 1);
}
/* Prepare a data transfer (either DMA or FIFO) */
static void fdctrl_start_transfer(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
int did_seek = 0;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[2];
kh = fdctrl->fifo[3];
ks = fdctrl->fifo[4];
FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv)));
FLOPPY_DPRINTF("CMD:%02x SEL:%02x C:%02x H:%02x R:%02x N:%02x EOT:%02x GPL:%02x DTL:%02x\n",
fdctrl->fifo[0], fdctrl->fifo[1], fdctrl->fifo[2],
fdctrl->fifo[3], fdctrl->fifo[4], fdctrl->fifo[5],
fdctrl->fifo[6], fdctrl->fifo[7], fdctrl->fifo[8]);
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
did_seek = 1;
break;
default:
break;
}
/* Check the data rate. If the programmed data rate does not match
* the currently inserted medium, the operation has to fail.
*/
#ifdef VBOX
if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, FD_SR2_MD);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
}
#endif
/* Set the FIFO state */
fdctrl->data_dir = direction;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY;
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
if (did_seek)
fdctrl->data_state |= FD_STATE_SEEK;
else
fdctrl->data_state &= ~FD_STATE_SEEK;
if (fdctrl->fifo[5] == 00) {
fdctrl->data_len = fdctrl->fifo[8];
} else {
int tmp;
fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
tmp = (fdctrl->fifo[6] - ks + 1);
if (fdctrl->fifo[0] & 0x80)
tmp += fdctrl->fifo[6];
fdctrl->data_len *= tmp;
}
fdctrl->eot = fdctrl->fifo[6];
if (fdctrl->dor & FD_DOR_DMAEN) {
int dma_mode;
/* DMA transfer are enabled. Check if DMA channel is well programmed */
#ifndef VBOX
dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
#else
dma_mode = PDMDevHlpDMAGetChannelMode (fdctrl->pDevIns, fdctrl->dma_chann);
#endif
dma_mode = (dma_mode >> 2) & 3;
FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
dma_mode, direction,
(128 << fdctrl->fifo[5]) *
(cur_drv->last_sect - ks + 1), fdctrl->data_len);
if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
direction == FD_DIR_SCANH) && dma_mode == 0) ||
(direction == FD_DIR_WRITE && dma_mode == 2) ||
(direction == FD_DIR_READ && (dma_mode == 1 || dma_mode == 0))) {
/* No access is allowed until DMA transfer has completed */
fdctrl->msr &= ~FD_MSR_RQM;
/* Now, we just have to wait for the DMA controller to
* recall us...
*/
#ifndef VBOX
DMA_hold_DREQ(fdctrl->dma_chann);
DMA_schedule(fdctrl->dma_chann);
#else
PDMDevHlpDMASetDREQ (fdctrl->pDevIns, fdctrl->dma_chann, 1);
PDMDevHlpDMASchedule (fdctrl->pDevIns);
#endif
return;
} else {
FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, direction);
}
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
fdctrl->msr |= FD_MSR_NONDMA;
if (direction != FD_DIR_WRITE)
fdctrl->msr |= FD_MSR_DIO;
/* IO based transfer: calculate len */
fdctrl_raise_irq(fdctrl, 0x00);
return;
}
/* Prepare a format data transfer (either DMA or FIFO) */
static void fdctrl_start_format(fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint8_t ns, dp, kh, kt, ks;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = cur_drv->track;
kh = (fdctrl->fifo[1] & 0x04) >> 2;
ns = fdctrl->fifo[3];
dp = fdctrl->fifo[5];
ks = 1;
FLOPPY_DPRINTF("Start format at %d %d %02x, %d sect, pat %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ns, dp,
fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv)));
switch (fd_seek(cur_drv, kh, kt, ks, false)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
break;
default:
break;
}
/* It's not clear what should happen if the data rate does not match. */
#if 0
/* Check the data rate. If the programmed data rate does not match
* the currently inserted medium, the operation has to fail.
*/
if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, FD_SR2_MD);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
}
#endif
/* Set the FIFO state */
fdctrl->data_dir = FD_DIR_FORMAT;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY;
fdctrl->data_state &= ~(FD_STATE_MULTI | FD_STATE_SEEK);
fdctrl->data_len = ns * 4;
fdctrl->eot = ns;
if (fdctrl->dor & FD_DOR_DMAEN) {
int dma_mode;
/* DMA transfer are enabled. Check if DMA channel is well programmed */
#ifndef VBOX
dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
#else
dma_mode = PDMDevHlpDMAGetChannelMode (fdctrl->pDevIns, fdctrl->dma_chann);
#endif
dma_mode = (dma_mode >> 2) & 3;
FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
dma_mode, fdctrl->data_dir,
(128 << fdctrl->fifo[2]) *
(cur_drv->last_sect + 1), fdctrl->data_len);
if (fdctrl->data_dir == FD_DIR_FORMAT && dma_mode == 2) {
/* No access is allowed until DMA transfer has completed */
fdctrl->msr &= ~FD_MSR_RQM;
/* Now, we just have to wait for the DMA controller to
* recall us...
*/
#ifndef VBOX
DMA_hold_DREQ(fdctrl->dma_chann);
DMA_schedule(fdctrl->dma_chann);
#else
PDMDevHlpDMASetDREQ (fdctrl->pDevIns, fdctrl->dma_chann, 1);
PDMDevHlpDMASchedule (fdctrl->pDevIns);
#endif
return;
} else {
FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, fdctrl->data_dir);
}
}
FLOPPY_DPRINTF("start non-DMA format\n");
fdctrl->msr |= FD_MSR_NONDMA;
/* IO based transfer: calculate len */
fdctrl_raise_irq(fdctrl, 0x00);
return;
}
/* Prepare a transfer of deleted data */
static void fdctrl_start_transfer_del(fdctrl_t *fdctrl, int direction)
{
FLOPPY_ERROR("fdctrl_start_transfer_del() unimplemented\n");
/* We don't handle deleted data,
* so we don't return *ANYTHING*
*/
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
}
#ifdef VBOX
/* Block driver read/write wrappers. */
static int blk_write(fdrive_t *drv, int64_t sector_num, const uint8_t *buf, int nb_sectors)
{
int rc;
drv->Led.Asserted.s.fWriting = drv->Led.Actual.s.fWriting = 1;
rc = drv->pDrvBlock->pfnWrite(drv->pDrvBlock, sector_num * FD_SECTOR_LEN,
buf, nb_sectors * FD_SECTOR_LEN);
drv->Led.Actual.s.fWriting = 0;
if (RT_FAILURE(rc))
AssertMsgFailed(("Floppy: Failure to read sector %d. rc=%Rrc", sector_num, rc));
return rc;
}
static int blk_read(fdrive_t *drv, int64_t sector_num, uint8_t *buf, int nb_sectors)
{
int rc;
drv->Led.Asserted.s.fReading = drv->Led.Actual.s.fReading = 1;
rc = drv->pDrvBlock->pfnRead(drv->pDrvBlock, sector_num * FD_SECTOR_LEN,
buf, nb_sectors * FD_SECTOR_LEN);
drv->Led.Actual.s.fReading = 0;
if (RT_FAILURE(rc))
AssertMsgFailed(("Floppy: Failure to read sector %d. rc=%Rrc", sector_num, rc));
return rc;
}
#endif
/* handlers for DMA transfers */
#ifdef VBOX
static DECLCALLBACK(uint32_t) fdctrl_transfer_handler (PPDMDEVINS pDevIns,
void *opaque,
unsigned nchan,
uint32_t dma_pos,
uint32_t dma_len)
#else
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len)
#endif
{
fdctrl_t *fdctrl;
fdrive_t *cur_drv;
#ifdef VBOX
int rc;
uint32_t len = 0;
uint32_t start_pos, rel_pos;
#else
int len, start_pos, rel_pos;
#endif
uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
fdctrl = (fdctrl_t *)opaque;
if (fdctrl->msr & FD_MSR_RQM) {
FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
return 0;
}
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SNS;
if (dma_len > fdctrl->data_len)
dma_len = fdctrl->data_len;
#ifndef VBOX
if (cur_drv->bs == NULL)
#else /* !VBOX */
if (cur_drv->pDrvBlock == NULL)
#endif
{
if (fdctrl->data_dir == FD_DIR_WRITE)
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
Assert(len == 0);
goto transfer_error;
}
#ifdef VBOX
if (cur_drv->ro)
{
if (fdctrl->data_dir == FD_DIR_WRITE || fdctrl->data_dir == FD_DIR_FORMAT)
{
/* Handle readonly medium early, no need to do DMA, touch the
* LED or attempt any writes. A real floppy doesn't attempt
* to write to readonly media either. */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
0x00);
Assert(len == 0);
goto transfer_error;
}
}
#endif
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
len = dma_len - fdctrl->data_pos;
if (len + rel_pos > FD_SECTOR_LEN)
len = FD_SECTOR_LEN - rel_pos;
FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
"(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
fd_sector(cur_drv) * FD_SECTOR_LEN);
if (fdctrl->data_dir != FD_DIR_FORMAT &&
(fdctrl->data_dir != FD_DIR_WRITE ||
len < FD_SECTOR_LEN || rel_pos != 0)) {
/* READ & SCAN commands and realign to a sector for WRITE */
#ifdef VBOX
rc = blk_read(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1);
if (RT_FAILURE(rc))
#else
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0)
#endif
{
FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
switch (fdctrl->data_dir) {
case FD_DIR_READ:
/* READ commands */
#ifdef VBOX
{
uint32_t read;
int rc2 = PDMDevHlpDMAWriteMemory(fdctrl->pDevIns, nchan,
fdctrl->fifo + rel_pos,
fdctrl->data_pos,
len, &read);
AssertMsgRC (rc2, ("DMAWriteMemory -> %Rrc\n", rc2));
}
#else
DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
#endif
/* cpu_physical_memory_write(addr + fdctrl->data_pos, */
/* fdctrl->fifo + rel_pos, len); */
break;
case FD_DIR_WRITE:
/* WRITE commands */
#ifdef VBOX
{
uint32_t written;
int rc2 = PDMDevHlpDMAReadMemory(fdctrl->pDevIns, nchan,
fdctrl->fifo + rel_pos,
fdctrl->data_pos,
len, &written);
AssertMsgRC (rc2, ("DMAReadMemory -> %Rrc\n", rc2));
}
rc = blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1);
if (RT_FAILURE(rc))
#else
DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
if (bdrv_write(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0)
#endif
{
FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
goto transfer_error;
}
break;
#ifdef VBOX
case FD_DIR_FORMAT:
/* FORMAT command */
{
uint8_t eot = fdctrl->fifo[3];
uint8_t filler = fdctrl->fifo[5];
uint32_t written;
int sct;
int rc2 = PDMDevHlpDMAReadMemory(fdctrl->pDevIns, nchan,
fdctrl->fifo + rel_pos,
fdctrl->data_pos,
len, &written);
AssertMsgRC (rc2, ("DMAReadMemory -> %Rrc\n", rc2));
/* Fill the entire track with desired data pattern. */
FLOPPY_DPRINTF("formatting track: %d sectors, pattern %02x\n",
eot, filler);
memset(fdctrl->fifo, filler, FD_SECTOR_LEN);
for (sct = 0; sct < eot; ++sct)
{
rc = blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1);
if (RT_FAILURE(rc))
{
FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
goto transfer_error;
}
fdctrl_seek_to_next_sect(fdctrl, cur_drv);
}
}
break;
#endif
default:
/* SCAN commands */
{
uint8_t tmpbuf[FD_SECTOR_LEN];
int ret;
#ifdef VBOX
uint32_t read;
int rc2 = PDMDevHlpDMAReadMemory (fdctrl->pDevIns, nchan, tmpbuf,
fdctrl->data_pos, len, &read);
AssertMsg (RT_SUCCESS (rc2), ("DMAReadMemory -> %Rrc2\n", rc2));
#else
DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
#endif
ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
if (ret == 0) {
status2 = FD_SR2_SEH;
goto end_transfer;
}
if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
(ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
status2 = 0x00;
goto end_transfer;
}
}
break;
}
fdctrl->data_pos += len;
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
if (rel_pos == 0) {
/* Seek to next sector */
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
break;
}
}
end_transfer:
len = fdctrl->data_pos - start_pos;
FLOPPY_DPRINTF("end transfer %d %d %d\n",
fdctrl->data_pos, len, fdctrl->data_len);
if (fdctrl->data_dir == FD_DIR_SCANE ||
fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SEH;
if (FD_DID_SEEK(fdctrl->data_state))
status0 |= FD_SR0_SEEK;
fdctrl->data_len -= len;
fdctrl_stop_transfer(fdctrl, status0, status1, status2);
transfer_error:
return len;
}
/* Data register : 0x05 */
static uint32_t fdctrl_read_data(fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint32_t retval = 0;
unsigned pos;
#ifdef VBOX
int rc;
#endif
cur_drv = get_cur_drv(fdctrl);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_ERROR("controller not ready for reading\n");
return 0;
}
pos = fdctrl->data_pos;
if (fdctrl->msr & FD_MSR_NONDMA) {
pos %= FD_SECTOR_LEN;
if (pos == 0) {
if (fdctrl->data_pos != 0)
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return 0;
}
#ifdef VBOX
rc = blk_read(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1);
if (RT_FAILURE(rc))
#else
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0)
#endif
{
FLOPPY_DPRINTF("error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
}
retval = fdctrl->fifo[pos];
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->data_pos = 0;
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->msr & FD_MSR_NONDMA) {
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
} else {
fdctrl_reset_fifo(fdctrl);
fdctrl_reset_irq(fdctrl);
}
}
FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_format_sector(fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
#ifdef VBOX
int ok = 0, rc;
#endif
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[6];
kh = fdctrl->fifo[7];
ks = fdctrl->fifo[8];
FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv)));
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
fdctrl->data_state |= FD_STATE_SEEK;
break;
default:
break;
}
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
#ifdef VBOX
if (cur_drv->pDrvBlock) {
rc = blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1);
if (RT_FAILURE (rc)) {
FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
} else {
ok = 1;
}
}
if (ok) {
#else
if (cur_drv->bs == NULL ||
bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
} else {
#endif
if (cur_drv->sect == cur_drv->last_sect) {
fdctrl->data_state &= ~FD_STATE_FORMAT;
/* Last sector done */
if (FD_DID_SEEK(fdctrl->data_state))
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
/* More to do */
fdctrl->data_pos = 0;
fdctrl->data_len = 4;
}
}
}
static void fdctrl_handle_lock(fdctrl_t *fdctrl, int direction)
{
fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
fdctrl->fifo[0] = fdctrl->lock << 4;
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_dumpreg(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
fdctrl->fifo[0] = drv0(fdctrl)->track;
fdctrl->fifo[1] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[2] = drv2(fdctrl)->track;
fdctrl->fifo[3] = drv3(fdctrl)->track;
#else
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
#endif
/* timers */
fdctrl->fifo[4] = fdctrl->timer0;
fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
fdctrl->fifo[6] = cur_drv->last_sect;
fdctrl->fifo[7] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[8] = fdctrl->config;
fdctrl->fifo[9] = fdctrl->precomp_trk;
fdctrl_set_fifo(fdctrl, 10, 0);
}
static void fdctrl_handle_version(fdctrl_t *fdctrl, int direction)
{
/* Controller's version */
fdctrl->fifo[0] = fdctrl->version;
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_partid(fdctrl_t *fdctrl, int direction)
{
fdctrl->fifo[0] = 0x01; /* Stepping 1 */
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_restore(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
drv0(fdctrl)->track = fdctrl->fifo[3];
drv1(fdctrl)->track = fdctrl->fifo[4];
#if MAX_FD == 4
drv2(fdctrl)->track = fdctrl->fifo[5];
drv3(fdctrl)->track = fdctrl->fifo[6];
#endif
/* timers */
fdctrl->timer0 = fdctrl->fifo[7];
fdctrl->timer1 = fdctrl->fifo[8];
cur_drv->last_sect = fdctrl->fifo[9];
fdctrl->lock = fdctrl->fifo[10] >> 7;
cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
fdctrl->config = fdctrl->fifo[11];
fdctrl->precomp_trk = fdctrl->fifo[12];
fdctrl->pwrd = fdctrl->fifo[13];
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_save(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
fdctrl->fifo[0] = 0;
fdctrl->fifo[1] = 0;
/* Drives position */
fdctrl->fifo[2] = drv0(fdctrl)->track;
fdctrl->fifo[3] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[4] = drv2(fdctrl)->track;
fdctrl->fifo[5] = drv3(fdctrl)->track;
#else
fdctrl->fifo[4] = 0;
fdctrl->fifo[5] = 0;
#endif
/* timers */
fdctrl->fifo[6] = fdctrl->timer0;
fdctrl->fifo[7] = fdctrl->timer1;
fdctrl->fifo[8] = cur_drv->last_sect;
fdctrl->fifo[9] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[10] = fdctrl->config;
fdctrl->fifo[11] = fdctrl->precomp_trk;
fdctrl->fifo[12] = fdctrl->pwrd;
fdctrl->fifo[13] = 0;
fdctrl->fifo[14] = 0;
fdctrl_set_fifo(fdctrl, 15, 0);
}
static void fdctrl_handle_readid(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
FLOPPY_DPRINTF("CMD:%02x SEL:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1]);
/* XXX: should set main status register to busy */
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
#ifdef VBOX
TMTimerSetMillies(fdctrl->result_timer, 1000 / 50);
#else
qemu_mod_timer(fdctrl->result_timer,
qemu_get_clock(vm_clock) + (get_ticks_per_sec() / 50));
#endif
}
static void fdctrl_handle_format_track(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
uint8_t ns, dp;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl->data_state &= ~(FD_STATE_MULTI | FD_STATE_SEEK);
ns = fdctrl->fifo[3];
dp = fdctrl->fifo[5];
FLOPPY_DPRINTF("Format track %d at %d, %d sectors, filler %02x\n",
cur_drv->track, GET_CUR_DRV(fdctrl), ns, dp);
FLOPPY_DPRINTF("CMD:%02x SEL:%02x N:%02x SC:%02x GPL:%02x D:%02x\n",
fdctrl->fifo[0], fdctrl->fifo[1], fdctrl->fifo[2],
fdctrl->fifo[3], fdctrl->fifo[4], fdctrl->fifo[5]);
/* Since we cannot actually format anything, we have to make sure that
* whatever new format the guest is trying to establish matches the
* existing format of the medium.
*/
if (cur_drv->last_sect != ns || fdctrl->fifo[2] != 2)
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_NW, 0);
else
{
cur_drv->bps = fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
cur_drv->last_sect = ns;
fdctrl_start_format(fdctrl);
}
}
static void fdctrl_handle_specify(fdctrl_t *fdctrl, int direction)
{
fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
fdctrl->timer1 = fdctrl->fifo[2] >> 1;
if (fdctrl->fifo[2] & 1)
fdctrl->dor &= ~FD_DOR_DMAEN;
else
fdctrl->dor |= FD_DOR_DMAEN;
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_sense_drive_status(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
/* 1 Byte status back */
fdctrl->fifo[0] = (cur_drv->ro << 6) |
(cur_drv->track == 0 ? 0x10 : 0x00) |
(cur_drv->head << 2) |
GET_CUR_DRV(fdctrl) |
0x28;
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_recalibrate(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
uint8_t st0;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fd_recalibrate(cur_drv);
fdctrl_reset_fifo(fdctrl);
st0 = FD_SR0_SEEK | GET_CUR_DRV(fdctrl);
/* No drive means no TRK0 signal. */
if (cur_drv->drive == FDRIVE_DRV_NONE)
st0 |= FD_SR0_ABNTERM | FD_SR0_EQPMT;
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, st0);
}
static void fdctrl_handle_sense_interrupt_status(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
FLOPPY_DPRINTF("CMD:%02x\n", fdctrl->fifo[0]);
if(fdctrl->reset_sensei > 0) {
fdctrl->fifo[0] =
FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
fdctrl->reset_sensei--;
} else {
/* XXX: status0 handling is broken for read/write
commands, so we do this hack. It should be suppressed
ASAP */
fdctrl->fifo[0] =
FD_SR0_SEEK | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
/* Hack to preserve SR0 on equipment check failures (no drive). */
if (fdctrl->status0 & FD_SR0_EQPMT)
fdctrl->fifo[0] = fdctrl->status0;
}
fdctrl->fifo[1] = cur_drv->track;
fdctrl_set_fifo(fdctrl, 2, 0);
FLOPPY_DPRINTF("ST0:%02x PCN:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1]);
fdctrl->status0 = FD_SR0_RDYCHG;
}
static void fdctrl_handle_seek(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
FLOPPY_DPRINTF("CMD:%02x SEL:%02x NCN:%02x\n", fdctrl->fifo[0],
fdctrl->fifo[1], fdctrl->fifo[2]);
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl_reset_fifo(fdctrl);
#ifdef VBOX
/* The seek command just sends step pulses to the drive and doesn't care if
* there's a medium inserted or if it's banging the head against the drive.
*/
cur_drv->track = fdctrl->fifo[2];
cur_drv->ltrk = cur_drv->track;
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK | GET_CUR_DRV(fdctrl));
#else
if (fdctrl->fifo[2] > cur_drv->max_track) {
fdctrl_raise_irq(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK);
} else {
cur_drv->track = fdctrl->fifo[2];
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
#endif
}
static void fdctrl_handle_perpendicular_mode(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[1] & 0x80)
cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_configure(fdctrl_t *fdctrl, int direction)
{
fdctrl->config = fdctrl->fifo[2];
fdctrl->precomp_trk = fdctrl->fifo[3];
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_powerdown_mode(fdctrl_t *fdctrl, int direction)
{
fdctrl->pwrd = fdctrl->fifo[1];
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_option(fdctrl_t *fdctrl, int direction)
{
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_drive_specification_command(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x80) {
/* Command parameters done */
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x40) {
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
fdctrl_set_fifo(fdctrl, 4, 0);
} else {
fdctrl_reset_fifo(fdctrl);
}
} else if (fdctrl->data_len > 7) {
/* ERROR */
fdctrl->fifo[0] = 0x80 |
(cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl_set_fifo(fdctrl, 1, 0);
}
}
static void fdctrl_handle_relative_seek_out(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
cur_drv->track = cur_drv->max_track - 1;
} else {
cur_drv->track += fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static void fdctrl_handle_relative_seek_in(fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] > cur_drv->track) {
cur_drv->track = 0;
} else {
cur_drv->track -= fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static const struct {
uint8_t value;
uint8_t mask;
const char* name;
int parameters;
void (*handler)(fdctrl_t *fdctrl, int direction);
int direction;
} handlers[] = {
{ FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
{ FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
{ FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
{ FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
{ FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
{ FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
{ FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
{ FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
{ FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
{ FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_unimplemented },
{ FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
{ FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
{ FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
{ FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
{ FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
{ FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
{ FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
{ FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
{ FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
{ FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
{ FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
{ FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
{ FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
{ FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
{ FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
{ FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
{ FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
{ FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
{ FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
{ 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
};
/* Associate command to an index in the 'handlers' array */
static uint8_t command_to_handler[256];
static void fdctrl_write_data(fdctrl_t *fdctrl, uint32_t value)
{
fdrive_t *cur_drv;
int pos;
cur_drv = get_cur_drv(fdctrl);
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_ERROR("controller not ready for writing\n");
return;
}
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
/* Is it write command time ? */
if (fdctrl->msr & FD_MSR_NONDMA) {
/* FIFO data write */
pos = fdctrl->data_pos++;
pos %= FD_SECTOR_LEN;
fdctrl->fifo[pos] = value;
if (pos == FD_SECTOR_LEN - 1 ||
fdctrl->data_pos == fdctrl->data_len) {
#ifdef VBOX
blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1);
#else
bdrv_write(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1);
#endif
}
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->data_pos == fdctrl->data_len)
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
return;
}
if (fdctrl->data_pos == 0) {
/* Command */
fdctrl_reset_irq(fdctrl); /* If pending from previous seek/recalibrate. */
pos = command_to_handler[value & 0xff];
FLOPPY_DPRINTF("%s command\n", handlers[pos].name);
fdctrl->data_len = handlers[pos].parameters + 1;
fdctrl->msr |= FD_MSR_CMDBUSY;
}
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
fdctrl->fifo[fdctrl->data_pos++] = value;
if (fdctrl->data_pos == fdctrl->data_len) {
/* We now have all parameters
* and will be able to treat the command
*/
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
return;
}
pos = command_to_handler[fdctrl->fifo[0] & 0xff];
FLOPPY_DPRINTF("treat %s command\n", handlers[pos].name);
(*handlers[pos].handler)(fdctrl, handlers[pos].direction);
}
}
static void fdctrl_result_timer(void *opaque)
{
fdctrl_t *fdctrl = (fdctrl_t *)opaque;
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Pretend we are spinning.
* This is needed for Coherent, which uses READ ID to check for
* sector interleaving.
*/
if (cur_drv->last_sect != 0) {
cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
}
/* READ_ID can't automatically succeed! */
#ifdef VBOX
if (!cur_drv->max_track) {
FLOPPY_DPRINTF("read id when no disk in drive\n");
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA | FD_SR1_ND, FD_SR2_MD);
} else if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA | FD_SR1_ND, FD_SR2_MD);
} else if (cur_drv->track >= cur_drv->max_track) {
FLOPPY_DPRINTF("read id past last track (%d >= %d)\n",
cur_drv->track, cur_drv->max_track);
cur_drv->ltrk = 0;
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA | FD_SR1_ND, FD_SR2_MD);
}
else
#endif
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
#ifdef VBOX
/* -=-=-=-=-=-=-=-=- Timer Callback -=-=-=-=-=-=-=-=- */
/**
* @callback_method_impl{FNTMTIMERDEV}
*/
static DECLCALLBACK(void) fdcTimerCallback(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
{
fdctrl_t *fdctrl = (fdctrl_t *)pvUser;
fdctrl_result_timer(fdctrl);
}
/* -=-=-=-=-=-=-=-=- I/O Port Access Handlers -=-=-=-=-=-=-=-=- */
/**
* @callback_method_impl{FNIOMIOPORTOUT}
*/
static DECLCALLBACK(int) fdcIoPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
if (cb == 1)
fdctrl_write (pvUser, Port & 7, u32);
else
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
return VINF_SUCCESS;
}
/**
* @callback_method_impl{FNIOMIOPORTOUT}
*/
static DECLCALLBACK(int) fdcIoPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
if (cb == 1)
{
*pu32 = fdctrl_read (pvUser, Port & 7);
return VINF_SUCCESS;
}
return VERR_IOM_IOPORT_UNUSED;
}
/* -=-=-=-=-=-=-=-=- Saved state -=-=-=-=-=-=-=-=- */
/**
* @callback_method_impl{FNSSMDEVSAVEEXEC}
*/
static DECLCALLBACK(int) fdcSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
fdctrl_t *pThis = PDMINS_2_DATA(pDevIns, fdctrl_t *);
unsigned int i;
/* Save the FDC I/O registers... */
SSMR3PutU8(pSSM, pThis->sra);
SSMR3PutU8(pSSM, pThis->srb);
SSMR3PutU8(pSSM, pThis->dor);
SSMR3PutU8(pSSM, pThis->tdr);
SSMR3PutU8(pSSM, pThis->dsr);
SSMR3PutU8(pSSM, pThis->msr);
/* ...the status registers... */
SSMR3PutU8(pSSM, pThis->status0);
SSMR3PutU8(pSSM, pThis->status1);
SSMR3PutU8(pSSM, pThis->status2);
/* ...the command FIFO... */
SSMR3PutU32(pSSM, sizeof(pThis->fifo));
SSMR3PutMem(pSSM, &pThis->fifo, sizeof(pThis->fifo));
SSMR3PutU32(pSSM, pThis->data_pos);
SSMR3PutU32(pSSM, pThis->data_len);
SSMR3PutU8(pSSM, pThis->data_state);
SSMR3PutU8(pSSM, pThis->data_dir);
/* ...and miscellaneous internal FDC state. */
SSMR3PutU8(pSSM, pThis->reset_sensei);
SSMR3PutU8(pSSM, pThis->eot);
SSMR3PutU8(pSSM, pThis->timer0);
SSMR3PutU8(pSSM, pThis->timer1);
SSMR3PutU8(pSSM, pThis->precomp_trk);
SSMR3PutU8(pSSM, pThis->config);
SSMR3PutU8(pSSM, pThis->lock);
SSMR3PutU8(pSSM, pThis->pwrd);
SSMR3PutU8(pSSM, pThis->version);
/* Save the number of drives and per-drive state. Note that the media
* states will be updated in fd_revalidate() and need not be saved.
*/
SSMR3PutU8(pSSM, pThis->num_floppies);
Assert(RT_ELEMENTS(pThis->drives) == pThis->num_floppies);
for (i = 0; i < pThis->num_floppies; ++i)
{
fdrive_t *d = &pThis->drives[i];
SSMR3PutMem(pSSM, &d->Led, sizeof(d->Led));
SSMR3PutU32(pSSM, d->drive);
SSMR3PutU8(pSSM, d->dsk_chg);
SSMR3PutU8(pSSM, d->perpendicular);
SSMR3PutU8(pSSM, d->head);
SSMR3PutU8(pSSM, d->track);
SSMR3PutU8(pSSM, d->sect);
}
return TMR3TimerSave (pThis->result_timer, pSSM);
}
/**
* @callback_method_impl{FNSSMDEVLOADEXEC}
*/
static DECLCALLBACK(int) fdcLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
fdctrl_t *pThis = PDMINS_2_DATA(pDevIns, fdctrl_t *);
unsigned int i;
uint32_t val32;
uint8_t val8;
if (uVersion > FDC_SAVESTATE_CURRENT)
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
/* The old saved state was significantly different. However, we can get
* back most of the controller state and fix the rest by pretending the
* disk in the drive (if any) has been replaced. At any rate there should
* be no difficulty unless the state was saved during a floppy operation.
*/
if (uVersion == FDC_SAVESTATE_OLD)
{
/* First verify a few assumptions. */
AssertMsgReturn(sizeof(pThis->fifo) == FD_SECTOR_LEN,
("The size of FIFO in saved state doesn't match!\n"),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
AssertMsgReturn(RT_ELEMENTS(pThis->drives) == 2,
("The number of drives in old saved state doesn't match!\n"),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
/* Now load the old state. */
SSMR3GetU8(pSSM, &pThis->version);
/* Toss IRQ level, DMA channel, I/O base, and state. */
SSMR3GetU8(pSSM, &val8);
SSMR3GetU8(pSSM, &val8);
SSMR3GetU32(pSSM, &val32);
SSMR3GetU8(pSSM, &val8);
/* Translate dma_en. */
SSMR3GetU8(pSSM, &val8);
if (val8)
pThis->dor |= FD_DOR_DMAEN;
SSMR3GetU8(pSSM, &pThis->cur_drv);
/* Translate bootsel. */
SSMR3GetU8(pSSM, &val8);
pThis->tdr |= val8 << 2;
SSMR3GetMem(pSSM, &pThis->fifo, FD_SECTOR_LEN);
SSMR3GetU32(pSSM, &pThis->data_pos);
SSMR3GetU32(pSSM, &pThis->data_len);
SSMR3GetU8(pSSM, &pThis->data_state);
SSMR3GetU8(pSSM, &pThis->data_dir);
SSMR3GetU8(pSSM, &pThis->status0);
SSMR3GetU8(pSSM, &pThis->eot);
SSMR3GetU8(pSSM, &pThis->timer0);
SSMR3GetU8(pSSM, &pThis->timer1);
SSMR3GetU8(pSSM, &pThis->precomp_trk);
SSMR3GetU8(pSSM, &pThis->config);
SSMR3GetU8(pSSM, &pThis->lock);
SSMR3GetU8(pSSM, &pThis->pwrd);
for (i = 0; i < 2; ++i)
{
fdrive_t *d = &pThis->drives[i];
SSMR3GetMem (pSSM, &d->Led, sizeof (d->Led));
SSMR3GetU32(pSSM, &val32);
d->drive = (fdrive_type_t)val32;
SSMR3GetU32(pSSM, &val32); /* Toss drflags */
SSMR3GetU8(pSSM, &d->perpendicular);
SSMR3GetU8(pSSM, &d->head);
SSMR3GetU8(pSSM, &d->track);
SSMR3GetU8(pSSM, &d->sect);
SSMR3GetU8(pSSM, &val8); /* Toss dir, rw */
SSMR3GetU8(pSSM, &val8);
SSMR3GetU32(pSSM, &val32);
d->flags = (fdrive_flags_t)val32;
SSMR3GetU8(pSSM, &d->last_sect);
SSMR3GetU8(pSSM, &d->max_track);
SSMR3GetU16(pSSM, &d->bps);
SSMR3GetU8(pSSM, &d->ro);
}
}
else /* New state - straightforward. */
{
Assert(uVersion == FDC_SAVESTATE_CURRENT);
/* Load the FDC I/O registers... */
SSMR3GetU8(pSSM, &pThis->sra);
SSMR3GetU8(pSSM, &pThis->srb);
SSMR3GetU8(pSSM, &pThis->dor);
SSMR3GetU8(pSSM, &pThis->tdr);
SSMR3GetU8(pSSM, &pThis->dsr);
SSMR3GetU8(pSSM, &pThis->msr);
/* ...the status registers... */
SSMR3GetU8(pSSM, &pThis->status0);
SSMR3GetU8(pSSM, &pThis->status1);
SSMR3GetU8(pSSM, &pThis->status2);
/* ...the command FIFO, if the size matches... */
SSMR3GetU32(pSSM, &val32);
AssertMsgReturn(sizeof(pThis->fifo) == val32,
("The size of FIFO in saved state doesn't match!\n"),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
SSMR3GetMem(pSSM, &pThis->fifo, sizeof(pThis->fifo));
SSMR3GetU32(pSSM, &pThis->data_pos);
SSMR3GetU32(pSSM, &pThis->data_len);
SSMR3GetU8(pSSM, &pThis->data_state);
SSMR3GetU8(pSSM, &pThis->data_dir);
/* ...and miscellaneous internal FDC state. */
SSMR3GetU8(pSSM, &pThis->reset_sensei);
SSMR3GetU8(pSSM, &pThis->eot);
SSMR3GetU8(pSSM, &pThis->timer0);
SSMR3GetU8(pSSM, &pThis->timer1);
SSMR3GetU8(pSSM, &pThis->precomp_trk);
SSMR3GetU8(pSSM, &pThis->config);
SSMR3GetU8(pSSM, &pThis->lock);
SSMR3GetU8(pSSM, &pThis->pwrd);
SSMR3GetU8(pSSM, &pThis->version);
/* Validate the number of drives. */
SSMR3GetU8(pSSM, &pThis->num_floppies);
AssertMsgReturn(RT_ELEMENTS(pThis->drives) == pThis->num_floppies,
("The number of drives in saved state doesn't match!\n"),
VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
/* Load the per-drive state. */
for (i = 0; i < pThis->num_floppies; ++i)
{
fdrive_t *d = &pThis->drives[i];
SSMR3GetMem(pSSM, &d->Led, sizeof(d->Led));
SSMR3GetU32(pSSM, &val32);
d->drive = (fdrive_type_t)val32;
SSMR3GetU8(pSSM, &d->dsk_chg);
SSMR3GetU8(pSSM, &d->perpendicular);
SSMR3GetU8(pSSM, &d->head);
SSMR3GetU8(pSSM, &d->track);
SSMR3GetU8(pSSM, &d->sect);
}
}
return TMR3TimerLoad (pThis->result_timer, pSSM);
}
/* -=-=-=-=-=-=-=-=- Drive level interfaces -=-=-=-=-=-=-=-=- */
/**
* @interface_method_impl{PDMIMOUNTNOTIFY,pfnMountNotify}
*/
static DECLCALLBACK(void) fdMountNotify(PPDMIMOUNTNOTIFY pInterface)
{
fdrive_t *pDrv = RT_FROM_MEMBER(pInterface, fdrive_t, IMountNotify);
LogFlow(("fdMountNotify:\n"));
fd_revalidate(pDrv);
}
/**
* @interface_method_impl{PDMIMOUNTNOTIFY,pfnUnmountNotify}
*/
static DECLCALLBACK(void) fdUnmountNotify(PPDMIMOUNTNOTIFY pInterface)
{
fdrive_t *pDrv = RT_FROM_MEMBER(pInterface, fdrive_t, IMountNotify);
LogFlow(("fdUnmountNotify:\n"));
fd_revalidate(pDrv);
}
/**
* @interface_method_impl{PDMIBASE,pfnQueryInterface}
*/
static DECLCALLBACK(void *) fdQueryInterface (PPDMIBASE pInterface, const char *pszIID)
{
fdrive_t *pDrv = RT_FROM_MEMBER(pInterface, fdrive_t, IBase);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pDrv->IBase);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBLOCKPORT, &pDrv->IPort);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIMOUNTNOTIFY, &pDrv->IMountNotify);
return NULL;
}
/* -=-=-=-=-=-=-=-=- Controller level interfaces -=-=-=-=-=-=-=-=- */
/**
* @interface_method_impl{PDMILEDPORTS,pfnQueryStatusLed}
*/
static DECLCALLBACK(int) fdcStatusQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
{
fdctrl_t *pThis = RT_FROM_MEMBER (pInterface, fdctrl_t, ILeds);
if (iLUN < RT_ELEMENTS(pThis->drives)) {
*ppLed = &pThis->drives[iLUN].Led;
Assert ((*ppLed)->u32Magic == PDMLED_MAGIC);
return VINF_SUCCESS;
}
return VERR_PDM_LUN_NOT_FOUND;
}
/**
* @interface_method_impl{PDMIBASE,pfnQueryInterface}
*/
static DECLCALLBACK(void *) fdcStatusQueryInterface(PPDMIBASE pInterface, const char *pszIID)
{
fdctrl_t *pThis = RT_FROM_MEMBER (pInterface, fdctrl_t, IBaseStatus);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBaseStatus);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->ILeds);
return NULL;
}
/**
* Configure a drive.
*
* @returns VBox status code.
* @param drv The drive in question.
* @param pDevIns The driver instance.
* @param fInit Set if we're at init time and can change the drive type.
*/
static int fdConfig(fdrive_t *drv, PPDMDEVINS pDevIns, bool fInit)
{
static const char * const s_apszDesc[] = {"Floppy Drive A:", "Floppy Drive B"};
int rc;
/*
* Reset the LED just to be on the safe side.
*/
Assert (RT_ELEMENTS(s_apszDesc) > drv->iLUN);
Assert (drv->Led.u32Magic == PDMLED_MAGIC);
drv->Led.Actual.u32 = 0;
drv->Led.Asserted.u32 = 0;
/*
* Try attach the block device and get the interfaces.
*/
rc = PDMDevHlpDriverAttach (pDevIns, drv->iLUN, &drv->IBase, &drv->pDrvBase, s_apszDesc[drv->iLUN]);
if (RT_SUCCESS (rc)) {
drv->pDrvBlock = PDMIBASE_QUERY_INTERFACE(drv->pDrvBase, PDMIBLOCK);
if (drv->pDrvBlock) {
drv->pDrvBlockBios = PDMIBASE_QUERY_INTERFACE(drv->pDrvBase, PDMIBLOCKBIOS);
if (drv->pDrvBlockBios) {
drv->pDrvMount = PDMIBASE_QUERY_INTERFACE(drv->pDrvBase, PDMIMOUNT);
if (drv->pDrvMount) {
fd_init(drv, fInit);
} else {
AssertMsgFailed (("Configuration error: LUN#%d without mountable interface!\n", drv->iLUN));
rc = VERR_PDM_MISSING_INTERFACE;
}
} else {
AssertMsgFailed (("Configuration error: LUN#%d hasn't a block BIOS interface!\n", drv->iLUN));
rc = VERR_PDM_MISSING_INTERFACE;
}
} else {
AssertMsgFailed (("Configuration error: LUN#%d hasn't a block interface!\n", drv->iLUN));
rc = VERR_PDM_MISSING_INTERFACE;
}
} else {
AssertMsg (rc == VERR_PDM_NO_ATTACHED_DRIVER,
("Failed to attach LUN#%d. rc=%Rrc\n", drv->iLUN, rc));
switch (rc) {
case VERR_ACCESS_DENIED:
/* Error already cached by DrvHostBase */
break;
case VERR_PDM_NO_ATTACHED_DRIVER:
/* Legal on architectures without a floppy controller */
break;
default:
rc = PDMDevHlpVMSetError (pDevIns, rc, RT_SRC_POS,
N_ ("The floppy controller cannot attach to the floppy drive"));
break;
}
}
if (RT_FAILURE (rc)) {
drv->pDrvBase = NULL;
drv->pDrvBlock = NULL;
drv->pDrvBlockBios = NULL;
drv->pDrvMount = NULL;
}
LogFlow (("fdConfig: returns %Rrc\n", rc));
return rc;
}
/**
* @interface_method_impl{PDMDEVREG,pfnAttach}
*
* This is called when we change block driver for a floppy drive.
*/
static DECLCALLBACK(int) fdcAttach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
{
fdctrl_t *fdctrl = PDMINS_2_DATA(pDevIns, fdctrl_t *);
fdrive_t *drv;
int rc;
LogFlow (("ideDetach: iLUN=%u\n", iLUN));
AssertMsgReturn(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG,
("The FDC device does not support hotplugging\n"),
VERR_INVALID_PARAMETER);
/*
* Validate.
*/
if (iLUN >= 2) {
AssertMsgFailed (("Configuration error: cannot attach or detach any but the first two LUNs - iLUN=%u\n",
iLUN));
return VERR_PDM_DEVINS_NO_ATTACH;
}
/*
* Locate the drive and stuff.
*/
drv = &fdctrl->drives[iLUN];
/* the usual paranoia */
AssertRelease (!drv->pDrvBase);
AssertRelease (!drv->pDrvBlock);
AssertRelease (!drv->pDrvBlockBios);
AssertRelease (!drv->pDrvMount);
rc = fdConfig (drv, pDevIns, false /*fInit*/);
AssertMsg (rc != VERR_PDM_NO_ATTACHED_DRIVER,
("Configuration error: failed to configure drive %d, rc=%Rrc\n", rc));
if (RT_SUCCESS(rc)) {
fd_revalidate (drv);
}
LogFlow (("floppyAttach: returns %Rrc\n", rc));
return rc;
}
/**
* @interface_method_impl{PDMDEVREG,pfnDetach}
*
* The floppy drive has been temporarily 'unplugged'.
*/
static DECLCALLBACK(void) fdcDetach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
{
fdctrl_t *pThis = PDMINS_2_DATA(pDevIns, fdctrl_t *);
LogFlow (("ideDetach: iLUN=%u\n", iLUN));
switch (iLUN)
{
case 0:
case 1:
{
fdrive_t *drv = &pThis->drives[iLUN];
drv->pDrvBase = NULL;
drv->pDrvBlock = NULL;
drv->pDrvBlockBios = NULL;
drv->pDrvMount = NULL;
break;
}
default:
AssertMsgFailed(("Cannot detach LUN#%d!\n", iLUN));
break;
}
}
/**
* @interface_method_impl{PDMDEVREG,pfnReset}
*
* I haven't check the specs on what's supposed to happen on reset, but we
* should get any 'FATAL: floppy recal:f07 ctrl not ready' when resetting
* at wrong time like we do if this was all void.
*/
static DECLCALLBACK(void) fdcReset(PPDMDEVINS pDevIns)
{
fdctrl_t *pThis = PDMINS_2_DATA (pDevIns, fdctrl_t *);
unsigned i;
LogFlow (("fdcReset:\n"));
fdctrl_reset(pThis, 0);
for (i = 0; i < RT_ELEMENTS(pThis->drives); i++)
fd_revalidate(&pThis->drives[i]);
}
/**
* @interface_method_impl{PDMDEVREG,pfnConstruct}
*/
static DECLCALLBACK(int) fdcConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
{
fdctrl_t *pThis = PDMINS_2_DATA(pDevIns, fdctrl_t *);
int rc;
unsigned i, j;
int ii;
bool mem_mapped;
uint16_t io_base;
uint8_t irq_lvl, dma_chann;
PPDMIBASE pBase;
Assert(iInstance == 0);
PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
/*
* Validate configuration.
*/
if (!CFGMR3AreValuesValid(pCfg, "IRQ\0DMA\0MemMapped\0IOBase\0"))
return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES;
/*
* Read the configuration.
*/
rc = CFGMR3QueryU8Def(pCfg, "IRQ", &irq_lvl, 6);
AssertMsgRCReturn(rc, ("Configuration error: Failed to read U8 IRQ, rc=%Rrc\n", rc), rc);
rc = CFGMR3QueryU8Def(pCfg, "DMA", &dma_chann, 2);
AssertMsgRCReturn(rc, ("Configuration error: Failed to read U8 DMA, rc=%Rrc\n", rc), rc);
rc = CFGMR3QueryU16Def(pCfg, "IOBase", &io_base, 0x3f0);
AssertMsgRCReturn(rc, ("Configuration error: Failed to read U16 IOBase, rc=%Rrc\n", rc), rc);
rc = CFGMR3QueryBoolDef(pCfg, "MemMapped", &mem_mapped, false);
AssertMsgRCReturn(rc, ("Configuration error: Failed to read bool value MemMapped rc=%Rrc\n", rc), rc);
/*
* Initialize data.
*/
LogFlow(("fdcConstruct: irq_lvl=%d dma_chann=%d io_base=%#x\n", irq_lvl, dma_chann, io_base));
pThis->pDevIns = pDevIns;
pThis->version = 0x90; /* Intel 82078 controller */
pThis->irq_lvl = irq_lvl;
pThis->dma_chann = dma_chann;
pThis->io_base = io_base;
pThis->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
pThis->num_floppies = MAX_FD;
/* Fill 'command_to_handler' lookup table */
for (ii = RT_ELEMENTS(handlers) - 1; ii >= 0; ii--)
for (j = 0; j < sizeof(command_to_handler); j++)
if ((j & handlers[ii].mask) == handlers[ii].value)
command_to_handler[j] = ii;
pThis->IBaseStatus.pfnQueryInterface = fdcStatusQueryInterface;
pThis->ILeds.pfnQueryStatusLed = fdcStatusQueryStatusLed;
for (i = 0; i < RT_ELEMENTS(pThis->drives); ++i)
{
fdrive_t *pDrv = &pThis->drives[i];
pDrv->drive = FDRIVE_DRV_NONE;
pDrv->iLUN = i;
pDrv->IBase.pfnQueryInterface = fdQueryInterface;
pDrv->IMountNotify.pfnMountNotify = fdMountNotify;
pDrv->IMountNotify.pfnUnmountNotify = fdUnmountNotify;
pDrv->Led.u32Magic = PDMLED_MAGIC;
}
/*
* Create the FDC timer.
*/
rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, fdcTimerCallback, pThis,
TMTIMER_FLAGS_DEFAULT_CRIT_SECT, "FDC Timer", &pThis->result_timer);
if (RT_FAILURE(rc))
return rc;
/*
* Register DMA channel.
*/
if (pThis->dma_chann != 0xff)
{
rc = PDMDevHlpDMARegister(pDevIns, dma_chann, &fdctrl_transfer_handler, pThis);
if (RT_FAILURE(rc))
return rc;
}
/*
* IO / MMIO.
*/
if (mem_mapped)
{
AssertMsgFailed(("Memory mapped floppy not support by now\n"));
return VERR_NOT_SUPPORTED;
#if 0
FLOPPY_ERROR("memory mapped floppy not supported by now !\n");
io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write);
cpu_register_physical_memory(base, 0x08, io_mem);
#endif
}
else
{
rc = PDMDevHlpIOPortRegister(pDevIns, io_base + 0x1, 5, pThis,
fdcIoPortWrite, fdcIoPortRead, NULL, NULL, "FDC#1");
if (RT_FAILURE(rc))
return rc;
rc = PDMDevHlpIOPortRegister(pDevIns, io_base + 0x7, 1, pThis,
fdcIoPortWrite, fdcIoPortRead, NULL, NULL, "FDC#2");
if (RT_FAILURE(rc))
return rc;
}
/*
* Register the saved state data unit.
*/
rc = PDMDevHlpSSMRegister(pDevIns, FDC_SAVESTATE_CURRENT, sizeof(*pThis), fdcSaveExec, fdcLoadExec);
if (RT_FAILURE(rc))
return rc;
/*
* Attach the status port (optional).
*/
rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThis->IBaseStatus, &pBase, "Status Port");
if (RT_SUCCESS (rc))
pThis->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS);
else if (rc != VERR_PDM_NO_ATTACHED_DRIVER)
{
AssertMsgFailed(("Failed to attach to status driver. rc=%Rrc\n", rc));
return rc;
}
/*
* Initialize drives.
*/
for (i = 0; i < RT_ELEMENTS(pThis->drives); i++)
{
fdrive_t *pDrv = &pThis->drives[i];
rc = fdConfig(pDrv, pDevIns, true /*fInit*/);
if ( RT_FAILURE(rc)
&& rc != VERR_PDM_NO_ATTACHED_DRIVER)
{
AssertMsgFailed(("Configuration error: failed to configure drive %d, rc=%Rrc\n", rc));
return rc;
}
}
fdctrl_reset(pThis, 0);
for (i = 0; i < RT_ELEMENTS(pThis->drives); i++)
fd_revalidate(&pThis->drives[i]);
return VINF_SUCCESS;
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DeviceFloppyController =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szName */
"i82078",
/* szRCMod */
"",
/* szR0Mod */
"",
/* pszDescription */
"Floppy drive controller (Intel 82078)",
/* fFlags */
PDM_DEVREG_FLAGS_DEFAULT_BITS,
/* fClass */
PDM_DEVREG_CLASS_STORAGE,
/* cMaxInstances */
1,
/* cbInstance */
sizeof(fdctrl_t),
/* pfnConstruct */
fdcConstruct,
/* pfnDestruct */
NULL,
/* pfnRelocate */
NULL,
/* pfnMemSetup */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
fdcReset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
fdcAttach,
/* pfnDetach */
fdcDetach,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
NULL,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};
#endif /* VBOX */
/*
* Local Variables:
* mode: c
* c-file-style: "k&r"
* indent-tabs-mode: nil
* End:
*/