DevATA.cpp revision ae2c86459198976fb5203a35c7c593b8b58d11c2
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/* $Id$ */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/** @file
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * VBox storage devices: ATA/ATAPI controller device (disk and cdrom).
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/*
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Copyright (C) 2006-2008 Sun Microsystems, Inc.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * This file is part of VirtualBox Open Source Edition (OSE), as
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * available from http://www.virtualbox.org. This file is free software;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * you can redistribute it and/or modify it under the terms of the GNU
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * General Public License (GPL) as published by the Free Software
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Foundation, in version 2 as it comes in the "COPYING" file of the
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Clara, CA 95054 USA or visit http://www.sun.com if you need
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * additional information or have any questions.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/*******************************************************************************
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync* Defined Constants And Macros *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync*******************************************************************************/
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/** Temporary instrumentation for tracking down potential virtual disk
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * write performance issues. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#undef VBOX_INSTRUMENT_DMA_WRITES
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * The SSM saved state versions.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_SAVED_STATE_VERSION 18
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_SAVED_STATE_VERSION_WITHOUT_FULL_SENSE 16
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_SAVED_STATE_VERSION_WITHOUT_EVENT_STATUS 17
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/*******************************************************************************
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync* Header Files *
628ddfbd43ad5365d69fddda4007598242956577vboxsync*******************************************************************************/
628ddfbd43ad5365d69fddda4007598242956577vboxsync#define LOG_GROUP LOG_GROUP_DEV_IDE
628ddfbd43ad5365d69fddda4007598242956577vboxsync#include <VBox/pdmdev.h>
628ddfbd43ad5365d69fddda4007598242956577vboxsync#include <iprt/assert.h>
628ddfbd43ad5365d69fddda4007598242956577vboxsync#include <iprt/string.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#ifdef IN_RING3
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync# include <iprt/uuid.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync# include <iprt/semaphore.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync# include <iprt/thread.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync# include <iprt/time.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync# include <iprt/alloc.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#endif /* IN_RING3 */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include <iprt/critsect.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include <iprt/asm.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include <VBox/stam.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include <VBox/mm.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include <VBox/pgm.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include <VBox/scsi.h>
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include "PIIX3ATABmDma.h"
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include "ide.h"
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#include "../Builtins.h"
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/*******************************************************************************
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync* Defined Constants And Macros *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync*******************************************************************************/
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Maximum number of sectors to transfer in a READ/WRITE MULTIPLE request.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Set to 1 to disable multi-sector read support. According to the ATA
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * specification this must be a power of 2 and it must fit in an 8 bit
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * value. Thus the only valid values are 1, 2, 4, 8, 16, 32, 64 and 128.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_MAX_MULT_SECTORS 128
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Fastest PIO mode supported by the drive.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_PIO_MODE_MAX 4
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Fastest MDMA mode supported by the drive.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_MDMA_MODE_MAX 2
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Fastest UDMA mode supported by the drive.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_UDMA_MODE_MAX 6
54d3b0107d9bf326fe6e0de92e012c791dbb1587vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/** ATAPI sense info size. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATAPI_SENSE_SIZE 64
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/** The maximum number of release log entries per device. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define MAX_LOG_REL_ERRORS 1024
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/* MediaEventStatus */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_EVENT_STATUS_UNCHANGED 0 /**< medium event status not changed */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_EVENT_STATUS_MEDIA_NEW 1 /**< new medium inserted */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_EVENT_STATUS_MEDIA_REMOVED 2 /**< medium removed */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_EVENT_STATUS_MEDIA_CHANGED 3 /**< medium was removed + new medium was inserted */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Length of the configurable VPD data (without termination)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_SERIAL_NUMBER_LENGTH 20
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_FIRMWARE_REVISION_LENGTH 8
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATA_MODEL_NUMBER_LENGTH 40
77cce7691847be5aef145f31ba3f9d66fc2cf594vboxsync
54d3b0107d9bf326fe6e0de92e012c791dbb1587vboxsync/*******************************************************************************
54d3b0107d9bf326fe6e0de92e012c791dbb1587vboxsync* Structures and Typedefs *
54d3b0107d9bf326fe6e0de92e012c791dbb1587vboxsync*******************************************************************************/
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef struct ATADevState {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag indicating whether the current command uses LBA48 mode. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fLBA48;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag indicating whether this drive implements the ATAPI command set. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fATAPI;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Set if this interface has asserted the IRQ. */
de4a8fd02869ef118f477a5efd0541dc91acb01fvboxsync bool fIrqPending;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Currently configured number of sectors in a multi-sector transfer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t cMultSectors;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** PCHS disk geometry. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMMEDIAGEOMETRY PCHSGeometry;
1330d766d6c411e4937f22e4e6aee1732a4873b0vboxsync /** Total number of sectors on this disk. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint64_t cTotalSectors;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Number of sectors to transfer per IRQ. */
23c03b3208f2fe46af3705791f6f38cdb2642f19vboxsync uint32_t cSectorsPerIRQ;
23c03b3208f2fe46af3705791f6f38cdb2642f19vboxsync
23c03b3208f2fe46af3705791f6f38cdb2642f19vboxsync /** ATA/ATAPI register 1: feature (write-only). */
23c03b3208f2fe46af3705791f6f38cdb2642f19vboxsync uint8_t uATARegFeature;
23c03b3208f2fe46af3705791f6f38cdb2642f19vboxsync /** ATA/ATAPI register 1: feature, high order byte. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegFeatureHOB;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 1: error (read-only). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegError;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 2: sector count (read/write). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegNSector;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 2: sector count, high order byte. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegNSectorHOB;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 3: sector (read/write). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegSector;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 3: sector, high order byte. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegSectorHOB;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 4: cylinder low (read/write). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegLCyl;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 4: cylinder low, high order byte. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegLCylHOB;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 5: cylinder high (read/write). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegHCyl;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 5: cylinder high, high order byte. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegHCylHOB;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 6: select drive/head (read/write). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegSelect;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI register 7: status (read-only). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegStatus;
cd0318d4ff9c5a7539bea1672f9bcbbf57e59095vboxsync /** ATA/ATAPI register 7: command (write-only). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATARegCommand;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI drive control register (write-only). */
8e0c2ca3abd721979958f95b9af73b60665478c8vboxsync uint8_t uATARegDevCtl;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Currently active transfer mode (MDMA/UDMA) and speed. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uATATransferMode;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Current transfer direction. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uTxDir;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Index of callback for begin transfer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iBeginTransfer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Index of callback for source/sink of data. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iSourceSink;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag indicating whether the current command transfers data in DMA mode. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fDMA;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Set to indicate that ATAPI transfer semantics must be used. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fATAPITransfer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Total ATA/ATAPI transfer size, shared PIO/DMA. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t cbTotalTransfer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Elementary ATA/ATAPI transfer size, shared PIO/DMA. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t cbElementaryTransfer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Current read/write buffer position, shared PIO/DMA. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t iIOBufferCur;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** First element beyond end of valid buffer content, shared PIO/DMA. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t iIOBufferEnd;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI current PIO read/write transfer position. Not shared with DMA for safety reasons. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t iIOBufferPIODataStart;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATA/ATAPI current PIO read/write transfer end. Not shared with DMA for safety reasons. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t iIOBufferPIODataEnd;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATAPI current LBA position. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t iATAPILBA;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATAPI current sector size. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t cbATAPISector;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATAPI current command. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t aATAPICmd[ATAPI_PACKET_SIZE];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** ATAPI sense data. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t abATAPISense[ATAPI_SENSE_SIZE];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** HACK: Countdown till we report a newly unmounted drive as mounted. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t cNotifiedMediaChange;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The same for GET_EVENT_STATUS for mechanism */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync volatile uint32_t MediaEventStatus;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t Alignment0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The status LED state for this drive. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMLED Led;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Size of I/O buffer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t cbIOBuffer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to the I/O buffer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R3PTRTYPE(uint8_t *) pbIOBufferR3;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to the I/O buffer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R0PTRTYPE(uint8_t *) pbIOBufferR0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to the I/O buffer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RCPTRTYPE(uint8_t *) pbIOBufferRC;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTRCPTR Aligmnent1; /**< Align the statistics at an 8-byte boundrary. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /*
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * No data that is part of the saved state after this point!!!!!
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Release statistics: number of ATA DMA commands. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatATADMA;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Release statistics: number of ATA PIO commands. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatATAPIO;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Release statistics: number of ATAPI PIO commands. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatATAPIDMA;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Release statistics: number of ATAPI PIO commands. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatATAPIPIO;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#ifdef VBOX_INSTRUMENT_DMA_WRITES
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Release statistics: number of DMA sector writes and the time spent. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMPROFILEADV StatInstrVDWrites;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#endif
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Statistics: number of read operations and the time spent reading. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMPROFILEADV StatReads;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Statistics: number of bytes read. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatBytesRead;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Statistics: number of write operations and the time spent writing. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMPROFILEADV StatWrites;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Statistics: number of bytes written. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatBytesWritten;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Statistics: number of flush operations and the time spend flushing. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMPROFILE StatFlushes;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Enable passing through commands directly to the ATAPI drive. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fATAPIPassthrough;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Number of errors we've reported to the release log.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * This is to prevent flooding caused by something going horribly wrong.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * this value against MAX_LOG_REL_ERRORS in places likely to cause floods
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * like the ones we currently seeing on the linux smoke tests (2006-11-10). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t cErrors;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Timestamp of last started command. 0 if no command pending. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint64_t u64CmdTS;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to the attached driver's base interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R3PTRTYPE(PPDMIBASE) pDrvBase;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to the attached driver's block interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R3PTRTYPE(PPDMIBLOCK) pDrvBlock;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to the attached driver's block bios interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R3PTRTYPE(PPDMIBLOCKBIOS) pDrvBlockBios;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to the attached driver's mount interface.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * This is NULL if the driver isn't a removable unit. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R3PTRTYPE(PPDMIMOUNT) pDrvMount;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The base interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMIBASE IBase;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The block port interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMIBLOCKPORT IPort;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The mount notify interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMIMOUNTNOTIFY IMountNotify;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The LUN #. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTUINT iLUN;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#if HC_ARCH_BITS == 64
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTUINT Alignment2; /**< Align pDevInsR3 correctly. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#endif
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to device instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PPDMDEVINSR3 pDevInsR3;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to controller instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R3PTRTYPE(struct ATACONTROLLER *) pControllerR3;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to device instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PPDMDEVINSR0 pDevInsR0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to controller instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R0PTRTYPE(struct ATACONTROLLER *) pControllerR0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to device instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PPDMDEVINSRC pDevInsRC;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to controller instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RCPTRTYPE(struct ATACONTROLLER *) pControllerRC;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The serial numnber to use for IDENTIFY DEVICE commands. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync char achSerialNumber[ATA_SERIAL_NUMBER_LENGTH+1];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The firmware revision to use for IDENTIFY DEVICE commands. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync char achFirmwareRevision[ATA_FIRMWARE_REVISION_LENGTH+1];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The model number to use for IDENTIFY DEVICE commands. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync char achModelNumber[ATA_MODEL_NUMBER_LENGTH+1];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#if HC_ARCH_BITS == 64
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t Alignment3[2];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#endif
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATADevState;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef struct ATATransferRequest
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iIf;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iBeginTransfer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iSourceSink;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t cbTotalTransfer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uTxDir;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATATransferRequest;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef struct ATAAbortRequest
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iIf;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fResetDrive;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATAAbortRequest;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef enum
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Begin a new transfer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATA_AIO_NEW = 0,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Continue a DMA transfer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATA_AIO_DMA,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Continue a PIO transfer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATA_AIO_PIO,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Reset the drives on current controller, stop all transfer activity. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATA_AIO_RESET_ASSERTED,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Reset the drives on current controller, resume operation. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATA_AIO_RESET_CLEARED,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Abort the current transfer of a particular drive. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATA_AIO_ABORT
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATAAIO;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef struct ATARequest
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAAIO ReqType;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync union
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATATransferRequest t;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAAbortRequest a;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync } u;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATARequest;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef struct ATACONTROLLER
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The base of the first I/O Port range. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTIOPORT IOPortBase1;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The base of the second I/O Port range. (0 if none) */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTIOPORT IOPortBase2;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The assigned IRQ. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTUINT irq;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Access critical section */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMCRITSECT lock;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Selected drive. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iSelectedIf;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The interface on which to handle async I/O. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t iAIOIf;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The state of the async I/O thread. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t uAsyncIOState;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag indicating whether the next transfer is part of the current command. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fChainedTransfer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Set when the reset processing is currently active on this controller. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fReset;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag whether the current transfer needs to be redone. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fRedo;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag whether the redo suspend has been finished. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fRedoIdle;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag whether the DMA operation to be redone is the final transfer. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fRedoDMALastDesc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The BusMaster DMA state. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync BMDMAState BmDma;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to first DMA descriptor. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTGCPHYS32 pFirstDMADesc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to last DMA descriptor. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTGCPHYS32 pLastDMADesc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to current DMA buffer (for redo operations). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTGCPHYS32 pRedoDMABuffer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Size of current DMA buffer (for redo operations). */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t cbRedoDMABuffer;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The ATA/ATAPI interfaces of this controller. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATADevState aIfs[2];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to device instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PPDMDEVINSR3 pDevInsR3;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to device instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PPDMDEVINSR0 pDevInsR0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to device instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PPDMDEVINSRC pDevInsRC;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Set when the destroying the device instance and the thread must exit. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t volatile fShutdown;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The async I/O thread handle. NIL_RTTHREAD if no thread. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTTHREAD AsyncIOThread;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The event semaphore the thread is waiting on for requests. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTSEMEVENT AsyncIOSem;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The request queue for the AIO thread. One element is always unused. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATARequest aAsyncIORequests[4];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The position at which to insert a new request for the AIO thread. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t AsyncIOReqHead;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The position at which to get a new request for the AIO thread. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t AsyncIOReqTail;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t Alignment3[2]; /**< Explicit padding of the 2 byte gap. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Magic delay before triggering interrupts in DMA mode. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t DelayIRQMillies;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The mutex protecting the request queue. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTSEMMUTEX AsyncIORequestMutex;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The event semaphore the thread is waiting on during suspended I/O. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync RTSEMEVENT SuspendIOSem;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#if 0 /*HC_ARCH_BITS == 32*/
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint32_t Alignment0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#endif
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Statistics */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatAsyncOps;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint64_t StatAsyncMinWait;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint64_t StatAsyncMaxWait;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMCOUNTER StatAsyncTimeUS;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMPROFILEADV StatAsyncTime;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync STAMPROFILE StatLockWait;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATACONTROLLER, *PATACONTROLLER;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef struct PCIATAState {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PCIDEVICE dev;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** The controllers. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATACONTROLLER aCts[2];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Pointer to device instance. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PPDMDEVINSR3 pDevIns;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Status Port - Base interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMIBASE IBase;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Status Port - Leds interface. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PDMILEDPORTS ILeds;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Partner of ILeds. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag whether GC is enabled. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fGCEnabled;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag whether R0 is enabled. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fR0Enabled;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /** Flag indicating whether PIIX4 or PIIX3 is being emulated. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fPIIX4;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool Alignment0[HC_ARCH_BITS == 64 ? 5 : 1]; /**< Align the struct size. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} PCIATAState;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define PDMIBASE_2_PCIATASTATE(pInterface) ( (PCIATAState *)((uintptr_t)(pInterface) - RT_OFFSETOF(PCIATAState, IBase)) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define PDMILEDPORTS_2_PCIATASTATE(pInterface) ( (PCIATAState *)((uintptr_t)(pInterface) - RT_OFFSETOF(PCIATAState, ILeds)) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define PDMIBLOCKPORT_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IPort)) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define PDMIMOUNT_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IMount)) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define PDMIMOUNTNOTIFY_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IMountNotify)) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define PCIDEV_2_PCIATASTATE(pPciDev) ( (PCIATAState *)(pPciDev) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATACONTROLLER_IDX(pController) ( (pController) - PDMINS_2_DATA(CONTROLLER_2_DEVINS(pController), PCIATAState *)->aCts )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATADEVSTATE_2_CONTROLLER(pIf) ( (pIf)->CTX_SUFF(pController) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define ATADEVSTATE_2_DEVINS(pIf) ( (pIf)->CTX_SUFF(pDevIns) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define CONTROLLER_2_DEVINS(pController) ( (pController)->CTX_SUFF(pDevIns) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#define PDMIBASE_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IBase)) )
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#ifndef VBOX_DEVICE_STRUCT_TESTCASE
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/*******************************************************************************
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Internal Functions *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ******************************************************************************/
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync__BEGIN_DECLS
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataIOPortWrite1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataIOPortRead1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *u32, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataIOPortWriteStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrSrc, PRTGCUINTREG pcTransfer, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataIOPortReadStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrDst, PRTGCUINTREG pcTransfer, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataIOPortWrite2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataIOPortRead2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *u32, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataBMDMAIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncPDMBOTHCBDECL(int) ataBMDMAIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync__END_DECLS
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncDECLINLINE(void) ataSetStatusValue(ATADevState *s, uint8_t stat)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Freeze status register contents while processing RESET. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (!pCtl->fReset)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync s->uATARegStatus = stat;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, s->iLUN, s->uATARegStatus));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync }
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncDECLINLINE(void) ataSetStatus(ATADevState *s, uint8_t stat)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Freeze status register contents while processing RESET. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (!pCtl->fReset)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync s->uATARegStatus |= stat;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, s->iLUN, s->uATARegStatus));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync }
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncDECLINLINE(void) ataUnsetStatus(ATADevState *s, uint8_t stat)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync /* Freeze status register contents while processing RESET. */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (!pCtl->fReset)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync s->uATARegStatus &= ~stat;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, s->iLUN, s->uATARegStatus));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync }
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync#ifdef IN_RING3
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef void (*PBeginTransferFunc)(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef bool (*PSourceSinkFunc)(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void ataReadWriteSectorsBT(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void ataPacketBT(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void atapiCmdBT(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void atapiPassthroughCmdBT(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool ataIdentifySS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool ataFlushSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool ataReadSectorsSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool ataWriteSectorsSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool ataExecuteDeviceDiagnosticSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool ataPacketSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiGetConfigurationSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiGetEventStatusNotificationSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiIdentifySS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiInquirySS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiMechanismStatusSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiModeSenseErrorRecoverySS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiModeSenseCDStatusSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiReadSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiReadCapacitySS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiReadDiscInformationSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiReadTOCNormalSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiReadTOCMultiSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiReadTOCRawSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiReadTrackInformationSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiRequestSenseSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool atapiPassthroughSS(ATADevState *);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Begin of transfer function indexes for g_apfnBeginTransFuncs.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef enum ATAFNBT
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_BT_NULL = 0,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_BT_READ_WRITE_SECTORS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_BT_PACKET,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_BT_ATAPI_CMD,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_BT_ATAPI_PASSTHROUGH_CMD,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_BT_MAX
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATAFNBT;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Array of end transfer functions, the index is ATAFNET.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Make sure ATAFNET and this array match!
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic const PBeginTransferFunc g_apfnBeginTransFuncs[ATAFN_BT_MAX] =
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync NULL,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataReadWriteSectorsBT,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataPacketBT,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiCmdBT,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiPassthroughCmdBT,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync};
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Source/sink function indexes for g_apfnSourceSinkFuncs.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsynctypedef enum ATAFNSS
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_NULL = 0,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_IDENTIFY,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_FLUSH,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_READ_SECTORS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_WRITE_SECTORS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_EXECUTE_DEVICE_DIAGNOSTIC,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_PACKET,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_GET_CONFIGURATION,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_GET_EVENT_STATUS_NOTIFICATION,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_IDENTIFY,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_INQUIRY,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_MECHANISM_STATUS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_MODE_SENSE_ERROR_RECOVERY,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_MODE_SENSE_CD_STATUS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_READ,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_READ_CAPACITY,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_READ_DISC_INFORMATION,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_READ_TOC_NORMAL,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_READ_TOC_MULTI,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_READ_TOC_RAW,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_READ_TRACK_INFORMATION,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_REQUEST_SENSE,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_ATAPI_PASSTHROUGH,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ATAFN_SS_MAX
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync} ATAFNSS;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Array of source/sink functions, the index is ATAFNSS.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Make sure ATAFNSS and this array match!
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic const PSourceSinkFunc g_apfnSourceSinkFuncs[ATAFN_SS_MAX] =
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync NULL,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataIdentifySS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataFlushSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataReadSectorsSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataWriteSectorsSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataExecuteDeviceDiagnosticSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync ataPacketSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiGetConfigurationSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiGetEventStatusNotificationSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiIdentifySS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiInquirySS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiMechanismStatusSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiModeSenseErrorRecoverySS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiModeSenseCDStatusSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiReadSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiReadCapacitySS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiReadDiscInformationSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiReadTOCNormalSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiReadTOCMultiSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiReadTOCRawSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiReadTrackInformationSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiRequestSenseSS,
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync atapiPassthroughSS
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync};
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic const ATARequest ataDMARequest = { ATA_AIO_DMA, };
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic const ATARequest ataPIORequest = { ATA_AIO_PIO, };
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic const ATARequest ataResetARequest = { ATA_AIO_RESET_ASSERTED, };
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic const ATARequest ataResetCRequest = { ATA_AIO_RESET_CLEARED, };
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void ataAsyncIOClearRequests(PATACONTROLLER pCtl)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync int rc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pCtl->AsyncIOReqHead = 0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pCtl->AsyncIOReqTail = 0;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void ataAsyncIOPutRequest(PATACONTROLLER pCtl, const ATARequest *pReq)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync int rc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync Assert((pCtl->AsyncIOReqHead + 1) % RT_ELEMENTS(pCtl->aAsyncIORequests) != pCtl->AsyncIOReqTail);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync memcpy(&pCtl->aAsyncIORequests[pCtl->AsyncIOReqHead], pReq, sizeof(*pReq));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pCtl->AsyncIOReqHead++;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pCtl->AsyncIOReqHead %= RT_ELEMENTS(pCtl->aAsyncIORequests);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogBird(("ata: %x: signalling\n", pCtl->IOPortBase1));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = PDMR3CritSectScheduleExitEvent(&pCtl->lock, pCtl->AsyncIOSem);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (RT_FAILURE(rc))
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogBird(("ata: %x: schedule failed, rc=%Rrc\n", pCtl->IOPortBase1, rc));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemEventSignal(pCtl->AsyncIOSem);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync }
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic const ATARequest *ataAsyncIOGetCurrentRequest(PATACONTROLLER pCtl)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync int rc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync const ATARequest *pReq;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (pCtl->AsyncIOReqHead != pCtl->AsyncIOReqTail)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pReq = &pCtl->aAsyncIORequests[pCtl->AsyncIOReqTail];
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync else
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pReq = NULL;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync return pReq;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Remove the request with the given type, as it's finished. The request
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * is not removed blindly, as this could mean a RESET request that is not
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * yet processed (but has cleared the request queue) is lost.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param pCtl Controller for which to remove the request.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param ReqType Type of the request to remove.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void ataAsyncIORemoveCurrentRequest(PATACONTROLLER pCtl, ATAAIO ReqType)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync int rc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (pCtl->AsyncIOReqHead != pCtl->AsyncIOReqTail && pCtl->aAsyncIORequests[pCtl->AsyncIOReqTail].ReqType == ReqType)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pCtl->AsyncIOReqTail++;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync pCtl->AsyncIOReqTail %= RT_ELEMENTS(pCtl->aAsyncIORequests);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync }
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Dump the request queue for a particular controller. First dump the queue
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * contents, then the already processed entries, as long as they haven't been
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * overwritten.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param pCtl Controller for which to dump the queue.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void ataAsyncIODumpRequests(PATACONTROLLER pCtl)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync int rc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync uint8_t curr;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("PIIX3 ATA: Ctl#%d: request queue dump (topmost is current):\n", ATACONTROLLER_IDX(pCtl)));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync curr = pCtl->AsyncIOReqTail;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync do
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (curr == pCtl->AsyncIOReqHead)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("PIIX3 ATA: Ctl#%d: processed requests (topmost is oldest):\n", ATACONTROLLER_IDX(pCtl)));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync switch (pCtl->aAsyncIORequests[curr].ReqType)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync {
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync case ATA_AIO_NEW:
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("new transfer request, iIf=%d iBeginTransfer=%d iSourceSink=%d cbTotalTransfer=%d uTxDir=%d\n", pCtl->aAsyncIORequests[curr].u.t.iIf, pCtl->aAsyncIORequests[curr].u.t.iBeginTransfer, pCtl->aAsyncIORequests[curr].u.t.iSourceSink, pCtl->aAsyncIORequests[curr].u.t.cbTotalTransfer, pCtl->aAsyncIORequests[curr].u.t.uTxDir));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync break;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync case ATA_AIO_DMA:
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("dma transfer finished\n"));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync break;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync case ATA_AIO_PIO:
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("pio transfer finished\n"));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync break;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync case ATA_AIO_RESET_ASSERTED:
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("reset asserted request\n"));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync break;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync case ATA_AIO_RESET_CLEARED:
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("reset cleared request\n"));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync break;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync case ATA_AIO_ABORT:
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("abort request, iIf=%d fResetDrive=%d\n", pCtl->aAsyncIORequests[curr].u.a.iIf, pCtl->aAsyncIORequests[curr].u.a.fResetDrive));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync break;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync default:
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync LogRel(("unknown request %d\n", pCtl->aAsyncIORequests[curr].ReqType));
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync }
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync curr = (curr + 1) % RT_ELEMENTS(pCtl->aAsyncIORequests);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync } while (curr != pCtl->AsyncIOReqTail);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Checks whether the request queue for a particular controller is empty
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * or whether a particular controller is idle.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param pCtl Controller for which to check the queue.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param fStrict If set then the controller is checked to be idle.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic bool ataAsyncIOIsIdle(PATACONTROLLER pCtl, bool fStrict)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync int rc;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync bool fIdle;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync fIdle = pCtl->fRedoIdle;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (!fIdle)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync fIdle = (pCtl->AsyncIOReqHead == pCtl->AsyncIOReqTail);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync if (fStrict)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync fIdle &= (pCtl->uAsyncIOState == ATA_AIO_NEW);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync AssertRC(rc);
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync return fIdle;
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync}
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync/**
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * Send a transfer request to the async I/O thread.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync *
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param s Pointer to the ATA device state data.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param cbTotalTransfer Data transfer size.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param uTxDir Data transfer direction.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param iBeginTransfer Index of BeginTransfer callback.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param iSourceSink Index of SourceSink callback.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync * @param fChainedTransfer Whether this is a transfer that is part of the previous command/transfer.
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync */
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsyncstatic void ataStartTransfer(ATADevState *s, uint32_t cbTotalTransfer, uint8_t uTxDir, ATAFNBT iBeginTransfer, ATAFNSS iSourceSink, bool fChainedTransfer)
1c2c968fd241148110002d75b2c0fdeddc211e14vboxsync{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
ATARequest Req;
Assert(PDMCritSectIsOwner(&pCtl->lock));
/* Do not issue new requests while the RESET line is asserted. */
if (pCtl->fReset)
{
Log2(("%s: Ctl#%d: suppressed new request as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
return;
}
/* If the controller is already doing something else right now, ignore
* the command that is being submitted. Some broken guests issue commands
* twice (e.g. the Linux kernel that comes with Acronis True Image 8). */
if (!fChainedTransfer && !ataAsyncIOIsIdle(pCtl, true))
{
Log(("%s: Ctl#%d: ignored command %#04x, controller state %d\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), s->uATARegCommand, pCtl->uAsyncIOState));
LogRel(("PIIX3 IDE: guest issued command %#04x while controller busy\n", s->uATARegCommand));
return;
}
Req.ReqType = ATA_AIO_NEW;
if (fChainedTransfer)
Req.u.t.iIf = pCtl->iAIOIf;
else
Req.u.t.iIf = pCtl->iSelectedIf;
Req.u.t.cbTotalTransfer = cbTotalTransfer;
Req.u.t.uTxDir = uTxDir;
Req.u.t.iBeginTransfer = iBeginTransfer;
Req.u.t.iSourceSink = iSourceSink;
ataSetStatusValue(s, ATA_STAT_BUSY);
pCtl->fChainedTransfer = fChainedTransfer;
/*
* Kick the worker thread into action.
*/
Log2(("%s: Ctl#%d: message to async I/O thread, new request\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &Req);
}
/**
* Send an abort command request to the async I/O thread.
*
* @param s Pointer to the ATA device state data.
* @param fResetDrive Whether to reset the drive or just abort a command.
*/
static void ataAbortCurrentCommand(ATADevState *s, bool fResetDrive)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
ATARequest Req;
Assert(PDMCritSectIsOwner(&pCtl->lock));
/* Do not issue new requests while the RESET line is asserted. */
if (pCtl->fReset)
{
Log2(("%s: Ctl#%d: suppressed aborting command as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
return;
}
Req.ReqType = ATA_AIO_ABORT;
Req.u.a.iIf = pCtl->iSelectedIf;
Req.u.a.fResetDrive = fResetDrive;
ataSetStatus(s, ATA_STAT_BUSY);
Log2(("%s: Ctl#%d: message to async I/O thread, abort command on LUN#%d\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), s->iLUN));
ataAsyncIOPutRequest(pCtl, &Req);
}
static void ataSetIRQ(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
PPDMDEVINS pDevIns = ATADEVSTATE_2_DEVINS(s);
if (!(s->uATARegDevCtl & ATA_DEVCTL_DISABLE_IRQ))
{
Log2(("%s: LUN#%d asserting IRQ\n", __FUNCTION__, s->iLUN));
/* The BMDMA unit unconditionally sets BM_STATUS_INT if the interrupt
* line is asserted. It monitors the line for a rising edge. */
if (!s->fIrqPending)
pCtl->BmDma.u8Status |= BM_STATUS_INT;
/* Only actually set the IRQ line if updating the currently selected drive. */
if (s == &pCtl->aIfs[pCtl->iSelectedIf])
{
/** @todo experiment with adaptive IRQ delivery: for reads it is
* better to wait for IRQ delivery, as it reduces latency. */
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 1);
else
PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 1);
}
}
s->fIrqPending = true;
}
#endif /* IN_RING3 */
static void ataUnsetIRQ(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
PPDMDEVINS pDevIns = ATADEVSTATE_2_DEVINS(s);
if (!(s->uATARegDevCtl & ATA_DEVCTL_DISABLE_IRQ))
{
Log2(("%s: LUN#%d deasserting IRQ\n", __FUNCTION__, s->iLUN));
/* Only actually unset the IRQ line if updating the currently selected drive. */
if (s == &pCtl->aIfs[pCtl->iSelectedIf])
{
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 0);
else
PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 0);
}
}
s->fIrqPending = false;
}
#ifdef IN_RING3
static void ataPIOTransferStart(ATADevState *s, uint32_t start, uint32_t size)
{
Log2(("%s: LUN#%d start %d size %d\n", __FUNCTION__, s->iLUN, start, size));
s->iIOBufferPIODataStart = start;
s->iIOBufferPIODataEnd = start + size;
ataSetStatus(s, ATA_STAT_DRQ);
}
static void ataPIOTransferStop(ATADevState *s)
{
Log2(("%s: LUN#%d\n", __FUNCTION__, s->iLUN));
if (s->fATAPITransfer)
{
s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
ataSetIRQ(s);
s->fATAPITransfer = false;
}
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iIOBufferPIODataStart = 0;
s->iIOBufferPIODataEnd = 0;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
}
static void ataPIOTransferLimitATAPI(ATADevState *s)
{
uint32_t cbLimit, cbTransfer;
cbLimit = s->uATARegLCyl | (s->uATARegHCyl << 8);
/* Use maximum transfer size if the guest requested 0. Avoids a hang. */
if (cbLimit == 0)
cbLimit = 0xfffe;
Log2(("%s: byte count limit=%d\n", __FUNCTION__, cbLimit));
if (cbLimit == 0xffff)
cbLimit--;
cbTransfer = RT_MIN(s->cbTotalTransfer, s->iIOBufferEnd - s->iIOBufferCur);
if (cbTransfer > cbLimit)
{
/* Byte count limit for clipping must be even in this case */
if (cbLimit & 1)
cbLimit--;
cbTransfer = cbLimit;
}
s->uATARegLCyl = cbTransfer;
s->uATARegHCyl = cbTransfer >> 8;
s->cbElementaryTransfer = cbTransfer;
}
static uint32_t ataGetNSectors(ATADevState *s)
{
/* 0 means either 256 (LBA28) or 65536 (LBA48) sectors. */
if (s->fLBA48)
{
if (!s->uATARegNSector && !s->uATARegNSectorHOB)
return 65536;
else
return s->uATARegNSectorHOB << 8 | s->uATARegNSector;
}
else
{
if (!s->uATARegNSector)
return 256;
else
return s->uATARegNSector;
}
}
static void ataPadString(uint8_t *pbDst, const char *pbSrc, uint32_t cbSize)
{
for (uint32_t i = 0; i < cbSize; i++)
{
if (*pbSrc)
pbDst[i ^ 1] = *pbSrc++;
else
pbDst[i ^ 1] = ' ';
}
}
static void ataSCSIPadStr(uint8_t *pbDst, const char *pbSrc, uint32_t cbSize)
{
for (uint32_t i = 0; i < cbSize; i++)
{
if (*pbSrc)
pbDst[i] = *pbSrc++;
else
pbDst[i] = ' ';
}
}
DECLINLINE(void) ataH2BE_U16(uint8_t *pbBuf, uint16_t val)
{
pbBuf[0] = val >> 8;
pbBuf[1] = val;
}
DECLINLINE(void) ataH2BE_U24(uint8_t *pbBuf, uint32_t val)
{
pbBuf[0] = val >> 16;
pbBuf[1] = val >> 8;
pbBuf[2] = val;
}
DECLINLINE(void) ataH2BE_U32(uint8_t *pbBuf, uint32_t val)
{
pbBuf[0] = val >> 24;
pbBuf[1] = val >> 16;
pbBuf[2] = val >> 8;
pbBuf[3] = val;
}
DECLINLINE(uint16_t) ataBE2H_U16(const uint8_t *pbBuf)
{
return (pbBuf[0] << 8) | pbBuf[1];
}
DECLINLINE(uint32_t) ataBE2H_U24(const uint8_t *pbBuf)
{
return (pbBuf[0] << 16) | (pbBuf[1] << 8) | pbBuf[2];
}
DECLINLINE(uint32_t) ataBE2H_U32(const uint8_t *pbBuf)
{
return (pbBuf[0] << 24) | (pbBuf[1] << 16) | (pbBuf[2] << 8) | pbBuf[3];
}
DECLINLINE(void) ataLBA2MSF(uint8_t *pbBuf, uint32_t iATAPILBA)
{
iATAPILBA += 150;
pbBuf[0] = (iATAPILBA / 75) / 60;
pbBuf[1] = (iATAPILBA / 75) % 60;
pbBuf[2] = iATAPILBA % 75;
}
DECLINLINE(uint32_t) ataMSF2LBA(const uint8_t *pbBuf)
{
return (pbBuf[0] * 60 + pbBuf[1]) * 75 + pbBuf[2];
}
static void ataCmdOK(ATADevState *s, uint8_t status)
{
s->uATARegError = 0; /* Not needed by ATA spec, but cannot hurt. */
ataSetStatusValue(s, ATA_STAT_READY | status);
}
static void ataCmdError(ATADevState *s, uint8_t uErrorCode)
{
Log(("%s: code=%#x\n", __FUNCTION__, uErrorCode));
s->uATARegError = uErrorCode;
ataSetStatusValue(s, ATA_STAT_READY | ATA_STAT_ERR);
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iIOBufferCur = 0;
s->iIOBufferEnd = 0;
s->uTxDir = PDMBLOCKTXDIR_NONE;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
}
static bool ataIdentifySS(ATADevState *s)
{
uint16_t *p;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer == 512);
p = (uint16_t *)s->CTX_SUFF(pbIOBuffer);
memset(p, 0, 512);
p[0] = RT_H2LE_U16(0x0040);
p[1] = RT_H2LE_U16(RT_MIN(s->PCHSGeometry.cCylinders, 16383));
p[3] = RT_H2LE_U16(s->PCHSGeometry.cHeads);
/* Block size; obsolete, but required for the BIOS. */
p[5] = RT_H2LE_U16(512);
p[6] = RT_H2LE_U16(s->PCHSGeometry.cSectors);
ataPadString((uint8_t *)(p + 10), s->achSerialNumber, ATA_SERIAL_NUMBER_LENGTH); /* serial number */
p[20] = RT_H2LE_U16(3); /* XXX: retired, cache type */
p[21] = RT_H2LE_U16(512); /* XXX: retired, cache size in sectors */
p[22] = RT_H2LE_U16(0); /* ECC bytes per sector */
ataPadString((uint8_t *)(p + 23), s->achFirmwareRevision, ATA_FIRMWARE_REVISION_LENGTH); /* firmware version */
ataPadString((uint8_t *)(p + 27), s->achModelNumber, ATA_MODEL_NUMBER_LENGTH); /* model */
#if ATA_MAX_MULT_SECTORS > 1
p[47] = RT_H2LE_U16(0x8000 | ATA_MAX_MULT_SECTORS);
#endif
p[48] = RT_H2LE_U16(1); /* dword I/O, used by the BIOS */
p[49] = RT_H2LE_U16(1 << 11 | 1 << 9 | 1 << 8); /* DMA and LBA supported */
p[50] = RT_H2LE_U16(1 << 14); /* No drive specific standby timer minimum */
p[51] = RT_H2LE_U16(240); /* PIO transfer cycle */
p[52] = RT_H2LE_U16(240); /* DMA transfer cycle */
p[53] = RT_H2LE_U16(1 | 1 << 1 | 1 << 2); /* words 54-58,64-70,88 valid */
p[54] = RT_H2LE_U16(RT_MIN(s->PCHSGeometry.cCylinders, 16383));
p[55] = RT_H2LE_U16(s->PCHSGeometry.cHeads);
p[56] = RT_H2LE_U16(s->PCHSGeometry.cSectors);
p[57] = RT_H2LE_U16( RT_MIN(s->PCHSGeometry.cCylinders, 16383)
* s->PCHSGeometry.cHeads
* s->PCHSGeometry.cSectors);
p[58] = RT_H2LE_U16( RT_MIN(s->PCHSGeometry.cCylinders, 16383)
* s->PCHSGeometry.cHeads
* s->PCHSGeometry.cSectors >> 16);
if (s->cMultSectors)
p[59] = RT_H2LE_U16(0x100 | s->cMultSectors);
if (s->cTotalSectors <= (1 << 28) - 1)
{
p[60] = RT_H2LE_U16(s->cTotalSectors);
p[61] = RT_H2LE_U16(s->cTotalSectors >> 16);
}
else
{
/* Report maximum number of sectors possible with LBA28 */
p[60] = RT_H2LE_U16(((1 << 28) - 1) & 0xffff);
p[61] = RT_H2LE_U16(((1 << 28) - 1) >> 16);
}
p[63] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_MDMA, ATA_MDMA_MODE_MAX, s->uATATransferMode)); /* MDMA modes supported / mode enabled */
p[64] = RT_H2LE_U16(ATA_PIO_MODE_MAX > 2 ? (1 << (ATA_PIO_MODE_MAX - 2)) - 1 : 0); /* PIO modes beyond PIO2 supported */
p[65] = RT_H2LE_U16(120); /* minimum DMA multiword tx cycle time */
p[66] = RT_H2LE_U16(120); /* recommended DMA multiword tx cycle time */
p[67] = RT_H2LE_U16(120); /* minimum PIO cycle time without flow control */
p[68] = RT_H2LE_U16(120); /* minimum PIO cycle time with IORDY flow control */
p[80] = RT_H2LE_U16(0x7e); /* support everything up to ATA/ATAPI-6 */
p[81] = RT_H2LE_U16(0x22); /* conforms to ATA/ATAPI-6 */
p[82] = RT_H2LE_U16(1 << 3 | 1 << 5 | 1 << 6); /* supports power management, write cache and look-ahead */
if (s->cTotalSectors <= (1 << 28) - 1)
p[83] = RT_H2LE_U16(1 << 14 | 1 << 12); /* supports FLUSH CACHE */
else
p[83] = RT_H2LE_U16(1 << 14 | 1 << 10 | 1 << 12 | 1 << 13); /* supports LBA48, FLUSH CACHE and FLUSH CACHE EXT */
p[84] = RT_H2LE_U16(1 << 14);
p[85] = RT_H2LE_U16(1 << 3 | 1 << 5 | 1 << 6); /* enabled power management, write cache and look-ahead */
if (s->cTotalSectors <= (1 << 28) - 1)
p[86] = RT_H2LE_U16(1 << 12); /* enabled FLUSH CACHE */
else
p[86] = RT_H2LE_U16(1 << 10 | 1 << 12 | 1 << 13); /* enabled LBA48, FLUSH CACHE and FLUSH CACHE EXT */
p[87] = RT_H2LE_U16(1 << 14);
p[88] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_UDMA, ATA_UDMA_MODE_MAX, s->uATATransferMode)); /* UDMA modes supported / mode enabled */
p[93] = RT_H2LE_U16((1 | 1 << 1) << ((s->iLUN & 1) == 0 ? 0 : 8) | 1 << 13 | 1 << 14);
if (s->cTotalSectors > (1 << 28) - 1)
{
p[100] = RT_H2LE_U16(s->cTotalSectors);
p[101] = RT_H2LE_U16(s->cTotalSectors >> 16);
p[102] = RT_H2LE_U16(s->cTotalSectors >> 32);
p[103] = RT_H2LE_U16(s->cTotalSectors >> 48);
}
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
return false;
}
static bool ataFlushSS(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc;
Assert(s->uTxDir == PDMBLOCKTXDIR_NONE);
Assert(!s->cbElementaryTransfer);
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_START(&s->StatFlushes, f);
rc = s->pDrvBlock->pfnFlush(s->pDrvBlock);
AssertRC(rc);
STAM_PROFILE_STOP(&s->StatFlushes, f);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
ataCmdOK(s, 0);
return false;
}
static bool atapiIdentifySS(ATADevState *s)
{
uint16_t *p;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer == 512);
p = (uint16_t *)s->CTX_SUFF(pbIOBuffer);
memset(p, 0, 512);
/* Removable CDROM, 50us response, 12 byte packets */
p[0] = RT_H2LE_U16(2 << 14 | 5 << 8 | 1 << 7 | 2 << 5 | 0 << 0);
ataPadString((uint8_t *)(p + 10), s->achSerialNumber, ATA_SERIAL_NUMBER_LENGTH); /* serial number */
p[20] = RT_H2LE_U16(3); /* XXX: retired, cache type */
p[21] = RT_H2LE_U16(512); /* XXX: retired, cache size in sectors */
ataPadString((uint8_t *)(p + 23), s->achFirmwareRevision, ATA_FIRMWARE_REVISION_LENGTH); /* firmware version */
ataPadString((uint8_t *)(p + 27), s->achModelNumber, ATA_MODEL_NUMBER_LENGTH); /* model */
p[49] = RT_H2LE_U16(1 << 11 | 1 << 9 | 1 << 8); /* DMA and LBA supported */
p[50] = RT_H2LE_U16(1 << 14); /* No drive specific standby timer minimum */
p[51] = RT_H2LE_U16(240); /* PIO transfer cycle */
p[52] = RT_H2LE_U16(240); /* DMA transfer cycle */
p[53] = RT_H2LE_U16(1 << 1 | 1 << 2); /* words 64-70,88 are valid */
p[63] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_MDMA, ATA_MDMA_MODE_MAX, s->uATATransferMode)); /* MDMA modes supported / mode enabled */
p[64] = RT_H2LE_U16(ATA_PIO_MODE_MAX > 2 ? (1 << (ATA_PIO_MODE_MAX - 2)) - 1 : 0); /* PIO modes beyond PIO2 supported */
p[65] = RT_H2LE_U16(120); /* minimum DMA multiword tx cycle time */
p[66] = RT_H2LE_U16(120); /* recommended DMA multiword tx cycle time */
p[67] = RT_H2LE_U16(120); /* minimum PIO cycle time without flow control */
p[68] = RT_H2LE_U16(120); /* minimum PIO cycle time with IORDY flow control */
p[73] = RT_H2LE_U16(0x003e); /* ATAPI CDROM major */
p[74] = RT_H2LE_U16(9); /* ATAPI CDROM minor */
p[75] = RT_H2LE_U16(1); /* queue depth 1 */
p[80] = RT_H2LE_U16(0x7e); /* support everything up to ATA/ATAPI-6 */
p[81] = RT_H2LE_U16(0x22); /* conforms to ATA/ATAPI-6 */
p[82] = RT_H2LE_U16(1 << 4 | 1 << 9); /* supports packet command set and DEVICE RESET */
p[83] = RT_H2LE_U16(1 << 14);
p[84] = RT_H2LE_U16(1 << 14);
p[85] = RT_H2LE_U16(1 << 4 | 1 << 9); /* enabled packet command set and DEVICE RESET */
p[86] = RT_H2LE_U16(0);
p[87] = RT_H2LE_U16(1 << 14);
p[88] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_UDMA, ATA_UDMA_MODE_MAX, s->uATATransferMode)); /* UDMA modes supported / mode enabled */
p[93] = RT_H2LE_U16((1 | 1 << 1) << ((s->iLUN & 1) == 0 ? 0 : 8) | 1 << 13 | 1 << 14);
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
return false;
}
static void ataSetSignature(ATADevState *s)
{
s->uATARegSelect &= 0xf0; /* clear head */
/* put signature */
s->uATARegNSector = 1;
s->uATARegSector = 1;
if (s->fATAPI)
{
s->uATARegLCyl = 0x14;
s->uATARegHCyl = 0xeb;
}
else if (s->pDrvBlock)
{
s->uATARegLCyl = 0;
s->uATARegHCyl = 0;
}
else
{
s->uATARegLCyl = 0xff;
s->uATARegHCyl = 0xff;
}
}
static uint64_t ataGetSector(ATADevState *s)
{
uint64_t iLBA;
if (s->uATARegSelect & 0x40)
{
/* any LBA variant */
if (s->fLBA48)
{
/* LBA48 */
iLBA = ((uint64_t)s->uATARegHCylHOB << 40) |
((uint64_t)s->uATARegLCylHOB << 32) |
((uint64_t)s->uATARegSectorHOB << 24) |
((uint64_t)s->uATARegHCyl << 16) |
((uint64_t)s->uATARegLCyl << 8) |
s->uATARegSector;
}
else
{
/* LBA */
iLBA = ((s->uATARegSelect & 0x0f) << 24) | (s->uATARegHCyl << 16) |
(s->uATARegLCyl << 8) | s->uATARegSector;
}
}
else
{
/* CHS */
iLBA = ((s->uATARegHCyl << 8) | s->uATARegLCyl) * s->PCHSGeometry.cHeads * s->PCHSGeometry.cSectors +
(s->uATARegSelect & 0x0f) * s->PCHSGeometry.cSectors +
(s->uATARegSector - 1);
}
return iLBA;
}
static void ataSetSector(ATADevState *s, uint64_t iLBA)
{
uint32_t cyl, r;
if (s->uATARegSelect & 0x40)
{
/* any LBA variant */
if (s->fLBA48)
{
/* LBA48 */
s->uATARegHCylHOB = iLBA >> 40;
s->uATARegLCylHOB = iLBA >> 32;
s->uATARegSectorHOB = iLBA >> 24;
s->uATARegHCyl = iLBA >> 16;
s->uATARegLCyl = iLBA >> 8;
s->uATARegSector = iLBA;
}
else
{
/* LBA */
s->uATARegSelect = (s->uATARegSelect & 0xf0) | (iLBA >> 24);
s->uATARegHCyl = (iLBA >> 16);
s->uATARegLCyl = (iLBA >> 8);
s->uATARegSector = (iLBA);
}
}
else
{
/* CHS */
cyl = iLBA / (s->PCHSGeometry.cHeads * s->PCHSGeometry.cSectors);
r = iLBA % (s->PCHSGeometry.cHeads * s->PCHSGeometry.cSectors);
s->uATARegHCyl = cyl >> 8;
s->uATARegLCyl = cyl;
s->uATARegSelect = (s->uATARegSelect & 0xf0) | ((r / s->PCHSGeometry.cSectors) & 0x0f);
s->uATARegSector = (r % s->PCHSGeometry.cSectors) + 1;
}
}
static int ataReadSectors(ATADevState *s, uint64_t u64Sector, void *pvBuf, uint32_t cSectors)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc;
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_ADV_START(&s->StatReads, r);
s->Led.Asserted.s.fReading = s->Led.Actual.s.fReading = 1;
rc = s->pDrvBlock->pfnRead(s->pDrvBlock, u64Sector * 512, pvBuf, cSectors * 512);
s->Led.Actual.s.fReading = 0;
STAM_PROFILE_ADV_STOP(&s->StatReads, r);
STAM_REL_COUNTER_ADD(&s->StatBytesRead, cSectors * 512);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
return rc;
}
static int ataWriteSectors(ATADevState *s, uint64_t u64Sector, const void *pvBuf, uint32_t cSectors)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc;
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_ADV_START(&s->StatWrites, w);
s->Led.Asserted.s.fWriting = s->Led.Actual.s.fWriting = 1;
#ifdef VBOX_INSTRUMENT_DMA_WRITES
if (s->fDMA)
STAM_PROFILE_ADV_START(&s->StatInstrVDWrites, vw);
#endif
rc = s->pDrvBlock->pfnWrite(s->pDrvBlock, u64Sector * 512, pvBuf, cSectors * 512);
#ifdef VBOX_INSTRUMENT_DMA_WRITES
if (s->fDMA)
STAM_PROFILE_ADV_STOP(&s->StatInstrVDWrites, vw);
#endif
s->Led.Actual.s.fWriting = 0;
STAM_PROFILE_ADV_STOP(&s->StatWrites, w);
STAM_REL_COUNTER_ADD(&s->StatBytesWritten, cSectors * 512);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
return rc;
}
static void ataReadWriteSectorsBT(ATADevState *s)
{
uint32_t cSectors;
cSectors = s->cbTotalTransfer / 512;
if (cSectors > s->cSectorsPerIRQ)
s->cbElementaryTransfer = s->cSectorsPerIRQ * 512;
else
s->cbElementaryTransfer = cSectors * 512;
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
ataCmdOK(s, 0);
}
static void ataWarningDiskFull(PPDMDEVINS pDevIns)
{
int rc;
LogRel(("PIIX3 ATA: Host disk full\n"));
rc = VMSetRuntimeError(PDMDevHlpGetVM(pDevIns),
false, "DevATA_DISKFULL",
N_("Host system reported disk full. VM execution is suspended. You can resume after freeing some space"));
AssertRC(rc);
}
static void ataWarningFileTooBig(PPDMDEVINS pDevIns)
{
int rc;
LogRel(("PIIX3 ATA: File too big\n"));
rc = VMSetRuntimeError(PDMDevHlpGetVM(pDevIns),
false, "DevATA_FILETOOBIG",
N_("Host system reported that the file size limit of the host file system has been exceeded. VM execution is suspended. You need to move your virtual hard disk to a filesystem which allows bigger files"));
AssertRC(rc);
}
static void ataWarningISCSI(PPDMDEVINS pDevIns)
{
int rc;
LogRel(("PIIX3 ATA: iSCSI target unavailable\n"));
rc = VMSetRuntimeError(PDMDevHlpGetVM(pDevIns),
false, "DevATA_ISCSIDOWN",
N_("The iSCSI target has stopped responding. VM execution is suspended. You can resume when it is available again"));
AssertRC(rc);
}
static bool ataReadSectorsSS(ATADevState *s)
{
int rc;
uint32_t cSectors;
uint64_t iLBA;
cSectors = s->cbElementaryTransfer / 512;
Assert(cSectors);
iLBA = ataGetSector(s);
Log(("%s: %d sectors at LBA %d\n", __FUNCTION__, cSectors, iLBA));
rc = ataReadSectors(s, iLBA, s->CTX_SUFF(pbIOBuffer), cSectors);
if (RT_SUCCESS(rc))
{
ataSetSector(s, iLBA + cSectors);
if (s->cbElementaryTransfer == s->cbTotalTransfer)
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
}
else
{
if (rc == VERR_DISK_FULL)
{
ataWarningDiskFull(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_FILE_TOO_BIG)
{
ataWarningFileTooBig(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_BROKEN_PIPE || rc == VERR_NET_CONNECTION_REFUSED)
{
/* iSCSI connection abort (first error) or failure to reestablish
* connection (second error). Pause VM. On resume we'll retry. */
ataWarningISCSI(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: disk read error (rc=%Rrc iSector=%#RX64 cSectors=%#RX32)\n",
s->iLUN, rc, iLBA, cSectors));
ataCmdError(s, ID_ERR);
}
/** @todo implement redo for iSCSI */
return false;
}
static bool ataWriteSectorsSS(ATADevState *s)
{
int rc;
uint32_t cSectors;
uint64_t iLBA;
cSectors = s->cbElementaryTransfer / 512;
Assert(cSectors);
iLBA = ataGetSector(s);
Log(("%s: %d sectors at LBA %d\n", __FUNCTION__, cSectors, iLBA));
rc = ataWriteSectors(s, iLBA, s->CTX_SUFF(pbIOBuffer), cSectors);
if (RT_SUCCESS(rc))
{
ataSetSector(s, iLBA + cSectors);
if (!s->cbTotalTransfer)
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
}
else
{
if (rc == VERR_DISK_FULL)
{
ataWarningDiskFull(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_FILE_TOO_BIG)
{
ataWarningFileTooBig(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_BROKEN_PIPE || rc == VERR_NET_CONNECTION_REFUSED)
{
/* iSCSI connection abort (first error) or failure to reestablish
* connection (second error). Pause VM. On resume we'll retry. */
ataWarningISCSI(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: disk write error (rc=%Rrc iSector=%#RX64 cSectors=%#RX32)\n",
s->iLUN, rc, iLBA, cSectors));
ataCmdError(s, ID_ERR);
}
/** @todo implement redo for iSCSI */
return false;
}
static void atapiCmdOK(ATADevState *s)
{
s->uATARegError = 0;
ataSetStatusValue(s, ATA_STAT_READY);
s->uATARegNSector = (s->uATARegNSector & ~7)
| ((s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE) ? ATAPI_INT_REASON_IO : 0)
| (!s->cbTotalTransfer ? ATAPI_INT_REASON_CD : 0);
Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
memset(s->abATAPISense, '\0', sizeof(s->abATAPISense));
s->abATAPISense[0] = 0x70 | (1 << 7);
s->abATAPISense[7] = 10;
}
static void atapiCmdError(ATADevState *s, const uint8_t *pabATAPISense, size_t cbATAPISense)
{
Log(("%s: sense=%#x (%s) asc=%#x ascq=%#x (%s)\n", __FUNCTION__, pabATAPISense[2] & 0x0f, SCSISenseText(pabATAPISense[2] & 0x0f),
pabATAPISense[12], pabATAPISense[13], SCSISenseExtText(pabATAPISense[12], pabATAPISense[13])));
s->uATARegError = pabATAPISense[2] << 4;
ataSetStatusValue(s, ATA_STAT_READY | ATA_STAT_ERR);
s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
memset(s->abATAPISense, '\0', sizeof(s->abATAPISense));
memcpy(s->abATAPISense, pabATAPISense, RT_MIN(cbATAPISense, sizeof(s->abATAPISense)));
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iIOBufferCur = 0;
s->iIOBufferEnd = 0;
s->uTxDir = PDMBLOCKTXDIR_NONE;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
}
/** @todo deprecated function - doesn't provide enough info. Replace by direct
* calls to atapiCmdError() with full data. */
static void atapiCmdErrorSimple(ATADevState *s, uint8_t uATAPISenseKey, uint8_t uATAPIASC)
{
uint8_t abATAPISense[ATAPI_SENSE_SIZE];
memset(abATAPISense, '\0', sizeof(abATAPISense));
abATAPISense[0] = 0x70 | (1 << 7);
abATAPISense[2] = uATAPISenseKey & 0x0f;
abATAPISense[7] = 10;
abATAPISense[12] = uATAPIASC;
atapiCmdError(s, abATAPISense, sizeof(abATAPISense));
}
static void atapiCmdBT(ATADevState *s)
{
s->fATAPITransfer = true;
s->cbElementaryTransfer = s->cbTotalTransfer;
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
atapiCmdOK(s);
}
static void atapiPassthroughCmdBT(ATADevState *s)
{
/* @todo implement an algorithm for correctly determining the read and
* write sector size without sending additional commands to the drive.
* This should be doable by saving processing the configuration requests
* and replies. */
#if 0
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
{
uint8_t cmd = s->aATAPICmd[0];
if (cmd == SCSI_WRITE_10 || cmd == SCSI_WRITE_12 || cmd == SCSI_WRITE_AND_VERIFY_10)
{
uint8_t aModeSenseCmd[10];
uint8_t aModeSenseResult[16];
uint8_t uDummySense;
uint32_t cbTransfer;
int rc;
cbTransfer = sizeof(aModeSenseResult);
aModeSenseCmd[0] = SCSI_MODE_SENSE_10;
aModeSenseCmd[1] = 0x08; /* disable block descriptor = 1 */
aModeSenseCmd[2] = (SCSI_PAGECONTROL_CURRENT << 6) | SCSI_MODEPAGE_WRITE_PARAMETER;
aModeSenseCmd[3] = 0; /* subpage code */
aModeSenseCmd[4] = 0; /* reserved */
aModeSenseCmd[5] = 0; /* reserved */
aModeSenseCmd[6] = 0; /* reserved */
aModeSenseCmd[7] = cbTransfer >> 8;
aModeSenseCmd[8] = cbTransfer & 0xff;
aModeSenseCmd[9] = 0; /* control */
rc = s->pDrvBlock->pfnSendCmd(s->pDrvBlock, aModeSenseCmd, PDMBLOCKTXDIR_FROM_DEVICE, aModeSenseResult, &cbTransfer, &uDummySense, 500);
if (RT_FAILURE(rc))
{
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_NONE);
return;
}
/* Select sector size based on the current data block type. */
switch (aModeSenseResult[12] & 0x0f)
{
case 0:
s->cbATAPISector = 2352;
break;
case 1:
s->cbATAPISector = 2368;
break;
case 2:
case 3:
s->cbATAPISector = 2448;
break;
case 8:
case 10:
s->cbATAPISector = 2048;
break;
case 9:
s->cbATAPISector = 2336;
break;
case 11:
s->cbATAPISector = 2056;
break;
case 12:
s->cbATAPISector = 2324;
break;
case 13:
s->cbATAPISector = 2332;
break;
default:
s->cbATAPISector = 0;
}
Log2(("%s: sector size %d\n", __FUNCTION__, s->cbATAPISector));
s->cbTotalTransfer *= s->cbATAPISector;
if (s->cbTotalTransfer == 0)
s->uTxDir = PDMBLOCKTXDIR_NONE;
}
}
#endif
atapiCmdBT(s);
}
static bool atapiReadSS(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc = VINF_SUCCESS;
uint32_t cbTransfer, cSectors;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
cbTransfer = RT_MIN(s->cbTotalTransfer, s->cbIOBuffer);
cSectors = cbTransfer / s->cbATAPISector;
Assert(cSectors * s->cbATAPISector <= cbTransfer);
Log(("%s: %d sectors at LBA %d\n", __FUNCTION__, cSectors, s->iATAPILBA));
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_ADV_START(&s->StatReads, r);
s->Led.Asserted.s.fReading = s->Led.Actual.s.fReading = 1;
switch (s->cbATAPISector)
{
case 2048:
rc = s->pDrvBlock->pfnRead(s->pDrvBlock, (uint64_t)s->iATAPILBA * s->cbATAPISector, s->CTX_SUFF(pbIOBuffer), s->cbATAPISector * cSectors);
break;
case 2352:
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
for (uint32_t i = s->iATAPILBA; i < s->iATAPILBA + cSectors; i++)
{
/* sync bytes */
*pbBuf++ = 0x00;
memset(pbBuf, 0xff, 11);
pbBuf += 11;
/* MSF */
ataLBA2MSF(pbBuf, i);
pbBuf += 3;
*pbBuf++ = 0x01; /* mode 1 data */
/* data */
rc = s->pDrvBlock->pfnRead(s->pDrvBlock, (uint64_t)i * 2048, pbBuf, 2048);
if (RT_FAILURE(rc))
break;
pbBuf += 2048;
/* ECC */
memset(pbBuf, 0, 288);
pbBuf += 288;
}
}
break;
default:
break;
}
STAM_PROFILE_ADV_STOP(&s->StatReads, r);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
if (RT_SUCCESS(rc))
{
s->Led.Actual.s.fReading = 0;
STAM_REL_COUNTER_ADD(&s->StatBytesRead, s->cbATAPISector * cSectors);
/* The initial buffer end value has been set up based on the total
* transfer size. But the I/O buffer size limits what can actually be
* done in one transfer, so set the actual value of the buffer end. */
s->cbElementaryTransfer = cbTransfer;
if (cbTransfer >= s->cbTotalTransfer)
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
s->iATAPILBA += cSectors;
}
else
{
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM read error, %d sectors at LBA %d\n", s->iLUN, cSectors, s->iATAPILBA));
atapiCmdErrorSimple(s, SCSI_SENSE_MEDIUM_ERROR, SCSI_ASC_READ_ERROR);
}
return false;
}
static bool atapiPassthroughSS(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc = VINF_SUCCESS;
uint8_t abATAPISense[ATAPI_SENSE_SIZE];
size_t cbTransfer;
PSTAMPROFILEADV pProf = NULL;
cbTransfer = s->cbElementaryTransfer;
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
Log3(("ATAPI PT data write (%d): %.*Rhxs\n", cbTransfer, cbTransfer, s->CTX_SUFF(pbIOBuffer)));
/* Simple heuristics: if there is at least one sector of data
* to transfer, it's worth updating the LEDs. */
if (cbTransfer >= 2048)
{
if (s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
{
s->Led.Asserted.s.fReading = s->Led.Actual.s.fReading = 1;
pProf = &s->StatReads;
}
else
{
s->Led.Asserted.s.fWriting = s->Led.Actual.s.fWriting = 1;
pProf = &s->StatWrites;
}
}
PDMCritSectLeave(&pCtl->lock);
if (pProf) { STAM_PROFILE_ADV_START(pProf, b); }
if (cbTransfer > SCSI_MAX_BUFFER_SIZE)
{
/* Linux accepts commands with up to 100KB of data, but expects
* us to handle commands with up to 128KB of data. The usual
* imbalance of powers. */
uint8_t aATAPICmd[ATAPI_PACKET_SIZE];
uint32_t iATAPILBA, cSectors, cReqSectors;
size_t cbCurrTX;
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
switch (s->aATAPICmd[0])
{
case SCSI_READ_10:
case SCSI_WRITE_10:
case SCSI_WRITE_AND_VERIFY_10:
iATAPILBA = ataBE2H_U32(s->aATAPICmd + 2);
cSectors = ataBE2H_U16(s->aATAPICmd + 7);
break;
case SCSI_READ_12:
case SCSI_WRITE_12:
iATAPILBA = ataBE2H_U32(s->aATAPICmd + 2);
cSectors = ataBE2H_U32(s->aATAPICmd + 6);
break;
case SCSI_READ_CD:
iATAPILBA = ataBE2H_U32(s->aATAPICmd + 2);
cSectors = ataBE2H_U24(s->aATAPICmd + 6) / s->cbATAPISector;
break;
case SCSI_READ_CD_MSF:
iATAPILBA = ataMSF2LBA(s->aATAPICmd + 3);
cSectors = ataMSF2LBA(s->aATAPICmd + 6) - iATAPILBA;
break;
default:
AssertMsgFailed(("Don't know how to split command %#04x\n", s->aATAPICmd[0]));
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM passthrough split error\n", s->iLUN));
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
return false;
}
memcpy(aATAPICmd, s->aATAPICmd, ATAPI_PACKET_SIZE);
cReqSectors = 0;
for (uint32_t i = cSectors; i > 0; i -= cReqSectors)
{
if (i * s->cbATAPISector > SCSI_MAX_BUFFER_SIZE)
cReqSectors = SCSI_MAX_BUFFER_SIZE / s->cbATAPISector;
else
cReqSectors = i;
cbCurrTX = s->cbATAPISector * cReqSectors;
switch (s->aATAPICmd[0])
{
case SCSI_READ_10:
case SCSI_WRITE_10:
case SCSI_WRITE_AND_VERIFY_10:
ataH2BE_U32(aATAPICmd + 2, iATAPILBA);
ataH2BE_U16(aATAPICmd + 7, cReqSectors);
break;
case SCSI_READ_12:
case SCSI_WRITE_12:
ataH2BE_U32(aATAPICmd + 2, iATAPILBA);
ataH2BE_U32(aATAPICmd + 6, cReqSectors);
break;
case SCSI_READ_CD:
ataH2BE_U32(s->aATAPICmd + 2, iATAPILBA);
ataH2BE_U24(s->aATAPICmd + 6, cbCurrTX);
break;
case SCSI_READ_CD_MSF:
ataLBA2MSF(aATAPICmd + 3, iATAPILBA);
ataLBA2MSF(aATAPICmd + 6, iATAPILBA + cReqSectors);
break;
}
rc = s->pDrvBlock->pfnSendCmd(s->pDrvBlock, aATAPICmd, (PDMBLOCKTXDIR)s->uTxDir, pbBuf, &cbCurrTX, abATAPISense, sizeof(abATAPISense), 30000 /**< @todo timeout */);
if (rc != VINF_SUCCESS)
break;
iATAPILBA += cReqSectors;
pbBuf += s->cbATAPISector * cReqSectors;
}
}
else
rc = s->pDrvBlock->pfnSendCmd(s->pDrvBlock, s->aATAPICmd, (PDMBLOCKTXDIR)s->uTxDir, s->CTX_SUFF(pbIOBuffer), &cbTransfer, abATAPISense, sizeof(abATAPISense), 30000 /**< @todo timeout */);
if (pProf) { STAM_PROFILE_ADV_STOP(pProf, b); }
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
/* Update the LEDs and the read/write statistics. */
if (cbTransfer >= 2048)
{
if (s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
{
s->Led.Actual.s.fReading = 0;
STAM_REL_COUNTER_ADD(&s->StatBytesRead, cbTransfer);
}
else
{
s->Led.Actual.s.fWriting = 0;
STAM_REL_COUNTER_ADD(&s->StatBytesWritten, cbTransfer);
}
}
if (RT_SUCCESS(rc))
{
if (s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE)
{
Assert(cbTransfer <= s->cbTotalTransfer);
/* Reply with the same amount of data as the real drive. */
s->cbTotalTransfer = cbTransfer;
/* The initial buffer end value has been set up based on the total
* transfer size. But the I/O buffer size limits what can actually be
* done in one transfer, so set the actual value of the buffer end. */
s->cbElementaryTransfer = cbTransfer;
if (s->aATAPICmd[0] == SCSI_INQUIRY)
{
/* Make sure that the real drive cannot be identified.
* Motivation: changing the VM configuration should be as
* invisible as possible to the guest. */
Log3(("ATAPI PT inquiry data before (%d): %.*Rhxs\n", cbTransfer, cbTransfer, s->CTX_SUFF(pbIOBuffer)));
ataSCSIPadStr(s->CTX_SUFF(pbIOBuffer) + 8, "VBOX", 8);
ataSCSIPadStr(s->CTX_SUFF(pbIOBuffer) + 16, "CD-ROM", 16);
ataSCSIPadStr(s->CTX_SUFF(pbIOBuffer) + 32, "1.0", 4);
}
if (cbTransfer)
Log3(("ATAPI PT data read (%d): %.*Rhxs\n", cbTransfer, cbTransfer, s->CTX_SUFF(pbIOBuffer)));
}
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
}
else
{
if (s->cErrors < MAX_LOG_REL_ERRORS)
{
uint8_t u8Cmd = s->aATAPICmd[0];
do
{
/* don't log superflous errors */
if ( rc == VERR_DEV_IO_ERROR
&& ( u8Cmd == SCSI_TEST_UNIT_READY
|| u8Cmd == SCSI_READ_CAPACITY
|| u8Cmd == SCSI_READ_DVD_STRUCTURE
|| u8Cmd == SCSI_READ_TOC_PMA_ATIP))
break;
s->cErrors++;
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM passthrough cmd=%#04x sense=%d ASC=%#02x ASCQ=%#02x %Rrc\n",
s->iLUN, u8Cmd, abATAPISense[2] & 0x0f, abATAPISense[12], abATAPISense[13], rc));
} while (0);
}
atapiCmdError(s, abATAPISense, sizeof(abATAPISense));
}
return false;
}
static bool atapiReadSectors(ATADevState *s, uint32_t iATAPILBA, uint32_t cSectors, uint32_t cbSector)
{
Assert(cSectors > 0);
s->iATAPILBA = iATAPILBA;
s->cbATAPISector = cbSector;
ataStartTransfer(s, cSectors * cbSector, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ, true);
return false;
}
static bool atapiReadCapacitySS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 8);
ataH2BE_U32(pbBuf, s->cTotalSectors - 1);
ataH2BE_U32(pbBuf + 4, 2048);
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadDiscInformationSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 34);
memset(pbBuf, '\0', 34);
ataH2BE_U16(pbBuf, 32);
pbBuf[2] = (0 << 4) | (3 << 2) | (2 << 0); /* not erasable, complete session, complete disc */
pbBuf[3] = 1; /* number of first track */
pbBuf[4] = 1; /* number of sessions (LSB) */
pbBuf[5] = 1; /* first track number in last session (LSB) */
pbBuf[6] = 1; /* last track number in last session (LSB) */
pbBuf[7] = (0 << 7) | (0 << 6) | (1 << 5) | (0 << 2) | (0 << 0); /* disc id not valid, disc bar code not valid, unrestricted use, not dirty, not RW medium */
pbBuf[8] = 0; /* disc type = CD-ROM */
pbBuf[9] = 0; /* number of sessions (MSB) */
pbBuf[10] = 0; /* number of sessions (MSB) */
pbBuf[11] = 0; /* number of sessions (MSB) */
ataH2BE_U32(pbBuf + 16, 0x00ffffff); /* last session lead-in start time is not available */
ataH2BE_U32(pbBuf + 20, 0x00ffffff); /* last possible start time for lead-out is not available */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTrackInformationSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 36);
/* Accept address/number type of 1 only, and only track 1 exists. */
if ((s->aATAPICmd[1] & 0x03) != 1 || ataBE2H_U32(&s->aATAPICmd[2]) != 1)
{
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
return false;
}
memset(pbBuf, '\0', 36);
ataH2BE_U16(pbBuf, 34);
pbBuf[2] = 1; /* track number (LSB) */
pbBuf[3] = 1; /* session number (LSB) */
pbBuf[5] = (0 << 5) | (0 << 4) | (4 << 0); /* not damaged, primary copy, data track */
pbBuf[6] = (0 << 7) | (0 << 6) | (0 << 5) | (0 << 6) | (1 << 0); /* not reserved track, not blank, not packet writing, not fixed packet, data mode 1 */
pbBuf[7] = (0 << 1) | (0 << 0); /* last recorded address not valid, next recordable address not valid */
ataH2BE_U32(pbBuf + 8, 0); /* track start address is 0 */
ataH2BE_U32(pbBuf + 24, s->cTotalSectors); /* track size */
pbBuf[32] = 0; /* track number (MSB) */
pbBuf[33] = 0; /* session number (MSB) */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiGetConfigurationSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
uint16_t u16Sfn = ataBE2H_U16(&s->aATAPICmd[2]);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 32);
/* Accept valid request types only, and only starting feature 0. */
if ((s->aATAPICmd[1] & 0x03) == 3 || u16Sfn != 0)
{
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
return false;
}
memset(pbBuf, '\0', 32);
ataH2BE_U32(pbBuf, 16);
/** @todo implement switching between CD-ROM and DVD-ROM profile (the only
* way to differentiate them right now is based on the image size). Also
* implement signalling "no current profile" if no medium is loaded. */
ataH2BE_U16(pbBuf + 6, 0x08); /* current profile: read-only CD */
ataH2BE_U16(pbBuf + 8, 0); /* feature 0: list of profiles supported */
pbBuf[10] = (0 << 2) | (1 << 1) | (1 || 0); /* version 0, persistent, current */
pbBuf[11] = 8; /* additional bytes for profiles */
/* The MMC-3 spec says that DVD-ROM read capability should be reported
* before CD-ROM read capability. */
ataH2BE_U16(pbBuf + 12, 0x10); /* profile: read-only DVD */
pbBuf[14] = (0 << 0); /* NOT current profile */
ataH2BE_U16(pbBuf + 16, 0x08); /* profile: read only CD */
pbBuf[18] = (1 << 0); /* current profile */
/* Other profiles we might want to add in the future: 0x40 (BD-ROM) and 0x50 (HDDVD-ROM) */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiGetEventStatusNotificationSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 8);
if (!(s->aATAPICmd[1] & 1))
{
/* no asynchronous operation supported */
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
return false;
}
uint32_t OldStatus, NewStatus;
do
{
OldStatus = ASMAtomicReadU32(&s->MediaEventStatus);
NewStatus = ATA_EVENT_STATUS_UNCHANGED;
switch (OldStatus)
{
case ATA_EVENT_STATUS_MEDIA_NEW:
/* mount */
ataH2BE_U16(pbBuf + 0, 6);
pbBuf[2] = 0x04;
pbBuf[3] = 0x5e;
pbBuf[4] = 0x02;
pbBuf[5] = 0x02;
pbBuf[6] = 0x00;
pbBuf[7] = 0x00;
break;
case ATA_EVENT_STATUS_MEDIA_CHANGED:
case ATA_EVENT_STATUS_MEDIA_REMOVED:
/* umount */
ataH2BE_U16(pbBuf + 0, 6);
pbBuf[2] = 0x04;
pbBuf[3] = 0x5e;
pbBuf[4] = 0x03;
pbBuf[5] = 0x00;
pbBuf[6] = 0x00;
pbBuf[7] = 0x00;
if (OldStatus == ATA_EVENT_STATUS_MEDIA_CHANGED)
NewStatus = ATA_EVENT_STATUS_MEDIA_NEW;
break;
case ATA_EVENT_STATUS_UNCHANGED:
default:
ataH2BE_U16(pbBuf + 0, 6);
pbBuf[2] = 0x01;
pbBuf[3] = 0x5e;
pbBuf[4] = 0x00;
pbBuf[5] = 0x00;
pbBuf[6] = 0x00;
pbBuf[7] = 0x00;
break;
}
} while (!ASMAtomicCmpXchgU32(&s->MediaEventStatus, NewStatus, OldStatus));
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiInquirySS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 36);
pbBuf[0] = 0x05; /* CD-ROM */
pbBuf[1] = 0x80; /* removable */
#if 1/*ndef VBOX*/ /** @todo implement MESN + AENC. (async notification on removal and stuff.) */
pbBuf[2] = 0x00; /* ISO */
pbBuf[3] = 0x21; /* ATAPI-2 (XXX: put ATAPI-4 ?) */
#else
pbBuf[2] = 0x00; /* ISO */
pbBuf[3] = 0x91; /* format 1, MESN=1, AENC=9 ??? */
#endif
pbBuf[4] = 31; /* additional length */
pbBuf[5] = 0; /* reserved */
pbBuf[6] = 0; /* reserved */
pbBuf[7] = 0; /* reserved */
ataSCSIPadStr(pbBuf + 8, "VBOX", 8);
ataSCSIPadStr(pbBuf + 16, "CD-ROM", 16);
ataSCSIPadStr(pbBuf + 32, "1.0", 4);
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiModeSenseErrorRecoverySS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 16);
ataH2BE_U16(&pbBuf[0], 16 + 6);
pbBuf[2] = 0x70;
pbBuf[3] = 0;
pbBuf[4] = 0;
pbBuf[5] = 0;
pbBuf[6] = 0;
pbBuf[7] = 0;
pbBuf[8] = 0x01;
pbBuf[9] = 0x06;
pbBuf[10] = 0x00;
pbBuf[11] = 0x05;
pbBuf[12] = 0x00;
pbBuf[13] = 0x00;
pbBuf[14] = 0x00;
pbBuf[15] = 0x00;
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiModeSenseCDStatusSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 40);
ataH2BE_U16(&pbBuf[0], 38);
pbBuf[2] = 0x70;
pbBuf[3] = 0;
pbBuf[4] = 0;
pbBuf[5] = 0;
pbBuf[6] = 0;
pbBuf[7] = 0;
pbBuf[8] = 0x2a;
pbBuf[9] = 30; /* page length */
pbBuf[10] = 0x08; /* DVD-ROM read support */
pbBuf[11] = 0x00; /* no write support */
/* The following claims we support audio play. This is obviously false,
* but the Linux generic CDROM support makes many features depend on this
* capability. If it's not set, this causes many things to be disabled. */
pbBuf[12] = 0x71; /* multisession support, mode 2 form 1/2 support, audio play */
pbBuf[13] = 0x00; /* no subchannel reads supported */
pbBuf[14] = (1 << 0) | (1 << 3) | (1 << 5); /* lock supported, eject supported, tray type loading mechanism */
if (s->pDrvMount->pfnIsLocked(s->pDrvMount))
pbBuf[14] |= 1 << 1; /* report lock state */
pbBuf[15] = 0; /* no subchannel reads supported, no separate audio volume control, no changer etc. */
ataH2BE_U16(&pbBuf[16], 5632); /* (obsolete) claim 32x speed support */
ataH2BE_U16(&pbBuf[18], 2); /* number of audio volume levels */
ataH2BE_U16(&pbBuf[20], s->cbIOBuffer / _1K); /* buffer size supported in Kbyte */
ataH2BE_U16(&pbBuf[22], 5632); /* (obsolete) current read speed 32x */
pbBuf[24] = 0; /* reserved */
pbBuf[25] = 0; /* reserved for digital audio (see idx 15) */
ataH2BE_U16(&pbBuf[26], 0); /* (obsolete) maximum write speed */
ataH2BE_U16(&pbBuf[28], 0); /* (obsolete) current write speed */
ataH2BE_U16(&pbBuf[30], 0); /* copy management revision supported 0=no CSS */
pbBuf[32] = 0; /* reserved */
pbBuf[33] = 0; /* reserved */
pbBuf[34] = 0; /* reserved */
pbBuf[35] = 1; /* rotation control CAV */
ataH2BE_U16(&pbBuf[36], 0); /* current write speed */
ataH2BE_U16(&pbBuf[38], 0); /* number of write speed performance descriptors */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiRequestSenseSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
memset(pbBuf, '\0', s->cbElementaryTransfer);
memcpy(pbBuf, s->abATAPISense, RT_MIN(s->cbElementaryTransfer, sizeof(s->abATAPISense)));
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiMechanismStatusSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 8);
ataH2BE_U16(pbBuf, 0);
/* no current LBA */
pbBuf[2] = 0;
pbBuf[3] = 0;
pbBuf[4] = 0;
pbBuf[5] = 1;
ataH2BE_U16(pbBuf + 6, 0);
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTOCNormalSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer), *q, iStartTrack;
bool fMSF;
uint32_t cbSize;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
fMSF = (s->aATAPICmd[1] >> 1) & 1;
iStartTrack = s->aATAPICmd[6];
if (iStartTrack > 1 && iStartTrack != 0xaa)
{
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
return false;
}
q = pbBuf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
if (iStartTrack <= 1)
{
*q++ = 0; /* reserved */
*q++ = 0x14; /* ADR, control */
*q++ = 1; /* track number */
*q++ = 0; /* reserved */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, 0);
q += 3;
}
else
{
/* sector 0 */
ataH2BE_U32(q, 0);
q += 4;
}
}
/* lead out track */
*q++ = 0; /* reserved */
*q++ = 0x14; /* ADR, control */
*q++ = 0xaa; /* track number */
*q++ = 0; /* reserved */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, s->cTotalSectors);
q += 3;
}
else
{
ataH2BE_U32(q, s->cTotalSectors);
q += 4;
}
cbSize = q - pbBuf;
ataH2BE_U16(pbBuf, cbSize - 2);
if (cbSize < s->cbTotalTransfer)
s->cbTotalTransfer = cbSize;
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTOCMultiSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer);
bool fMSF;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 12);
fMSF = (s->aATAPICmd[1] >> 1) & 1;
/* multi session: only a single session defined */
/** @todo double-check this stuff against what a real drive says for a CD-ROM (not a CD-R) with only a single data session. Maybe solve the problem with "cdrdao read-toc" not being able to figure out whether numbers are in BCD or hex. */
memset(pbBuf, 0, 12);
pbBuf[1] = 0x0a;
pbBuf[2] = 0x01;
pbBuf[3] = 0x01;
pbBuf[5] = 0x14; /* ADR, control */
pbBuf[6] = 1; /* first track in last complete session */
if (fMSF)
{
pbBuf[8] = 0; /* reserved */
ataLBA2MSF(&pbBuf[9], 0);
}
else
{
/* sector 0 */
ataH2BE_U32(pbBuf + 8, 0);
}
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTOCRawSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTX_SUFF(pbIOBuffer), *q, iStartTrack;
bool fMSF;
uint32_t cbSize;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
fMSF = (s->aATAPICmd[1] >> 1) & 1;
iStartTrack = s->aATAPICmd[6];
q = pbBuf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa0; /* first track in program area */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* first track */
*q++ = 0x00; /* disk type CD-DA or CD data */
*q++ = 0;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa1; /* last track in program area */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* last track */
*q++ = 0;
*q++ = 0;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa2; /* lead-out */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, s->cTotalSectors);
q += 3;
}
else
{
ataH2BE_U32(q, s->cTotalSectors);
q += 4;
}
*q++ = 1; /* session number */
*q++ = 0x14; /* ADR, control */
*q++ = 0; /* track number */
*q++ = 1; /* point */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, 0);
q += 3;
}
else
{
/* sector 0 */
ataH2BE_U32(q, 0);
q += 4;
}
cbSize = q - pbBuf;
ataH2BE_U16(pbBuf, cbSize - 2);
if (cbSize < s->cbTotalTransfer)
s->cbTotalTransfer = cbSize;
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static void atapiParseCmdVirtualATAPI(ATADevState *s)
{
const uint8_t *pbPacket;
uint8_t *pbBuf;
uint32_t cbMax;
pbPacket = s->aATAPICmd;
pbBuf = s->CTX_SUFF(pbIOBuffer);
switch (pbPacket[0])
{
case SCSI_TEST_UNIT_READY:
if (s->cNotifiedMediaChange > 0)
{
if (s->cNotifiedMediaChange-- > 2)
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
else
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
}
else if (s->pDrvMount->pfnIsMounted(s->pDrvMount))
atapiCmdOK(s);
else
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
case SCSI_GET_EVENT_STATUS_NOTIFICATION:
cbMax = ataBE2H_U16(pbPacket + 7);
ataStartTransfer(s, RT_MIN(cbMax, 8), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_GET_EVENT_STATUS_NOTIFICATION, true);
break;
case SCSI_MODE_SENSE_10:
{
uint8_t uPageControl, uPageCode;
cbMax = ataBE2H_U16(pbPacket + 7);
uPageControl = pbPacket[2] >> 6;
uPageCode = pbPacket[2] & 0x3f;
switch (uPageControl)
{
case SCSI_PAGECONTROL_CURRENT:
switch (uPageCode)
{
case SCSI_MODEPAGE_ERROR_RECOVERY:
ataStartTransfer(s, RT_MIN(cbMax, 16), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_MODE_SENSE_ERROR_RECOVERY, true);
break;
case SCSI_MODEPAGE_CD_STATUS:
ataStartTransfer(s, RT_MIN(cbMax, 40), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_MODE_SENSE_CD_STATUS, true);
break;
default:
goto error_cmd;
}
break;
case SCSI_PAGECONTROL_CHANGEABLE:
goto error_cmd;
case SCSI_PAGECONTROL_DEFAULT:
goto error_cmd;
default:
case SCSI_PAGECONTROL_SAVED:
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_SAVING_PARAMETERS_NOT_SUPPORTED);
break;
}
}
break;
case SCSI_REQUEST_SENSE:
cbMax = pbPacket[4];
ataStartTransfer(s, RT_MIN(cbMax, 18), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_REQUEST_SENSE, true);
break;
case SCSI_PREVENT_ALLOW_MEDIUM_REMOVAL:
if (s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
if (pbPacket[4] & 1)
s->pDrvMount->pfnLock(s->pDrvMount);
else
s->pDrvMount->pfnUnlock(s->pDrvMount);
atapiCmdOK(s);
}
else
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
case SCSI_READ_10:
case SCSI_READ_12:
{
uint32_t cSectors, iATAPILBA;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
if (pbPacket[0] == SCSI_READ_10)
cSectors = ataBE2H_U16(pbPacket + 7);
else
cSectors = ataBE2H_U32(pbPacket + 6);
iATAPILBA = ataBE2H_U32(pbPacket + 2);
if (cSectors == 0)
{
atapiCmdOK(s);
break;
}
if ((uint64_t)iATAPILBA + cSectors > s->cTotalSectors)
{
/* Rate limited logging, one log line per second. For
* guests that insist on reading from places outside the
* valid area this often generates too many release log
* entries otherwise. */
static uint64_t uLastLogTS = 0;
if (RTTimeMilliTS() >= uLastLogTS + 1000)
{
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM block number %Ld invalid (READ)\n", s->iLUN, (uint64_t)iATAPILBA + cSectors));
uLastLogTS = RTTimeMilliTS();
}
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_LOGICAL_BLOCK_OOR);
break;
}
atapiReadSectors(s, iATAPILBA, cSectors, 2048);
}
break;
case SCSI_READ_CD:
{
uint32_t cSectors, iATAPILBA;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cSectors = (pbPacket[6] << 16) | (pbPacket[7] << 8) | pbPacket[8];
iATAPILBA = ataBE2H_U32(pbPacket + 2);
if (cSectors == 0)
{
atapiCmdOK(s);
break;
}
if ((uint64_t)iATAPILBA + cSectors > s->cTotalSectors)
{
/* Rate limited logging, one log line per second. For
* guests that insist on reading from places outside the
* valid area this often generates too many release log
* entries otherwise. */
static uint64_t uLastLogTS = 0;
if (RTTimeMilliTS() >= uLastLogTS + 1000)
{
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM block number %Ld invalid (READ CD)\n", s->iLUN, (uint64_t)iATAPILBA + cSectors));
uLastLogTS = RTTimeMilliTS();
}
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_LOGICAL_BLOCK_OOR);
break;
}
switch (pbPacket[9] & 0xf8)
{
case 0x00:
/* nothing */
atapiCmdOK(s);
break;
case 0x10:
/* normal read */
atapiReadSectors(s, iATAPILBA, cSectors, 2048);
break;
case 0xf8:
/* read all data */
atapiReadSectors(s, iATAPILBA, cSectors, 2352);
break;
default:
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM sector format not supported (%#x)\n", s->iLUN, pbPacket[9] & 0xf8));
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
break;
}
}
break;
case SCSI_SEEK_10:
{
uint32_t iATAPILBA;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
iATAPILBA = ataBE2H_U32(pbPacket + 2);
if (iATAPILBA > s->cTotalSectors)
{
/* Rate limited logging, one log line per second. For
* guests that insist on seeking to places outside the
* valid area this often generates too many release log
* entries otherwise. */
static uint64_t uLastLogTS = 0;
if (RTTimeMilliTS() >= uLastLogTS + 1000)
{
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM block number %Ld invalid (SEEK)\n", s->iLUN, (uint64_t)iATAPILBA));
uLastLogTS = RTTimeMilliTS();
}
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_LOGICAL_BLOCK_OOR);
break;
}
atapiCmdOK(s);
ataSetStatus(s, ATA_STAT_SEEK); /* Linux expects this. */
}
break;
case SCSI_START_STOP_UNIT:
{
int rc = VINF_SUCCESS;
switch (pbPacket[4] & 3)
{
case 0: /* 00 - Stop motor */
case 1: /* 01 - Start motor */
break;
case 2: /* 10 - Eject media */
/* This must be done from EMT. */
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
PPDMDEVINS pDevIns = ATADEVSTATE_2_DEVINS(s);
PVMREQ pReq;
PDMCritSectLeave(&pCtl->lock);
rc = VMR3ReqCall(PDMDevHlpGetVM(pDevIns), VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT,
(PFNRT)s->pDrvMount->pfnUnmount, 2, s->pDrvMount, false);
AssertReleaseRC(rc);
VMR3ReqFree(pReq);
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
}
break;
case 3: /* 11 - Load media */
/** @todo rc = s->pDrvMount->pfnLoadMedia(s->pDrvMount) */
break;
}
if (RT_SUCCESS(rc))
atapiCmdOK(s);
else
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIA_LOAD_OR_EJECT_FAILED);
}
break;
case SCSI_MECHANISM_STATUS:
{
cbMax = ataBE2H_U16(pbPacket + 8);
ataStartTransfer(s, RT_MIN(cbMax, 8), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_MECHANISM_STATUS, true);
}
break;
case SCSI_READ_TOC_PMA_ATIP:
{
uint8_t format;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cbMax = ataBE2H_U16(pbPacket + 7);
/* SCSI MMC-3 spec says format is at offset 2 (lower 4 bits),
* but Linux kernel uses offset 9 (topmost 2 bits). Hope that
* the other field is clear... */
format = (pbPacket[2] & 0xf) | (pbPacket[9] >> 6);
switch (format)
{
case 0:
ataStartTransfer(s, cbMax, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TOC_NORMAL, true);
break;
case 1:
ataStartTransfer(s, RT_MIN(cbMax, 12), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TOC_MULTI, true);
break;
case 2:
ataStartTransfer(s, cbMax, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TOC_RAW, true);
break;
default:
error_cmd:
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
break;
}
}
break;
case SCSI_READ_CAPACITY:
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
ataStartTransfer(s, 8, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_CAPACITY, true);
break;
case SCSI_READ_DISC_INFORMATION:
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cbMax = ataBE2H_U16(pbPacket + 7);
ataStartTransfer(s, RT_MIN(cbMax, 34), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_DISC_INFORMATION, true);
break;
case SCSI_READ_TRACK_INFORMATION:
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdErrorSimple(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdErrorSimple(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cbMax = ataBE2H_U16(pbPacket + 7);
ataStartTransfer(s, RT_MIN(cbMax, 36), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TRACK_INFORMATION, true);
break;
case SCSI_GET_CONFIGURATION:
/* No media change stuff here, it can confuse Linux guests. */
cbMax = ataBE2H_U16(pbPacket + 7);
ataStartTransfer(s, RT_MIN(cbMax, 32), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_GET_CONFIGURATION, true);
break;
case SCSI_INQUIRY:
cbMax = ataBE2H_U16(pbPacket + 3);
ataStartTransfer(s, RT_MIN(cbMax, 36), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_INQUIRY, true);
break;
default:
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
break;
}
}
/*
* Parse ATAPI commands, passing them directly to the CD/DVD drive.
*/
static void atapiParseCmdPassthrough(ATADevState *s)
{
const uint8_t *pbPacket;
uint8_t *pbBuf;
uint32_t cSectors, iATAPILBA;
uint32_t cbTransfer = 0;
PDMBLOCKTXDIR uTxDir = PDMBLOCKTXDIR_NONE;
pbPacket = s->aATAPICmd;
pbBuf = s->CTX_SUFF(pbIOBuffer);
switch (pbPacket[0])
{
case SCSI_BLANK:
goto sendcmd;
case SCSI_CLOSE_TRACK_SESSION:
goto sendcmd;
case SCSI_ERASE_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cbTransfer = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d\n", iATAPILBA));
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_FORMAT_UNIT:
cbTransfer = s->uATARegLCyl | (s->uATARegHCyl << 8); /* use ATAPI transfer length */
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_GET_CONFIGURATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_GET_EVENT_STATUS_NOTIFICATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
if (ASMAtomicReadU32(&s->MediaEventStatus) != ATA_EVENT_STATUS_UNCHANGED)
{
ataStartTransfer(s, RT_MIN(cbTransfer, 8), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_GET_EVENT_STATUS_NOTIFICATION, true);
break;
}
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_GET_PERFORMANCE:
cbTransfer = s->uATARegLCyl | (s->uATARegHCyl << 8); /* use ATAPI transfer length */
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_INQUIRY:
cbTransfer = ataBE2H_U16(pbPacket + 3);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_LOAD_UNLOAD_MEDIUM:
goto sendcmd;
case SCSI_MECHANISM_STATUS:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_MODE_SELECT_10:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_MODE_SENSE_10:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_PAUSE_RESUME:
goto sendcmd;
case SCSI_PLAY_AUDIO_10:
goto sendcmd;
case SCSI_PLAY_AUDIO_12:
goto sendcmd;
case SCSI_PLAY_AUDIO_MSF:
goto sendcmd;
case SCSI_PREVENT_ALLOW_MEDIUM_REMOVAL:
/** @todo do not forget to unlock when a VM is shut down */
goto sendcmd;
case SCSI_READ_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_12:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U32(pbPacket + 6);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_BUFFER:
cbTransfer = ataBE2H_U24(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_BUFFER_CAPACITY:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_CAPACITY:
cbTransfer = 8;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_CD:
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = ataBE2H_U24(pbPacket + 6) / s->cbATAPISector * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_CD_MSF:
cSectors = ataMSF2LBA(pbPacket + 6) - ataMSF2LBA(pbPacket + 3);
if (cSectors > 32)
cSectors = 32; /* Limit transfer size to 64~74K. Safety first. In any case this can only harm software doing CDDA extraction. */
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_DISC_INFORMATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_DVD_STRUCTURE:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_FORMAT_CAPACITIES:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_SUBCHANNEL:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_TOC_PMA_ATIP:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_TRACK_INFORMATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_REPAIR_TRACK:
goto sendcmd;
case SCSI_REPORT_KEY:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_REQUEST_SENSE:
cbTransfer = pbPacket[4];
if ((s->abATAPISense[2] & 0x0f) != SCSI_SENSE_NONE)
{
ataStartTransfer(s, RT_MIN(cbTransfer, 18), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_REQUEST_SENSE, true);
break;
}
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_RESERVE_TRACK:
goto sendcmd;
case SCSI_SCAN:
goto sendcmd;
case SCSI_SEEK_10:
goto sendcmd;
case SCSI_SEND_CUE_SHEET:
cbTransfer = ataBE2H_U24(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_DVD_STRUCTURE:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_EVENT:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_KEY:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_OPC_INFORMATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SET_CD_SPEED:
goto sendcmd;
case SCSI_SET_READ_AHEAD:
goto sendcmd;
case SCSI_SET_STREAMING:
cbTransfer = ataBE2H_U16(pbPacket + 9);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_START_STOP_UNIT:
goto sendcmd;
case SCSI_STOP_PLAY_SCAN:
goto sendcmd;
case SCSI_SYNCHRONIZE_CACHE:
goto sendcmd;
case SCSI_TEST_UNIT_READY:
goto sendcmd;
case SCSI_VERIFY_10:
goto sendcmd;
case SCSI_WRITE_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
#if 0
/* The sector size is determined by the async I/O thread. */
s->cbATAPISector = 0;
/* Preliminary, will be corrected once the sector size is known. */
cbTransfer = cSectors;
#else
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
#endif
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_WRITE_12:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U32(pbPacket + 6);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
#if 0
/* The sector size is determined by the async I/O thread. */
s->cbATAPISector = 0;
/* Preliminary, will be corrected once the sector size is known. */
cbTransfer = cSectors;
#else
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
#endif
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_WRITE_AND_VERIFY_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
/* The sector size is determined by the async I/O thread. */
s->cbATAPISector = 0;
/* Preliminary, will be corrected once the sector size is known. */
cbTransfer = cSectors;
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_WRITE_BUFFER:
switch (pbPacket[1] & 0x1f)
{
case 0x04: /* download microcode */
case 0x05: /* download microcode and save */
case 0x06: /* download microcode with offsets */
case 0x07: /* download microcode with offsets and save */
case 0x0e: /* download microcode with offsets and defer activation */
case 0x0f: /* activate deferred microcode */
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM passthrough command attempted to update firmware, blocked\n", s->iLUN));
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
break;
default:
cbTransfer = ataBE2H_U16(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
}
break;
case SCSI_REPORT_LUNS: /* Not part of MMC-3, but used by Windows. */
cbTransfer = ataBE2H_U32(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_REZERO_UNIT:
/* Obsolete command used by cdrecord. What else would one expect?
* This command is not sent to the drive, it is handled internally,
* as the Linux kernel doesn't like it (message "scsi: unknown
* opcode 0x01" in syslog) and replies with a sense code of 0,
* which sends cdrecord to an endless loop. */
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
break;
default:
LogRel(("PIIX3 ATA: LUN#%d: passthrough unimplemented for command %#x\n", s->iLUN, pbPacket[0]));
atapiCmdErrorSimple(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
break;
sendcmd:
/* Send a command to the drive, passing data in/out as required. */
Log2(("ATAPI PT: max size %d\n", cbTransfer));
Assert(cbTransfer <= s->cbIOBuffer);
if (cbTransfer == 0)
uTxDir = PDMBLOCKTXDIR_NONE;
ataStartTransfer(s, cbTransfer, uTxDir, ATAFN_BT_ATAPI_PASSTHROUGH_CMD, ATAFN_SS_ATAPI_PASSTHROUGH, true);
}
}
static void atapiParseCmd(ATADevState *s)
{
const uint8_t *pbPacket;
pbPacket = s->aATAPICmd;
#ifdef DEBUG
Log(("%s: LUN#%d DMA=%d CMD=%#04x \"%s\"\n", __FUNCTION__, s->iLUN, s->fDMA, pbPacket[0], SCSICmdText(pbPacket[0])));
#else /* !DEBUG */
Log(("%s: LUN#%d DMA=%d CMD=%#04x\n", __FUNCTION__, s->iLUN, s->fDMA, pbPacket[0]));
#endif /* !DEBUG */
Log2(("%s: limit=%#x packet: %.*Rhxs\n", __FUNCTION__, s->uATARegLCyl | (s->uATARegHCyl << 8), ATAPI_PACKET_SIZE, pbPacket));
if (s->fATAPIPassthrough)
atapiParseCmdPassthrough(s);
else
atapiParseCmdVirtualATAPI(s);
}
static bool ataPacketSS(ATADevState *s)
{
s->fDMA = !!(s->uATARegFeature & 1);
memcpy(s->aATAPICmd, s->CTX_SUFF(pbIOBuffer), ATAPI_PACKET_SIZE);
s->uTxDir = PDMBLOCKTXDIR_NONE;
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
atapiParseCmd(s);
return false;
}
/**
* SCSI_GET_EVENT_STATUS_NOTIFICATION should return "medium removed" event
* from now on, regardless if there was a medium inserted or not.
*/
static void ataMediumRemoved(ATADevState *s)
{
ASMAtomicWriteU32(&s->MediaEventStatus, ATA_EVENT_STATUS_MEDIA_REMOVED);
}
/**
* SCSI_GET_EVENT_STATUS_NOTIFICATION should return "medium inserted". If
* there was already a medium inserted, don't forget to send the "medium
* removed" event first.
*/
static void ataMediumInserted(ATADevState *s)
{
uint32_t OldStatus, NewStatus;
do
{
OldStatus = ASMAtomicReadU32(&s->MediaEventStatus);
switch (OldStatus)
{
case ATA_EVENT_STATUS_MEDIA_CHANGED:
case ATA_EVENT_STATUS_MEDIA_REMOVED:
/* no change, we will send "medium removed" + "medium inserted" */
NewStatus = ATA_EVENT_STATUS_MEDIA_CHANGED;
break;
default:
NewStatus = ATA_EVENT_STATUS_MEDIA_NEW;
break;
}
} while (!ASMAtomicCmpXchgU32(&s->MediaEventStatus, NewStatus, OldStatus));
}
/**
* Called when a media is mounted.
*
* @param pInterface Pointer to the interface structure containing the called function pointer.
*/
static DECLCALLBACK(void) ataMountNotify(PPDMIMOUNTNOTIFY pInterface)
{
ATADevState *pIf = PDMIMOUNTNOTIFY_2_ATASTATE(pInterface);
Log(("%s: changing LUN#%d\n", __FUNCTION__, pIf->iLUN));
/* Ignore the call if we're called while being attached. */
if (!pIf->pDrvBlock)
return;
if (pIf->fATAPI)
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 2048;
else
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 512;
/* Report media changed in TEST UNIT and other (probably incorrect) places. */
if (pIf->cNotifiedMediaChange < 2)
pIf->cNotifiedMediaChange = 2;
ataMediumInserted(pIf);
}
/**
* Called when a media is unmounted
* @param pInterface Pointer to the interface structure containing the called function pointer.
*/
static DECLCALLBACK(void) ataUnmountNotify(PPDMIMOUNTNOTIFY pInterface)
{
ATADevState *pIf = PDMIMOUNTNOTIFY_2_ATASTATE(pInterface);
Log(("%s:\n", __FUNCTION__));
pIf->cTotalSectors = 0;
/*
* Whatever I do, XP will not use the GET MEDIA STATUS nor the EVENT stuff.
* However, it will respond to TEST UNIT with a 0x6 0x28 (media changed) sense code.
* So, we'll give it 4 TEST UNIT command to catch up, two which the media is not
* present and 2 in which it is changed.
*/
pIf->cNotifiedMediaChange = 4;
ataMediumRemoved(pIf);
}
static void ataPacketBT(ATADevState *s)
{
s->cbElementaryTransfer = s->cbTotalTransfer;
s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_CD;
Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
ataSetStatusValue(s, ATA_STAT_READY);
}
static void ataResetDevice(ATADevState *s)
{
s->cMultSectors = ATA_MAX_MULT_SECTORS;
s->cNotifiedMediaChange = 0;
ASMAtomicWriteU32(&s->MediaEventStatus, ATA_EVENT_STATUS_UNCHANGED);
ataUnsetIRQ(s);
s->uATARegSelect = 0x20;
ataSetStatusValue(s, ATA_STAT_READY);
ataSetSignature(s);
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iIOBufferPIODataStart = 0;
s->iIOBufferPIODataEnd = 0;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
s->fATAPITransfer = false;
s->uATATransferMode = ATA_MODE_UDMA | 2; /* PIIX3 supports only up to UDMA2 */
s->uATARegFeature = 0;
}
static bool ataExecuteDeviceDiagnosticSS(ATADevState *s)
{
ataSetSignature(s);
if (s->fATAPI)
ataSetStatusValue(s, 0); /* NOTE: READY is _not_ set */
else
ataSetStatusValue(s, ATA_STAT_READY);
s->uATARegError = 0x01;
return false;
}
static void ataParseCmd(ATADevState *s, uint8_t cmd)
{
#ifdef DEBUG
Log(("%s: LUN#%d CMD=%#04x \"%s\"\n", __FUNCTION__, s->iLUN, cmd, ATACmdText(cmd)));
#else /* !DEBUG */
Log(("%s: LUN#%d CMD=%#04x\n", __FUNCTION__, s->iLUN, cmd));
#endif /* !DEBUG */
s->fLBA48 = false;
s->fDMA = false;
if (cmd == ATA_IDLE_IMMEDIATE)
{
/* Detect Linux timeout recovery, first tries IDLE IMMEDIATE (which
* would overwrite the failing command unfortunately), then RESET. */
int32_t uCmdWait = -1;
uint64_t uNow = RTTimeNanoTS();
if (s->u64CmdTS)
uCmdWait = (uNow - s->u64CmdTS) / 1000;
LogRel(("PIIX3 ATA: LUN#%d: IDLE IMMEDIATE, CmdIf=%#04x (%d usec ago)\n",
s->iLUN, s->uATARegCommand, uCmdWait));
}
s->uATARegCommand = cmd;
switch (cmd)
{
case ATA_IDENTIFY_DEVICE:
if (s->pDrvBlock && !s->fATAPI)
ataStartTransfer(s, 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_NULL, ATAFN_SS_IDENTIFY, false);
else
{
if (s->fATAPI)
ataSetSignature(s);
ataCmdError(s, ABRT_ERR);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
}
break;
case ATA_INITIALIZE_DEVICE_PARAMETERS:
case ATA_RECALIBRATE:
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_SET_MULTIPLE_MODE:
if ( s->uATARegNSector != 0
&& ( s->uATARegNSector > ATA_MAX_MULT_SECTORS
|| (s->uATARegNSector & (s->uATARegNSector - 1)) != 0))
{
ataCmdError(s, ABRT_ERR);
}
else
{
Log2(("%s: set multi sector count to %d\n", __FUNCTION__, s->uATARegNSector));
s->cMultSectors = s->uATARegNSector;
ataCmdOK(s, 0);
}
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_READ_VERIFY_SECTORS_EXT:
s->fLBA48 = true;
case ATA_READ_VERIFY_SECTORS:
case ATA_READ_VERIFY_SECTORS_WITHOUT_RETRIES:
/* do sector number check ? */
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_READ_SECTORS_EXT:
s->fLBA48 = true;
case ATA_READ_SECTORS:
case ATA_READ_SECTORS_WITHOUT_RETRIES:
if (!s->pDrvBlock)
goto abort_cmd;
s->cSectorsPerIRQ = 1;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_READ_SECTORS, false);
break;
case ATA_WRITE_SECTORS_EXT:
s->fLBA48 = true;
case ATA_WRITE_SECTORS:
case ATA_WRITE_SECTORS_WITHOUT_RETRIES:
s->cSectorsPerIRQ = 1;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_WRITE_SECTORS, false);
break;
case ATA_READ_MULTIPLE_EXT:
s->fLBA48 = true;
case ATA_READ_MULTIPLE:
if (!s->cMultSectors)
goto abort_cmd;
s->cSectorsPerIRQ = s->cMultSectors;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_READ_SECTORS, false);
break;
case ATA_WRITE_MULTIPLE_EXT:
s->fLBA48 = true;
case ATA_WRITE_MULTIPLE:
if (!s->cMultSectors)
goto abort_cmd;
s->cSectorsPerIRQ = s->cMultSectors;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_WRITE_SECTORS, false);
break;
case ATA_READ_DMA_EXT:
s->fLBA48 = true;
case ATA_READ_DMA:
case ATA_READ_DMA_WITHOUT_RETRIES:
if (!s->pDrvBlock)
goto abort_cmd;
s->cSectorsPerIRQ = ATA_MAX_MULT_SECTORS;
s->fDMA = true;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_READ_SECTORS, false);
break;
case ATA_WRITE_DMA_EXT:
s->fLBA48 = true;
case ATA_WRITE_DMA:
case ATA_WRITE_DMA_WITHOUT_RETRIES:
if (!s->pDrvBlock)
goto abort_cmd;
s->cSectorsPerIRQ = ATA_MAX_MULT_SECTORS;
s->fDMA = true;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_WRITE_SECTORS, false);
break;
case ATA_READ_NATIVE_MAX_ADDRESS_EXT:
s->fLBA48 = true;
ataSetSector(s, s->cTotalSectors - 1);
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_SEEK: /* Used by the SCO OpenServer. Command is marked as obsolete */
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_READ_NATIVE_MAX_ADDRESS:
ataSetSector(s, RT_MIN(s->cTotalSectors, 1 << 28) - 1);
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_CHECK_POWER_MODE:
s->uATARegNSector = 0xff; /* drive active or idle */
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_SET_FEATURES:
Log2(("%s: feature=%#x\n", __FUNCTION__, s->uATARegFeature));
if (!s->pDrvBlock)
goto abort_cmd;
switch (s->uATARegFeature)
{
case 0x02: /* write cache enable */
Log2(("%s: write cache enable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0xaa: /* read look-ahead enable */
Log2(("%s: read look-ahead enable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0x55: /* read look-ahead disable */
Log2(("%s: read look-ahead disable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0xcc: /* reverting to power-on defaults enable */
Log2(("%s: revert to power-on defaults enable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0x66: /* reverting to power-on defaults disable */
Log2(("%s: revert to power-on defaults disable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0x82: /* write cache disable */
Log2(("%s: write cache disable\n", __FUNCTION__));
/* As per the ATA/ATAPI-6 specs, a write cache disable
* command MUST flush the write buffers to disc. */
ataStartTransfer(s, 0, PDMBLOCKTXDIR_NONE, ATAFN_BT_NULL, ATAFN_SS_FLUSH, false);
break;
case 0x03: { /* set transfer mode */
Log2(("%s: transfer mode %#04x\n", __FUNCTION__, s->uATARegNSector));
switch (s->uATARegNSector & 0xf8)
{
case 0x00: /* PIO default */
case 0x08: /* PIO mode */
break;
case ATA_MODE_MDMA: /* MDMA mode */
s->uATATransferMode = (s->uATARegNSector & 0xf8) | RT_MIN(s->uATARegNSector & 0x07, ATA_MDMA_MODE_MAX);
break;
case ATA_MODE_UDMA: /* UDMA mode */
s->uATATransferMode = (s->uATARegNSector & 0xf8) | RT_MIN(s->uATARegNSector & 0x07, ATA_UDMA_MODE_MAX);
break;
default:
goto abort_cmd;
}
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
}
default:
goto abort_cmd;
}
/*
* OS/2 workarond:
* The OS/2 IDE driver from MCP2 appears to rely on the feature register being
* reset here. According to the specification, this is a driver bug as the register
* contents are undefined after the call. This means we can just as well reset it.
*/
s->uATARegFeature = 0;
break;
case ATA_FLUSH_CACHE_EXT:
case ATA_FLUSH_CACHE:
if (!s->pDrvBlock || s->fATAPI)
goto abort_cmd;
ataStartTransfer(s, 0, PDMBLOCKTXDIR_NONE, ATAFN_BT_NULL, ATAFN_SS_FLUSH, false);
break;
case ATA_STANDBY_IMMEDIATE:
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_IDLE_IMMEDIATE:
LogRel(("PIIX3 ATA: LUN#%d: aborting current command\n", s->iLUN));
ataAbortCurrentCommand(s, false);
break;
/* ATAPI commands */
case ATA_IDENTIFY_PACKET_DEVICE:
if (s->fATAPI)
ataStartTransfer(s, 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_NULL, ATAFN_SS_ATAPI_IDENTIFY, false);
else
{
ataCmdError(s, ABRT_ERR);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
}
break;
case ATA_EXECUTE_DEVICE_DIAGNOSTIC:
ataStartTransfer(s, 0, PDMBLOCKTXDIR_NONE, ATAFN_BT_NULL, ATAFN_SS_EXECUTE_DEVICE_DIAGNOSTIC, false);
break;
case ATA_DEVICE_RESET:
if (!s->fATAPI)
goto abort_cmd;
LogRel(("PIIX3 ATA: LUN#%d: performing device RESET\n", s->iLUN));
ataAbortCurrentCommand(s, true);
break;
case ATA_PACKET:
if (!s->fATAPI)
goto abort_cmd;
/* overlapping commands not supported */
if (s->uATARegFeature & 0x02)
goto abort_cmd;
ataStartTransfer(s, ATAPI_PACKET_SIZE, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_PACKET, ATAFN_SS_PACKET, false);
break;
default:
abort_cmd:
ataCmdError(s, ABRT_ERR);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
}
}
/**
* Waits for a particular async I/O thread to complete whatever it
* is doing at the moment.
*
* @returns true on success.
* @returns false when the thread is still processing.
* @param pThis Pointer to the controller data.
* @param cMillies How long to wait (total).
*/
static bool ataWaitForAsyncIOIsIdle(PATACONTROLLER pCtl, unsigned cMillies)
{
uint64_t u64Start;
/*
* Wait for any pending async operation to finish
*/
u64Start = RTTimeMilliTS();
for (;;)
{
if (ataAsyncIOIsIdle(pCtl, false))
return true;
if (RTTimeMilliTS() - u64Start >= cMillies)
break;
/* Sleep for a bit. */
RTThreadSleep(100);
}
return false;
}
#endif /* IN_RING3 */
static int ataIOPortWriteU8(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: write addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
addr &= 7;
switch (addr)
{
case 0:
break;
case 1: /* feature register */
/* NOTE: data is written to the two drives */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegFeatureHOB = pCtl->aIfs[0].uATARegFeature;
pCtl->aIfs[1].uATARegFeatureHOB = pCtl->aIfs[1].uATARegFeature;
pCtl->aIfs[0].uATARegFeature = val;
pCtl->aIfs[1].uATARegFeature = val;
break;
case 2: /* sector count */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegNSectorHOB = pCtl->aIfs[0].uATARegNSector;
pCtl->aIfs[1].uATARegNSectorHOB = pCtl->aIfs[1].uATARegNSector;
pCtl->aIfs[0].uATARegNSector = val;
pCtl->aIfs[1].uATARegNSector = val;
break;
case 3: /* sector number */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegSectorHOB = pCtl->aIfs[0].uATARegSector;
pCtl->aIfs[1].uATARegSectorHOB = pCtl->aIfs[1].uATARegSector;
pCtl->aIfs[0].uATARegSector = val;
pCtl->aIfs[1].uATARegSector = val;
break;
case 4: /* cylinder low */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegLCylHOB = pCtl->aIfs[0].uATARegLCyl;
pCtl->aIfs[1].uATARegLCylHOB = pCtl->aIfs[1].uATARegLCyl;
pCtl->aIfs[0].uATARegLCyl = val;
pCtl->aIfs[1].uATARegLCyl = val;
break;
case 5: /* cylinder high */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegHCylHOB = pCtl->aIfs[0].uATARegHCyl;
pCtl->aIfs[1].uATARegHCylHOB = pCtl->aIfs[1].uATARegHCyl;
pCtl->aIfs[0].uATARegHCyl = val;
pCtl->aIfs[1].uATARegHCyl = val;
break;
case 6: /* drive/head */
pCtl->aIfs[0].uATARegSelect = (val & ~0x10) | 0xa0;
pCtl->aIfs[1].uATARegSelect = (val | 0x10) | 0xa0;
if (((val >> 4) & 1) != pCtl->iSelectedIf)
{
PPDMDEVINS pDevIns = CONTROLLER_2_DEVINS(pCtl);
/* select another drive */
pCtl->iSelectedIf = (val >> 4) & 1;
/* The IRQ line is multiplexed between the two drives, so
* update the state when switching to another drive. Only need
* to update interrupt line if it is enabled and there is a
* state change. */
if ( !(pCtl->aIfs[pCtl->iSelectedIf].uATARegDevCtl & ATA_DEVCTL_DISABLE_IRQ)
&& ( pCtl->aIfs[pCtl->iSelectedIf].fIrqPending
!= pCtl->aIfs[pCtl->iSelectedIf ^ 1].fIrqPending))
{
if (pCtl->aIfs[pCtl->iSelectedIf].fIrqPending)
{
Log2(("%s: LUN#%d asserting IRQ (drive select change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
/* The BMDMA unit unconditionally sets BM_STATUS_INT if
* the interrupt line is asserted. It monitors the line
* for a rising edge. */
pCtl->BmDma.u8Status |= BM_STATUS_INT;
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 1);
else
PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 1);
}
else
{
Log2(("%s: LUN#%d deasserting IRQ (drive select change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 0);
else
PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 0);
}
}
}
break;
default:
case 7: /* command */
/* ignore commands to non existant slave */
if (pCtl->iSelectedIf && !pCtl->aIfs[pCtl->iSelectedIf].pDrvBlock)
break;
#ifndef IN_RING3
/* Don't do anything complicated in GC */
return VINF_IOM_HC_IOPORT_WRITE;
#else /* IN_RING3 */
ataParseCmd(&pCtl->aIfs[pCtl->iSelectedIf], val);
#endif /* !IN_RING3 */
}
return VINF_SUCCESS;
}
static int ataIOPortReadU8(PATACONTROLLER pCtl, uint32_t addr, uint32_t *pu32)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint32_t val;
bool fHOB;
fHOB = !!(s->uATARegDevCtl & (1 << 7));
switch (addr & 7)
{
case 0: /* data register */
val = 0xff;
break;
case 1: /* error register */
/* The ATA specification is very terse when it comes to specifying
* the precise effects of reading back the error/feature register.
* The error register (read-only) shares the register number with
* the feature register (write-only), so it seems that it's not
* necessary to support the usual HOB readback here. */
if (!s->pDrvBlock)
val = 0;
else
val = s->uATARegError;
break;
case 2: /* sector count */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegNSectorHOB;
else
val = s->uATARegNSector;
break;
case 3: /* sector number */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegSectorHOB;
else
val = s->uATARegSector;
break;
case 4: /* cylinder low */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegLCylHOB;
else
val = s->uATARegLCyl;
break;
case 5: /* cylinder high */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegHCylHOB;
else
val = s->uATARegHCyl;
break;
case 6: /* drive/head */
/* This register must always work as long as there is at least
* one drive attached to the controller. It is common between
* both drives anyway (completely identical content). */
if (!pCtl->aIfs[0].pDrvBlock && !pCtl->aIfs[1].pDrvBlock)
val = 0;
else
val = s->uATARegSelect;
break;
default:
case 7: /* primary status */
{
/* Counter for number of busy status seen in GC in a row. */
static unsigned cBusy = 0;
if (!s->pDrvBlock)
val = 0;
else
val = s->uATARegStatus;
/* Give the async I/O thread an opportunity to make progress,
* don't let it starve by guests polling frequently. EMT has a
* lower priority than the async I/O thread, but sometimes the
* host OS doesn't care. With some guests we are only allowed to
* be busy for about 5 milliseconds in some situations. Note that
* this is no guarantee for any other VBox thread getting
* scheduled, so this just lowers the CPU load a bit when drives
* are busy. It cannot help with timing problems. */
if (val & ATA_STAT_BUSY)
{
#ifdef IN_RING3
cBusy = 0;
PDMCritSectLeave(&pCtl->lock);
RTThreadYield();
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
val = s->uATARegStatus;
#else /* !IN_RING3 */
/* Cannot yield CPU in guest context. And switching to host
* context for each and every busy status is too costly,
* especially on SMP systems where we don't gain much by
* yielding the CPU to someone else. */
if (++cBusy >= 20)
{
cBusy = 0;
return VINF_IOM_HC_IOPORT_READ;
}
#endif /* !IN_RING3 */
}
else
cBusy = 0;
ataUnsetIRQ(s);
break;
}
}
Log2(("%s: addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
*pu32 = val;
return VINF_SUCCESS;
}
static uint32_t ataStatusRead(PATACONTROLLER pCtl, uint32_t addr)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint32_t val;
if ((!pCtl->aIfs[0].pDrvBlock && !pCtl->aIfs[1].pDrvBlock) ||
(pCtl->iSelectedIf == 1 && !s->pDrvBlock))
val = 0;
else
val = s->uATARegStatus;
Log2(("%s: addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
return val;
}
static int ataControlWrite(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
#ifndef IN_RING3
if ((val ^ pCtl->aIfs[0].uATARegDevCtl) & ATA_DEVCTL_RESET)
return VINF_IOM_HC_IOPORT_WRITE; /* The RESET stuff is too complicated for GC. */
#endif /* !IN_RING3 */
Log2(("%s: addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
/* RESET is common for both drives attached to a controller. */
if (!(pCtl->aIfs[0].uATARegDevCtl & ATA_DEVCTL_RESET) &&
(val & ATA_DEVCTL_RESET))
{
#ifdef IN_RING3
/* Software RESET low to high */
int32_t uCmdWait0 = -1, uCmdWait1 = -1;
uint64_t uNow = RTTimeNanoTS();
if (pCtl->aIfs[0].u64CmdTS)
uCmdWait0 = (uNow - pCtl->aIfs[0].u64CmdTS) / 1000;
if (pCtl->aIfs[1].u64CmdTS)
uCmdWait1 = (uNow - pCtl->aIfs[1].u64CmdTS) / 1000;
LogRel(("PIIX3 ATA: Ctl#%d: RESET, DevSel=%d AIOIf=%d CmdIf0=%#04x (%d usec ago) CmdIf1=%#04x (%d usec ago)\n",
ATACONTROLLER_IDX(pCtl), pCtl->iSelectedIf, pCtl->iAIOIf,
pCtl->aIfs[0].uATARegCommand, uCmdWait0,
pCtl->aIfs[1].uATARegCommand, uCmdWait1));
pCtl->fReset = true;
/* Everything must be done after the reset flag is set, otherwise
* there are unavoidable races with the currently executing request
* (which might just finish in the mean time). */
pCtl->fChainedTransfer = false;
for (uint32_t i = 0; i < RT_ELEMENTS(pCtl->aIfs); i++)
{
ataResetDevice(&pCtl->aIfs[i]);
/* The following cannot be done using ataSetStatusValue() since the
* reset flag is already set, which suppresses all status changes. */
pCtl->aIfs[i].uATARegStatus = ATA_STAT_BUSY | ATA_STAT_SEEK;
Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, pCtl->aIfs[i].iLUN, pCtl->aIfs[i].uATARegStatus));
pCtl->aIfs[i].uATARegError = 0x01;
}
ataAsyncIOClearRequests(pCtl);
Log2(("%s: Ctl#%d: message to async I/O thread, resetA\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
if (val & ATA_DEVCTL_HOB)
{
val &= ~ATA_DEVCTL_HOB;
Log2(("%s: ignored setting HOB\n", __FUNCTION__));
}
ataAsyncIOPutRequest(pCtl, &ataResetARequest);
#else /* !IN_RING3 */
AssertMsgFailed(("RESET handling is too complicated for GC\n"));
#endif /* IN_RING3 */
}
else if ((pCtl->aIfs[0].uATARegDevCtl & ATA_DEVCTL_RESET) &&
!(val & ATA_DEVCTL_RESET))
{
#ifdef IN_RING3
/* Software RESET high to low */
Log(("%s: deasserting RESET\n", __FUNCTION__));
Log2(("%s: Ctl#%d: message to async I/O thread, resetC\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
if (val & ATA_DEVCTL_HOB)
{
val &= ~ATA_DEVCTL_HOB;
Log2(("%s: ignored setting HOB\n", __FUNCTION__));
}
ataAsyncIOPutRequest(pCtl, &ataResetCRequest);
#else /* !IN_RING3 */
AssertMsgFailed(("RESET handling is too complicated for GC\n"));
#endif /* IN_RING3 */
}
/* Change of interrupt disable flag. Update interrupt line if interrupt
* is pending on the current interface. */
if ((val ^ pCtl->aIfs[0].uATARegDevCtl) & ATA_DEVCTL_DISABLE_IRQ
&& pCtl->aIfs[pCtl->iSelectedIf].fIrqPending)
{
if (!(val & ATA_DEVCTL_DISABLE_IRQ))
{
Log2(("%s: LUN#%d asserting IRQ (interrupt disable change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
/* The BMDMA unit unconditionally sets BM_STATUS_INT if the
* interrupt line is asserted. It monitors the line for a rising
* edge. */
pCtl->BmDma.u8Status |= BM_STATUS_INT;
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), 0, 1);
else
PDMDevHlpISASetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), pCtl->irq, 1);
}
else
{
Log2(("%s: LUN#%d deasserting IRQ (interrupt disable change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), 0, 0);
else
PDMDevHlpISASetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), pCtl->irq, 0);
}
}
if (val & ATA_DEVCTL_HOB)
Log2(("%s: set HOB\n", __FUNCTION__));
pCtl->aIfs[0].uATARegDevCtl = val;
pCtl->aIfs[1].uATARegDevCtl = val;
return VINF_SUCCESS;
}
#ifdef IN_RING3
static void ataPIOTransfer(PATACONTROLLER pCtl)
{
ATADevState *s;
s = &pCtl->aIfs[pCtl->iAIOIf];
Log3(("%s: if=%p\n", __FUNCTION__, s));
if (s->cbTotalTransfer && s->iIOBufferCur > s->iIOBufferEnd)
{
LogRel(("PIIX3 ATA: LUN#%d: %s data in the middle of a PIO transfer - VERY SLOW\n", s->iLUN, s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE ? "loading" : "storing"));
/* Any guest OS that triggers this case has a pathetic ATA driver.
* In a real system it would block the CPU via IORDY, here we do it
* very similarly by not continuing with the current instruction
* until the transfer to/from the storage medium is completed. */
if (s->iSourceSink != ATAFN_SS_NULL)
{
bool fRedo;
uint8_t status = s->uATARegStatus;
ataSetStatusValue(s, ATA_STAT_BUSY);
Log2(("%s: calling source/sink function\n", __FUNCTION__));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
pCtl->fRedo = fRedo;
if (RT_UNLIKELY(fRedo))
return;
ataSetStatusValue(s, status);
s->iIOBufferCur = 0;
s->iIOBufferEnd = s->cbElementaryTransfer;
}
}
if (s->cbTotalTransfer)
{
if (s->fATAPITransfer)
ataPIOTransferLimitATAPI(s);
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE && s->cbElementaryTransfer > s->cbTotalTransfer)
s->cbElementaryTransfer = s->cbTotalTransfer;
Log2(("%s: %s tx_size=%d elem_tx_size=%d index=%d end=%d\n",
__FUNCTION__, s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE ? "T2I" : "I2T",
s->cbTotalTransfer, s->cbElementaryTransfer,
s->iIOBufferCur, s->iIOBufferEnd));
ataPIOTransferStart(s, s->iIOBufferCur, s->cbElementaryTransfer);
s->cbTotalTransfer -= s->cbElementaryTransfer;
s->iIOBufferCur += s->cbElementaryTransfer;
if (s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE && s->cbElementaryTransfer > s->cbTotalTransfer)
s->cbElementaryTransfer = s->cbTotalTransfer;
}
else
ataPIOTransferStop(s);
}
DECLINLINE(void) ataPIOTransferFinish(PATACONTROLLER pCtl, ATADevState *s)
{
/* Do not interfere with RESET processing if the PIO transfer finishes
* while the RESET line is asserted. */
if (pCtl->fReset)
{
Log2(("%s: Ctl#%d: suppressed continuing PIO transfer as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
return;
}
if ( s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE
|| ( s->iSourceSink != ATAFN_SS_NULL
&& s->iIOBufferCur >= s->iIOBufferEnd))
{
/* Need to continue the transfer in the async I/O thread. This is
* the case for write operations or generally for not yet finished
* transfers (some data might need to be read). */
ataUnsetStatus(s, ATA_STAT_READY | ATA_STAT_DRQ);
ataSetStatus(s, ATA_STAT_BUSY);
Log2(("%s: Ctl#%d: message to async I/O thread, continuing PIO transfer\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataPIORequest);
}
else
{
/* Either everything finished (though some data might still be pending)
* or some data is pending before the next read is due. */
/* Continue a previously started transfer. */
ataUnsetStatus(s, ATA_STAT_DRQ);
ataSetStatus(s, ATA_STAT_READY);
if (s->cbTotalTransfer)
{
/* There is more to transfer, happens usually for large ATAPI
* reads - the protocol limits the chunk size to 65534 bytes. */
ataPIOTransfer(pCtl);
ataSetIRQ(s);
}
else
{
Log2(("%s: Ctl#%d: skipping message to async I/O thread, ending PIO transfer\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
/* Finish PIO transfer. */
ataPIOTransfer(pCtl);
Assert(!pCtl->fRedo);
}
}
}
#endif /* IN_RING3 */
static int ataDataWrite(PATACONTROLLER pCtl, uint32_t addr, uint32_t cbSize, const uint8_t *pbBuf)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint8_t *p;
if (s->iIOBufferPIODataStart < s->iIOBufferPIODataEnd)
{
Assert(s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE);
p = s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart;
#ifndef IN_RING3
/* All but the last transfer unit is simple enough for GC, but
* sending a request to the async IO thread is too complicated. */
if (s->iIOBufferPIODataStart + cbSize < s->iIOBufferPIODataEnd)
{
memcpy(p, pbBuf, cbSize);
s->iIOBufferPIODataStart += cbSize;
}
else
return VINF_IOM_HC_IOPORT_WRITE;
#else /* IN_RING3 */
memcpy(p, pbBuf, cbSize);
s->iIOBufferPIODataStart += cbSize;
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* !IN_RING3 */
}
else
Log2(("%s: DUMMY data\n", __FUNCTION__));
Log3(("%s: addr=%#x val=%.*Rhxs\n", __FUNCTION__, addr, cbSize, pbBuf));
return VINF_SUCCESS;
}
static int ataDataRead(PATACONTROLLER pCtl, uint32_t addr, uint32_t cbSize, uint8_t *pbBuf)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint8_t *p;
if (s->iIOBufferPIODataStart < s->iIOBufferPIODataEnd)
{
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
p = s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart;
#ifndef IN_RING3
/* All but the last transfer unit is simple enough for GC, but
* sending a request to the async IO thread is too complicated. */
if (s->iIOBufferPIODataStart + cbSize < s->iIOBufferPIODataEnd)
{
memcpy(pbBuf, p, cbSize);
s->iIOBufferPIODataStart += cbSize;
}
else
return VINF_IOM_HC_IOPORT_READ;
#else /* IN_RING3 */
memcpy(pbBuf, p, cbSize);
s->iIOBufferPIODataStart += cbSize;
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* !IN_RING3 */
}
else
{
Log2(("%s: DUMMY data\n", __FUNCTION__));
memset(pbBuf, '\xff', cbSize);
}
Log3(("%s: addr=%#x val=%.*Rhxs\n", __FUNCTION__, addr, cbSize, pbBuf));
return VINF_SUCCESS;
}
#ifdef IN_RING3
static void ataDMATransferStop(ATADevState *s)
{
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
}
/**
* Perform the entire DMA transfer in one go (unless a source/sink operation
* has to be redone or a RESET comes in between). Unlike the PIO counterpart
* this function cannot handle empty transfers.
*
* @param pCtl Controller for which to perform the transfer.
*/
static void ataDMATransfer(PATACONTROLLER pCtl)
{
PPDMDEVINS pDevIns = CONTROLLER_2_DEVINS(pCtl);
ATADevState *s = &pCtl->aIfs[pCtl->iAIOIf];
bool fRedo;
RTGCPHYS32 pDesc;
uint32_t cbTotalTransfer, cbElementaryTransfer;
uint32_t iIOBufferCur, iIOBufferEnd;
uint32_t dmalen;
PDMBLOCKTXDIR uTxDir;
bool fLastDesc = false;
Assert(sizeof(BMDMADesc) == 8);
fRedo = pCtl->fRedo;
if (RT_LIKELY(!fRedo))
Assert(s->cbTotalTransfer);
uTxDir = (PDMBLOCKTXDIR)s->uTxDir;
cbTotalTransfer = s->cbTotalTransfer;
cbElementaryTransfer = s->cbElementaryTransfer;
iIOBufferCur = s->iIOBufferCur;
iIOBufferEnd = s->iIOBufferEnd;
/* The DMA loop is designed to hold the lock only when absolutely
* necessary. This avoids long freezes should the guest access the
* ATA registers etc. for some reason. */
PDMCritSectLeave(&pCtl->lock);
Log2(("%s: %s tx_size=%d elem_tx_size=%d index=%d end=%d\n",
__FUNCTION__, uTxDir == PDMBLOCKTXDIR_FROM_DEVICE ? "T2I" : "I2T",
cbTotalTransfer, cbElementaryTransfer,
iIOBufferCur, iIOBufferEnd));
for (pDesc = pCtl->pFirstDMADesc; pDesc <= pCtl->pLastDMADesc; pDesc += sizeof(BMDMADesc))
{
BMDMADesc DMADesc;
RTGCPHYS32 pBuffer;
uint32_t cbBuffer;
if (RT_UNLIKELY(fRedo))
{
pBuffer = pCtl->pRedoDMABuffer;
cbBuffer = pCtl->cbRedoDMABuffer;
fLastDesc = pCtl->fRedoDMALastDesc;
}
else
{
PDMDevHlpPhysRead(pDevIns, pDesc, &DMADesc, sizeof(BMDMADesc));
pBuffer = RT_LE2H_U32(DMADesc.pBuffer);
cbBuffer = RT_LE2H_U32(DMADesc.cbBuffer);
fLastDesc = !!(cbBuffer & 0x80000000);
cbBuffer &= 0xfffe;
if (cbBuffer == 0)
cbBuffer = 0x10000;
if (cbBuffer > cbTotalTransfer)
cbBuffer = cbTotalTransfer;
}
while (RT_UNLIKELY(fRedo) || (cbBuffer && cbTotalTransfer))
{
if (RT_LIKELY(!fRedo))
{
dmalen = RT_MIN(cbBuffer, iIOBufferEnd - iIOBufferCur);
Log2(("%s: DMA desc %#010x: addr=%#010x size=%#010x\n", __FUNCTION__,
(int)pDesc, pBuffer, cbBuffer));
if (uTxDir == PDMBLOCKTXDIR_FROM_DEVICE)
PDMDevHlpPhysWrite(pDevIns, pBuffer, s->CTX_SUFF(pbIOBuffer) + iIOBufferCur, dmalen);
else
PDMDevHlpPhysRead(pDevIns, pBuffer, s->CTX_SUFF(pbIOBuffer) + iIOBufferCur, dmalen);
iIOBufferCur += dmalen;
cbTotalTransfer -= dmalen;
cbBuffer -= dmalen;
pBuffer += dmalen;
}
if ( iIOBufferCur == iIOBufferEnd
&& (uTxDir == PDMBLOCKTXDIR_TO_DEVICE || cbTotalTransfer))
{
if (uTxDir == PDMBLOCKTXDIR_FROM_DEVICE && cbElementaryTransfer > cbTotalTransfer)
cbElementaryTransfer = cbTotalTransfer;
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
/* The RESET handler could have cleared the DMA transfer
* state (since we didn't hold the lock until just now
* the guest can continue in parallel). If so, the state
* is already set up so the loop is exited immediately. */
if (s->iSourceSink != ATAFN_SS_NULL)
{
s->iIOBufferCur = iIOBufferCur;
s->iIOBufferEnd = iIOBufferEnd;
s->cbElementaryTransfer = cbElementaryTransfer;
s->cbTotalTransfer = cbTotalTransfer;
Log2(("%s: calling source/sink function\n", __FUNCTION__));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
if (RT_UNLIKELY(fRedo))
{
pCtl->pFirstDMADesc = pDesc;
pCtl->pRedoDMABuffer = pBuffer;
pCtl->cbRedoDMABuffer = cbBuffer;
pCtl->fRedoDMALastDesc = fLastDesc;
}
else
{
cbTotalTransfer = s->cbTotalTransfer;
cbElementaryTransfer = s->cbElementaryTransfer;
if (uTxDir == PDMBLOCKTXDIR_TO_DEVICE && cbElementaryTransfer > cbTotalTransfer)
cbElementaryTransfer = cbTotalTransfer;
iIOBufferCur = 0;
iIOBufferEnd = cbElementaryTransfer;
}
pCtl->fRedo = fRedo;
}
else
{
/* This forces the loop to exit immediately. */
pDesc = pCtl->pLastDMADesc + 1;
}
PDMCritSectLeave(&pCtl->lock);
if (RT_UNLIKELY(fRedo))
break;
}
}
if (RT_UNLIKELY(fRedo))
break;
/* end of transfer */
if (!cbTotalTransfer || fLastDesc)
break;
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
if (!(pCtl->BmDma.u8Cmd & BM_CMD_START) || pCtl->fReset)
{
LogRel(("PIIX3 ATA: Ctl#%d: ABORT DMA%s\n", ATACONTROLLER_IDX(pCtl), pCtl->fReset ? " due to RESET" : ""));
if (!pCtl->fReset)
ataDMATransferStop(s);
/* This forces the loop to exit immediately. */
pDesc = pCtl->pLastDMADesc + 1;
}
PDMCritSectLeave(&pCtl->lock);
}
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
if (RT_UNLIKELY(fRedo))
return;
if (fLastDesc)
pCtl->BmDma.u8Status &= ~BM_STATUS_DMAING;
s->cbTotalTransfer = cbTotalTransfer;
s->cbElementaryTransfer = cbElementaryTransfer;
s->iIOBufferCur = iIOBufferCur;
s->iIOBufferEnd = iIOBufferEnd;
}
/**
* Suspend I/O operations on a controller. Also suspends EMT, because it's
* waiting for I/O to make progress. The next attempt to perform an I/O
* operation will be made when EMT is resumed up again (as the resume
* callback below restarts I/O).
*
* @param pCtl Controller for which to suspend I/O.
*/
static void ataSuspendRedo(PATACONTROLLER pCtl)
{
PPDMDEVINS pDevIns = CONTROLLER_2_DEVINS(pCtl);
PVMREQ pReq;
int rc;
pCtl->fRedoIdle = true;
rc = VMR3ReqCall(PDMDevHlpGetVM(pDevIns), VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT,
(PFNRT)PDMDevHlpVMSuspend, 1, pDevIns);
AssertReleaseRC(rc);
VMR3ReqFree(pReq);
}
/** Asynch I/O thread for an interface. Once upon a time this was readable
* code with several loops and a different semaphore for each purpose. But
* then came the "how can one save the state in the middle of a PIO transfer"
* question. The solution was to use an ASM, which is what's there now. */
static DECLCALLBACK(int) ataAsyncIOLoop(RTTHREAD ThreadSelf, void *pvUser)
{
const ATARequest *pReq;
uint64_t u64TS = 0; /* shut up gcc */
uint64_t uWait;
int rc = VINF_SUCCESS;
PATACONTROLLER pCtl = (PATACONTROLLER)pvUser;
ATADevState *s;
pReq = NULL;
pCtl->fChainedTransfer = false;
while (!pCtl->fShutdown)
{
/* Keep this thread from doing anything as long as EMT is suspended. */
while (pCtl->fRedoIdle)
{
rc = RTSemEventWait(pCtl->SuspendIOSem, RT_INDEFINITE_WAIT);
if (RT_FAILURE(rc) || pCtl->fShutdown)
break;
pCtl->fRedoIdle = false;
}
/* Wait for work. */
if (pReq == NULL)
{
LogBird(("ata: %x: going to sleep...\n", pCtl->IOPortBase1));
rc = RTSemEventWait(pCtl->AsyncIOSem, RT_INDEFINITE_WAIT);
LogBird(("ata: %x: waking up\n", pCtl->IOPortBase1));
if (RT_FAILURE(rc) || pCtl->fShutdown)
break;
pReq = ataAsyncIOGetCurrentRequest(pCtl);
}
if (pReq == NULL)
continue;
ATAAIO ReqType = pReq->ReqType;
Log2(("%s: Ctl#%d: state=%d, req=%d\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), pCtl->uAsyncIOState, ReqType));
if (pCtl->uAsyncIOState != ReqType)
{
/* The new state is not the state that was expected by the normal
* state changes. This is either a RESET/ABORT or there's something
* really strange going on. */
if ( (pCtl->uAsyncIOState == ATA_AIO_PIO || pCtl->uAsyncIOState == ATA_AIO_DMA)
&& (ReqType == ATA_AIO_PIO || ReqType == ATA_AIO_DMA))
{
/* Incorrect sequence of PIO/DMA states. Dump request queue. */
ataAsyncIODumpRequests(pCtl);
}
AssertReleaseMsg(ReqType == ATA_AIO_RESET_ASSERTED || ReqType == ATA_AIO_RESET_CLEARED || ReqType == ATA_AIO_ABORT || pCtl->uAsyncIOState == ReqType, ("I/O state inconsistent: state=%d request=%d\n", pCtl->uAsyncIOState, ReqType));
}
/* Do our work. */
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
LogBird(("ata: %x: entering critsect\n", pCtl->IOPortBase1));
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
LogBird(("ata: %x: entered\n", pCtl->IOPortBase1));
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
if (pCtl->uAsyncIOState == ATA_AIO_NEW && !pCtl->fChainedTransfer)
{
u64TS = RTTimeNanoTS();
#if defined(DEBUG) || defined(VBOX_WITH_STATISTICS)
STAM_PROFILE_ADV_START(&pCtl->StatAsyncTime, a);
#endif /* DEBUG || VBOX_WITH_STATISTICS */
}
switch (ReqType)
{
case ATA_AIO_NEW:
pCtl->iAIOIf = pReq->u.t.iIf;
s = &pCtl->aIfs[pCtl->iAIOIf];
s->cbTotalTransfer = pReq->u.t.cbTotalTransfer;
s->uTxDir = pReq->u.t.uTxDir;
s->iBeginTransfer = pReq->u.t.iBeginTransfer;
s->iSourceSink = pReq->u.t.iSourceSink;
s->iIOBufferEnd = 0;
s->u64CmdTS = u64TS;
if (s->fATAPI)
{
if (pCtl->fChainedTransfer)
{
/* Only count the actual transfers, not the PIO
* transfer of the ATAPI command bytes. */
if (s->fDMA)
STAM_REL_COUNTER_INC(&s->StatATAPIDMA);
else
STAM_REL_COUNTER_INC(&s->StatATAPIPIO);
}
}
else
{
if (s->fDMA)
STAM_REL_COUNTER_INC(&s->StatATADMA);
else
STAM_REL_COUNTER_INC(&s->StatATAPIO);
}
pCtl->fChainedTransfer = false;
if (s->iBeginTransfer != ATAFN_BT_NULL)
{
Log2(("%s: Ctl#%d: calling begin transfer function\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
g_apfnBeginTransFuncs[s->iBeginTransfer](s);
s->iBeginTransfer = ATAFN_BT_NULL;
if (s->uTxDir != PDMBLOCKTXDIR_FROM_DEVICE)
s->iIOBufferEnd = s->cbElementaryTransfer;
}
else
{
s->cbElementaryTransfer = s->cbTotalTransfer;
s->iIOBufferEnd = s->cbTotalTransfer;
}
s->iIOBufferCur = 0;
if (s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
{
if (s->iSourceSink != ATAFN_SS_NULL)
{
bool fRedo;
Log2(("%s: Ctl#%d: calling source/sink function\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
pCtl->fRedo = fRedo;
if (RT_UNLIKELY(fRedo))
{
/* Operation failed at the initial transfer, restart
* everything from scratch by resending the current
* request. Occurs very rarely, not worth optimizing. */
LogRel(("%s: Ctl#%d: redo entire operation\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, pReq);
ataSuspendRedo(pCtl);
break;
}
}
else
ataCmdOK(s, 0);
s->iIOBufferEnd = s->cbElementaryTransfer;
}
/* Do not go into the transfer phase if RESET is asserted.
* The CritSect is released while waiting for the host OS
* to finish the I/O, thus RESET is possible here. Most
* important: do not change uAsyncIOState. */
if (pCtl->fReset)
break;
if (s->fDMA)
{
if (s->cbTotalTransfer)
{
ataSetStatus(s, ATA_STAT_DRQ);
pCtl->uAsyncIOState = ATA_AIO_DMA;
/* If BMDMA is already started, do the transfer now. */
if (pCtl->BmDma.u8Cmd & BM_CMD_START)
{
Log2(("%s: Ctl#%d: message to async I/O thread, continuing DMA transfer immediately\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataDMARequest);
}
}
else
{
Assert(s->uTxDir == PDMBLOCKTXDIR_NONE); /* Any transfer which has an initial transfer size of 0 must be marked as such. */
/* Finish DMA transfer. */
ataDMATransferStop(s);
ataSetIRQ(s);
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
else
{
if (s->cbTotalTransfer)
{
ataPIOTransfer(pCtl);
Assert(!pCtl->fRedo);
if (s->fATAPITransfer || s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
ataSetIRQ(s);
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE || s->iSourceSink != ATAFN_SS_NULL)
{
/* Write operations and not yet finished transfers
* must be completed in the async I/O thread. */
pCtl->uAsyncIOState = ATA_AIO_PIO;
}
else
{
/* Finished read operation can be handled inline
* in the end of PIO transfer handling code. Linux
* depends on this, as it waits only briefly for
* devices to become ready after incoming data
* transfer. Cannot find anything in the ATA spec
* that backs this assumption, but as all kernels
* are affected (though most of the time it does
* not cause any harm) this must work. */
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
else
{
Assert(s->uTxDir == PDMBLOCKTXDIR_NONE); /* Any transfer which has an initial transfer size of 0 must be marked as such. */
/* Finish PIO transfer. */
ataPIOTransfer(pCtl);
Assert(!pCtl->fRedo);
if (!s->fATAPITransfer)
ataSetIRQ(s);
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
break;
case ATA_AIO_DMA:
{
BMDMAState *bm = &pCtl->BmDma;
s = &pCtl->aIfs[pCtl->iAIOIf]; /* Do not remove or there's an instant crash after loading the saved state */
ATAFNSS iOriginalSourceSink = (ATAFNSS)s->iSourceSink; /* Used by the hack below, but gets reset by then. */
if (s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE)
AssertRelease(bm->u8Cmd & BM_CMD_WRITE);
else
AssertRelease(!(bm->u8Cmd & BM_CMD_WRITE));
if (RT_LIKELY(!pCtl->fRedo))
{
/* The specs say that the descriptor table must not cross a
* 4K boundary. */
pCtl->pFirstDMADesc = bm->pvAddr;
pCtl->pLastDMADesc = RT_ALIGN_32(bm->pvAddr + 1, _4K) - sizeof(BMDMADesc);
}
ataDMATransfer(pCtl);
if (RT_UNLIKELY(pCtl->fRedo))
{
LogRel(("PIIX3 ATA: Ctl#%d: redo DMA operation\n", ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataDMARequest);
ataSuspendRedo(pCtl);
break;
}
/* The infamous delay IRQ hack. */
if ( iOriginalSourceSink == ATAFN_SS_WRITE_SECTORS
&& s->cbTotalTransfer == 0
&& pCtl->DelayIRQMillies)
{
/* Delay IRQ for writing. Required to get the Win2K
* installation work reliably (otherwise it crashes,
* usually during component install). So far no better
* solution has been found. */
Log(("%s: delay IRQ hack\n", __FUNCTION__));
PDMCritSectLeave(&pCtl->lock);
RTThreadSleep(pCtl->DelayIRQMillies);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
}
ataUnsetStatus(s, ATA_STAT_DRQ);
Assert(!pCtl->fChainedTransfer);
Assert(s->iSourceSink == ATAFN_SS_NULL);
if (s->fATAPITransfer)
{
s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
Log2(("%s: Ctl#%d: interrupt reason %#04x\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), s->uATARegNSector));
s->fATAPITransfer = false;
}
ataSetIRQ(s);
pCtl->uAsyncIOState = ATA_AIO_NEW;
break;
}
case ATA_AIO_PIO:
s = &pCtl->aIfs[pCtl->iAIOIf]; /* Do not remove or there's an instant crash after loading the saved state */
if (s->iSourceSink != ATAFN_SS_NULL)
{
bool fRedo;
Log2(("%s: Ctl#%d: calling source/sink function\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
pCtl->fRedo = fRedo;
if (RT_UNLIKELY(fRedo))
{
LogRel(("PIIX3 ATA: Ctl#%d: redo PIO operation\n", ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataPIORequest);
ataSuspendRedo(pCtl);
break;
}
s->iIOBufferCur = 0;
s->iIOBufferEnd = s->cbElementaryTransfer;
}
else
{
/* Continue a previously started transfer. */
ataUnsetStatus(s, ATA_STAT_BUSY);
ataSetStatus(s, ATA_STAT_READY);
}
/* It is possible that the drives on this controller get RESET
* during the above call to the source/sink function. If that's
* the case, don't restart the transfer and don't finish it the
* usual way. RESET handling took care of all that already.
* Most important: do not change uAsyncIOState. */
if (pCtl->fReset)
break;
if (s->cbTotalTransfer)
{
ataPIOTransfer(pCtl);
ataSetIRQ(s);
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE || s->iSourceSink != ATAFN_SS_NULL)
{
/* Write operations and not yet finished transfers
* must be completed in the async I/O thread. */
pCtl->uAsyncIOState = ATA_AIO_PIO;
}
else
{
/* Finished read operation can be handled inline
* in the end of PIO transfer handling code. Linux
* depends on this, as it waits only briefly for
* devices to become ready after incoming data
* transfer. Cannot find anything in the ATA spec
* that backs this assumption, but as all kernels
* are affected (though most of the time it does
* not cause any harm) this must work. */
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
else
{
/* Finish PIO transfer. */
ataPIOTransfer(pCtl);
if ( !pCtl->fChainedTransfer
&& !s->fATAPITransfer
&& s->uTxDir != PDMBLOCKTXDIR_FROM_DEVICE)
{
ataSetIRQ(s);
}
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
break;
case ATA_AIO_RESET_ASSERTED:
pCtl->uAsyncIOState = ATA_AIO_RESET_CLEARED;
ataPIOTransferStop(&pCtl->aIfs[0]);
ataPIOTransferStop(&pCtl->aIfs[1]);
/* Do not change the DMA registers, they are not affected by the
* ATA controller reset logic. It should be sufficient to issue a
* new command, which is now possible as the state is cleared. */
break;
case ATA_AIO_RESET_CLEARED:
pCtl->uAsyncIOState = ATA_AIO_NEW;
pCtl->fReset = false;
LogRel(("PIIX3 ATA: Ctl#%d: finished processing RESET\n",
ATACONTROLLER_IDX(pCtl)));
for (uint32_t i = 0; i < RT_ELEMENTS(pCtl->aIfs); i++)
{
if (pCtl->aIfs[i].fATAPI)
ataSetStatusValue(&pCtl->aIfs[i], 0); /* NOTE: READY is _not_ set */
else
ataSetStatusValue(&pCtl->aIfs[i], ATA_STAT_READY | ATA_STAT_SEEK);
ataSetSignature(&pCtl->aIfs[i]);
}
break;
case ATA_AIO_ABORT:
/* Abort the current command only if it operates on the same interface. */
if (pCtl->iAIOIf == pReq->u.a.iIf)
{
s = &pCtl->aIfs[pCtl->iAIOIf];
pCtl->uAsyncIOState = ATA_AIO_NEW;
/* Do not change the DMA registers, they are not affected by the
* ATA controller reset logic. It should be sufficient to issue a
* new command, which is now possible as the state is cleared. */
if (pReq->u.a.fResetDrive)
{
ataResetDevice(s);
ataExecuteDeviceDiagnosticSS(s);
}
else
{
ataPIOTransferStop(s);
ataUnsetStatus(s, ATA_STAT_BUSY | ATA_STAT_DRQ | ATA_STAT_SEEK | ATA_STAT_ERR);
ataSetStatus(s, ATA_STAT_READY);
ataSetIRQ(s);
}
}
break;
default:
AssertMsgFailed(("Undefined async I/O state %d\n", pCtl->uAsyncIOState));
}
ataAsyncIORemoveCurrentRequest(pCtl, ReqType);
pReq = ataAsyncIOGetCurrentRequest(pCtl);
if (pCtl->uAsyncIOState == ATA_AIO_NEW && !pCtl->fChainedTransfer)
{
#if defined(DEBUG) || defined(VBOX_WITH_STATISTICS)
STAM_PROFILE_ADV_STOP(&pCtl->StatAsyncTime, a);
#endif /* DEBUG || VBOX_WITH_STATISTICS */
u64TS = RTTimeNanoTS() - u64TS;
uWait = u64TS / 1000;
Log(("%s: Ctl#%d: LUN#%d finished I/O transaction in %d microseconds\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), pCtl->aIfs[pCtl->iAIOIf].iLUN, (uint32_t)(uWait)));
/* Mark command as finished. */
pCtl->aIfs[pCtl->iAIOIf].u64CmdTS = 0;
/*
* Release logging of command execution times depends on the
* command type. ATAPI commands often take longer (due to CD/DVD
* spin up time etc.) so the threshold is different.
*/
if (pCtl->aIfs[pCtl->iAIOIf].uATARegCommand != ATA_PACKET)
{
if (uWait > 8 * 1000 * 1000)
{
/*
* Command took longer than 8 seconds. This is close
* enough or over the guest's command timeout, so place
* an entry in the release log to allow tracking such
* timing errors (which are often caused by the host).
*/
LogRel(("PIIX3 ATA: execution time for ATA command %#04x was %d seconds\n", pCtl->aIfs[pCtl->iAIOIf].uATARegCommand, uWait / (1000 * 1000)));
}
}
else
{
if (uWait > 20 * 1000 * 1000)
{
/*
* Command took longer than 20 seconds. This is close
* enough or over the guest's command timeout, so place
* an entry in the release log to allow tracking such
* timing errors (which are often caused by the host).
*/
LogRel(("PIIX3 ATA: execution time for ATAPI command %#04x was %d seconds\n", pCtl->aIfs[pCtl->iAIOIf].aATAPICmd[0], uWait / (1000 * 1000)));
}
}
#if defined(DEBUG) || defined(VBOX_WITH_STATISTICS)
if (uWait < pCtl->StatAsyncMinWait || !pCtl->StatAsyncMinWait)
pCtl->StatAsyncMinWait = uWait;
if (uWait > pCtl->StatAsyncMaxWait)
pCtl->StatAsyncMaxWait = uWait;
STAM_COUNTER_ADD(&pCtl->StatAsyncTimeUS, uWait);
STAM_COUNTER_INC(&pCtl->StatAsyncOps);
#endif /* DEBUG || VBOX_WITH_STATISTICS */
}
LogBird(("ata: %x: leaving critsect\n", pCtl->IOPortBase1));
PDMCritSectLeave(&pCtl->lock);
}
/* Cleanup the state. */
if (pCtl->AsyncIOSem)
{
RTSemEventDestroy(pCtl->AsyncIOSem);
pCtl->AsyncIOSem = NIL_RTSEMEVENT;
}
if (pCtl->SuspendIOSem)
{
RTSemEventDestroy(pCtl->SuspendIOSem);
pCtl->SuspendIOSem = NIL_RTSEMEVENT;
}
/* Do not destroy request mutex yet, still needed for proper shutdown. */
pCtl->fShutdown = false;
/* This must be last, as it also signals thread exit to EMT. */
pCtl->AsyncIOThread = NIL_RTTHREAD;
Log2(("%s: Ctl#%d: return %Rrc\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), rc));
return rc;
}
#endif /* IN_RING3 */
static uint32_t ataBMDMACmdReadB(PATACONTROLLER pCtl, uint32_t addr)
{
uint32_t val = pCtl->BmDma.u8Cmd;
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
return val;
}
static void ataBMDMACmdWriteB(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
if (!(val & BM_CMD_START))
{
pCtl->BmDma.u8Status &= ~BM_STATUS_DMAING;
pCtl->BmDma.u8Cmd = val & (BM_CMD_START | BM_CMD_WRITE);
}
else
{
#ifdef IN_RING3
/* Check whether the guest OS wants to change DMA direction in
* mid-flight. Not allowed, according to the PIIX3 specs. */
Assert(!(pCtl->BmDma.u8Status & BM_STATUS_DMAING) || !((val ^ pCtl->BmDma.u8Cmd) & 0x04));
pCtl->BmDma.u8Status |= BM_STATUS_DMAING;
pCtl->BmDma.u8Cmd = val & (BM_CMD_START | BM_CMD_WRITE);
/* Do not continue DMA transfers while the RESET line is asserted. */
if (pCtl->fReset)
{
Log2(("%s: Ctl#%d: suppressed continuing DMA transfer as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
return;
}
/* Do not start DMA transfers if there's a PIO transfer going on. */
if (!pCtl->aIfs[pCtl->iSelectedIf].fDMA)
return;
if (pCtl->aIfs[pCtl->iAIOIf].uATARegStatus & ATA_STAT_DRQ)
{
Log2(("%s: Ctl#%d: message to async I/O thread, continuing DMA transfer\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataDMARequest);
}
#else /* !IN_RING3 */
AssertMsgFailed(("DMA START handling is too complicated for GC\n"));
#endif /* IN_RING3 */
}
}
static uint32_t ataBMDMAStatusReadB(PATACONTROLLER pCtl, uint32_t addr)
{
uint32_t val = pCtl->BmDma.u8Status;
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
return val;
}
static void ataBMDMAStatusWriteB(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
pCtl->BmDma.u8Status = (val & (BM_STATUS_D0DMA | BM_STATUS_D1DMA))
| (pCtl->BmDma.u8Status & BM_STATUS_DMAING)
| (pCtl->BmDma.u8Status & ~val & (BM_STATUS_ERROR | BM_STATUS_INT));
}
static uint32_t ataBMDMAAddrReadL(PATACONTROLLER pCtl, uint32_t addr)
{
uint32_t val = (uint32_t)pCtl->BmDma.pvAddr;
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
return val;
}
static void ataBMDMAAddrWriteL(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
pCtl->BmDma.pvAddr = val & ~3;
}
static void ataBMDMAAddrWriteLowWord(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
pCtl->BmDma.pvAddr = (pCtl->BmDma.pvAddr & 0xFFFF0000) | RT_LOWORD(val & ~3);
}
static void ataBMDMAAddrWriteHighWord(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
pCtl->BmDma.pvAddr = (RT_LOWORD(val) << 16) | RT_LOWORD(pCtl->BmDma.pvAddr);
}
#define VAL(port, size) ( ((port) & 7) | ((size) << 3) )
/**
* Port I/O Handler for bus master DMA IN operations.
* @see FNIOMIOPORTIN for details.
*/
PDMBOTHCBDECL(int) ataBMDMAIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
switch (VAL(Port, cb))
{
case VAL(0, 1): *pu32 = ataBMDMACmdReadB(pCtl, Port); break;
case VAL(0, 2): *pu32 = ataBMDMACmdReadB(pCtl, Port); break;
case VAL(2, 1): *pu32 = ataBMDMAStatusReadB(pCtl, Port); break;
case VAL(2, 2): *pu32 = ataBMDMAStatusReadB(pCtl, Port); break;
case VAL(4, 4): *pu32 = ataBMDMAAddrReadL(pCtl, Port); break;
case VAL(0, 4):
/* The SCO OpenServer tries to read 4 bytes starting from offset 0. */
*pu32 = ataBMDMACmdReadB(pCtl, Port) | (ataBMDMAStatusReadB(pCtl, Port) << 16);
break;
default:
AssertMsgFailed(("%s: Unsupported read from port %x size=%d\n", __FUNCTION__, Port, cb));
PDMCritSectLeave(&pCtl->lock);
return VERR_IOM_IOPORT_UNUSED;
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
/**
* Port I/O Handler for bus master DMA OUT operations.
* @see FNIOMIOPORTOUT for details.
*/
PDMBOTHCBDECL(int) ataBMDMAIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
switch (VAL(Port, cb))
{
case VAL(0, 1):
#ifndef IN_RING3
if (u32 & BM_CMD_START)
{
rc = VINF_IOM_HC_IOPORT_WRITE;
break;
}
#endif /* !IN_RING3 */
ataBMDMACmdWriteB(pCtl, Port, u32);
break;
case VAL(2, 1): ataBMDMAStatusWriteB(pCtl, Port, u32); break;
case VAL(4, 4): ataBMDMAAddrWriteL(pCtl, Port, u32); break;
case VAL(4, 2): ataBMDMAAddrWriteLowWord(pCtl, Port, u32); break;
case VAL(6, 2): ataBMDMAAddrWriteHighWord(pCtl, Port, u32); break;
default: AssertMsgFailed(("%s: Unsupported write to port %x size=%d val=%x\n", __FUNCTION__, Port, cb, u32)); break;
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
#undef VAL
#ifdef IN_RING3
/**
* Callback function for mapping an PCI I/O region.
*
* @return VBox status code.
* @param pPciDev Pointer to PCI device. Use pPciDev->pDevIns to get the device instance.
* @param iRegion The region number.
* @param GCPhysAddress Physical address of the region. If iType is PCI_ADDRESS_SPACE_IO, this is an
* I/O port, else it's a physical address.
* This address is *NOT* relative to pci_mem_base like earlier!
* @param enmType One of the PCI_ADDRESS_SPACE_* values.
*/
static DECLCALLBACK(int) ataBMDMAIORangeMap(PPCIDEVICE pPciDev, /*unsigned*/ int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType)
{
PCIATAState *pThis = PCIDEV_2_PCIATASTATE(pPciDev);
int rc = VINF_SUCCESS;
Assert(enmType == PCI_ADDRESS_SPACE_IO);
Assert(iRegion == 4);
AssertMsg(RT_ALIGN(GCPhysAddress, 8) == GCPhysAddress, ("Expected 8 byte alignment. GCPhysAddress=%#x\n", GCPhysAddress));
/* Register the port range. */
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
int rc2 = PDMDevHlpIOPortRegister(pPciDev->pDevIns, (RTIOPORT)GCPhysAddress + i * 8, 8,
(RTHCPTR)i, ataBMDMAIOPortWrite, ataBMDMAIOPortRead, NULL, NULL, "ATA Bus Master DMA");
AssertRC(rc2);
if (rc2 < rc)
rc = rc2;
if (pThis->fGCEnabled)
{
rc2 = PDMDevHlpIOPortRegisterGC(pPciDev->pDevIns, (RTIOPORT)GCPhysAddress + i * 8, 8,
(RTGCPTR)i, "ataBMDMAIOPortWrite", "ataBMDMAIOPortRead", NULL, NULL, "ATA Bus Master DMA");
AssertRC(rc2);
if (rc2 < rc)
rc = rc2;
}
if (pThis->fR0Enabled)
{
rc2 = PDMDevHlpIOPortRegisterR0(pPciDev->pDevIns, (RTIOPORT)GCPhysAddress + i * 8, 8,
(RTR0PTR)i, "ataBMDMAIOPortWrite", "ataBMDMAIOPortRead", NULL, NULL, "ATA Bus Master DMA");
AssertRC(rc2);
if (rc2 < rc)
rc = rc2;
}
}
return rc;
}
/**
* Reset notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataReset(PPDMDEVINS pDevIns)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
pThis->aCts[i].iSelectedIf = 0;
pThis->aCts[i].iAIOIf = 0;
pThis->aCts[i].BmDma.u8Cmd = 0;
/* Report that both drives present on the bus are in DMA mode. This
* pretends that there is a BIOS that has set it up. Normal reset
* default is 0x00. */
pThis->aCts[i].BmDma.u8Status = (pThis->aCts[i].aIfs[0].pDrvBase != NULL ? BM_STATUS_D0DMA : 0)
| (pThis->aCts[i].aIfs[1].pDrvBase != NULL ? BM_STATUS_D1DMA : 0);
pThis->aCts[i].BmDma.pvAddr = 0;
pThis->aCts[i].fReset = true;
pThis->aCts[i].fRedo = false;
pThis->aCts[i].fRedoIdle = false;
ataAsyncIOClearRequests(&pThis->aCts[i]);
Log2(("%s: Ctl#%d: message to async I/O thread, reset controller\n", __FUNCTION__, i));
ataAsyncIOPutRequest(&pThis->aCts[i], &ataResetARequest);
ataAsyncIOPutRequest(&pThis->aCts[i], &ataResetCRequest);
if (!ataWaitForAsyncIOIsIdle(&pThis->aCts[i], 30000))
{
VMSetRuntimeError(PDMDevHlpGetVM(pDevIns),
false, "DevATA_ASYNCBUSY",
N_("The IDE async I/O thread remained busy after a reset, usually a host filesystem performance problem\n"));
AssertMsgFailed(("Async I/O thread busy after reset\n"));
}
for (uint32_t j = 0; j < RT_ELEMENTS(pThis->aCts[i].aIfs); j++)
ataResetDevice(&pThis->aCts[i].aIfs[j]);
}
}
/* -=-=-=-=-=- PCIATAState::IBase -=-=-=-=-=- */
/**
* Queries an interface to the driver.
*
* @returns Pointer to interface.
* @returns NULL if the interface was not supported by the device.
* @param pInterface Pointer to ATADevState::IBase.
* @param enmInterface The requested interface identification.
*/
static DECLCALLBACK(void *) ataStatus_QueryInterface(PPDMIBASE pInterface, PDMINTERFACE enmInterface)
{
PCIATAState *pThis = PDMIBASE_2_PCIATASTATE(pInterface);
switch (enmInterface)
{
case PDMINTERFACE_BASE:
return &pThis->IBase;
case PDMINTERFACE_LED_PORTS:
return &pThis->ILeds;
default:
return NULL;
}
}
/* -=-=-=-=-=- PCIATAState::ILeds -=-=-=-=-=- */
/**
* Gets the pointer to the status LED of a unit.
*
* @returns VBox status code.
* @param pInterface Pointer to the interface structure containing the called function pointer.
* @param iLUN The unit which status LED we desire.
* @param ppLed Where to store the LED pointer.
*/
static DECLCALLBACK(int) ataStatus_QueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
{
PCIATAState *pThis = PDMILEDPORTS_2_PCIATASTATE(pInterface);
if (iLUN < 4)
{
switch (iLUN)
{
case 0: *ppLed = &pThis->aCts[0].aIfs[0].Led; break;
case 1: *ppLed = &pThis->aCts[0].aIfs[1].Led; break;
case 2: *ppLed = &pThis->aCts[1].aIfs[0].Led; break;
case 3: *ppLed = &pThis->aCts[1].aIfs[1].Led; break;
}
Assert((*ppLed)->u32Magic == PDMLED_MAGIC);
return VINF_SUCCESS;
}
return VERR_PDM_LUN_NOT_FOUND;
}
/* -=-=-=-=-=- ATADevState::IBase -=-=-=-=-=- */
/**
* Queries an interface to the driver.
*
* @returns Pointer to interface.
* @returns NULL if the interface was not supported by the device.
* @param pInterface Pointer to ATADevState::IBase.
* @param enmInterface The requested interface identification.
*/
static DECLCALLBACK(void *) ataQueryInterface(PPDMIBASE pInterface, PDMINTERFACE enmInterface)
{
ATADevState *pIf = PDMIBASE_2_ATASTATE(pInterface);
switch (enmInterface)
{
case PDMINTERFACE_BASE:
return &pIf->IBase;
case PDMINTERFACE_BLOCK_PORT:
return &pIf->IPort;
case PDMINTERFACE_MOUNT_NOTIFY:
return &pIf->IMountNotify;
default:
return NULL;
}
}
#endif /* IN_RING3 */
/* -=-=-=-=-=- Wrappers -=-=-=-=-=- */
/**
* Port I/O Handler for primary port range OUT operations.
* @see FNIOMIOPORTOUT for details.
*/
PDMBOTHCBDECL(int) ataIOPortWrite1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc = VINF_SUCCESS;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
if (cb == 1)
rc = ataIOPortWriteU8(pCtl, Port, u32);
else if (Port == pCtl->IOPortBase1)
{
Assert(cb == 2 || cb == 4);
rc = ataDataWrite(pCtl, Port, cb, (const uint8_t *)&u32);
}
else
AssertMsgFailed(("ataIOPortWrite1: unsupported write to port %x val=%x size=%d\n", Port, u32, cb));
LogBird(("ata: leaving critsect\n"));
PDMCritSectLeave(&pCtl->lock);
LogBird(("ata: left critsect\n"));
return rc;
}
/**
* Port I/O Handler for primary port range IN operations.
* @see FNIOMIOPORTIN for details.
*/
PDMBOTHCBDECL(int) ataIOPortRead1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc = VINF_SUCCESS;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
if (cb == 1)
{
rc = ataIOPortReadU8(pCtl, Port, pu32);
}
else if (Port == pCtl->IOPortBase1)
{
Assert(cb == 2 || cb == 4);
rc = ataDataRead(pCtl, Port, cb, (uint8_t *)pu32);
if (cb == 2)
*pu32 &= 0xffff;
}
else
{
AssertMsgFailed(("ataIOPortRead1: unsupported read from port %x size=%d\n", Port, cb));
rc = VERR_IOM_IOPORT_UNUSED;
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
#ifndef IN_RING0
/**
* Port I/O Handler for primary port range IN string operations.
* @see FNIOMIOPORTINSTRING for details.
*/
PDMBOTHCBDECL(int) ataIOPortReadStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrDst, PRTGCUINTREG pcTransfer, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc = VINF_SUCCESS;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
if (Port == pCtl->IOPortBase1)
{
uint32_t cTransAvailable, cTransfer = *pcTransfer, cbTransfer;
RTGCPTR GCDst = *pGCPtrDst;
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
Assert(cb == 2 || cb == 4);
cTransAvailable = (s->iIOBufferPIODataEnd - s->iIOBufferPIODataStart) / cb;
#ifndef IN_RING3
/* The last transfer unit cannot be handled in GC, as it involves thread communication. */
cTransAvailable--;
#endif /* !IN_RING3 */
/* Do not handle the dummy transfer stuff here, leave it to the single-word transfers.
* They are not performance-critical and generally shouldn't occur at all. */
if (cTransAvailable > cTransfer)
cTransAvailable = cTransfer;
cbTransfer = cTransAvailable * cb;
#ifdef IN_RC
for (uint32_t i = 0; i < cbTransfer; i += cb)
MMGCRamWriteNoTrapHandler((char *)GCDst + i, s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart + i, cb);
#else /* !IN_RC */
rc = PGMPhysSimpleDirtyWriteGCPtr(PDMDevHlpGetVM(pDevIns), GCDst, s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart, cbTransfer);
Assert(rc == VINF_SUCCESS);
#endif /* IN_RC */
if (cbTransfer)
Log3(("%s: addr=%#x val=%.*Rhxs\n", __FUNCTION__, Port, cbTransfer, s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart));
s->iIOBufferPIODataStart += cbTransfer;
*pGCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCDst + cbTransfer);
*pcTransfer = cTransfer - cTransAvailable;
#ifdef IN_RING3
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* IN_RING3 */
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
/**
* Port I/O Handler for primary port range OUT string operations.
* @see FNIOMIOPORTOUTSTRING for details.
*/
PDMBOTHCBDECL(int) ataIOPortWriteStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrSrc, PRTGCUINTREG pcTransfer, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
if (Port == pCtl->IOPortBase1)
{
uint32_t cTransAvailable, cTransfer = *pcTransfer, cbTransfer;
RTGCPTR GCSrc = *pGCPtrSrc;
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
Assert(cb == 2 || cb == 4);
cTransAvailable = (s->iIOBufferPIODataEnd - s->iIOBufferPIODataStart) / cb;
#ifndef IN_RING3
/* The last transfer unit cannot be handled in GC, as it involves thread communication. */
cTransAvailable--;
#endif /* !IN_RING3 */
/* Do not handle the dummy transfer stuff here, leave it to the single-word transfers.
* They are not performance-critical and generally shouldn't occur at all. */
if (cTransAvailable > cTransfer)
cTransAvailable = cTransfer;
cbTransfer = cTransAvailable * cb;
#ifdef IN_RC
for (uint32_t i = 0; i < cbTransfer; i += cb)
MMGCRamReadNoTrapHandler(s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart + i, (char *)GCSrc + i, cb);
#else /* !IN_RC */
rc = PGMPhysSimpleReadGCPtr(PDMDevHlpGetVM(pDevIns), s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart, GCSrc, cbTransfer);
Assert(rc == VINF_SUCCESS);
#endif /* IN_RC */
if (cbTransfer)
Log3(("%s: addr=%#x val=%.*Rhxs\n", __FUNCTION__, Port, cbTransfer, s->CTX_SUFF(pbIOBuffer) + s->iIOBufferPIODataStart));
s->iIOBufferPIODataStart += cbTransfer;
*pGCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCSrc + cbTransfer);
*pcTransfer = cTransfer - cTransAvailable;
#ifdef IN_RING3
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* IN_RING3 */
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
#endif /* !IN_RING0 */
/**
* Port I/O Handler for secondary port range OUT operations.
* @see FNIOMIOPORTOUT for details.
*/
PDMBOTHCBDECL(int) ataIOPortWrite2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc;
Assert(i < 2);
if (cb != 1)
return VINF_SUCCESS;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
rc = ataControlWrite(pCtl, Port, u32);
PDMCritSectLeave(&pCtl->lock);
return rc;
}
/**
* Port I/O Handler for secondary port range IN operations.
* @see FNIOMIOPORTIN for details.
*/
PDMBOTHCBDECL(int) ataIOPortRead2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pThis->aCts[i];
int rc;
Assert(i < 2);
if (cb != 1)
return VERR_IOM_IOPORT_UNUSED;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
*pu32 = ataStatusRead(pCtl, Port);
PDMCritSectLeave(&pCtl->lock);
return VINF_SUCCESS;
}
#ifdef IN_RING3
/**
* Waits for all async I/O threads to complete whatever they
* are doing at the moment.
*
* @returns true on success.
* @returns false when one or more threads is still processing.
* @param pThis Pointer to the instance data.
* @param cMillies How long to wait (total).
*/
static bool ataWaitForAllAsyncIOIsIdle(PPDMDEVINS pDevIns, unsigned cMillies)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
bool fVMLocked;
uint64_t u64Start;
PATACONTROLLER pCtl;
bool fAllIdle = false;
/* The only way to deal cleanly with the VM lock is to check whether
* it is owned now (it always is owned by EMT, which is the current
* thread). Since this function is called several times during VM
* shutdown, and the VM lock is only held for the first call (which
* can be either from ataPowerOff or ataSuspend), there is no other
* reasonable solution. */
fVMLocked = VMMR3LockIsOwner(PDMDevHlpGetVM(pDevIns));
if (fVMLocked)
pDevIns->pDevHlpR3->pfnUnlockVM(pDevIns);
/*
* Wait for any pending async operation to finish
*/
u64Start = RTTimeMilliTS();
for (;;)
{
/* Check all async I/O threads. */
fAllIdle = true;
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
pCtl = &pThis->aCts[i];
/*
* Only check if the thread is idling if the request mutex is set up.
* It is possible that the creation of the first controller failed and that
* the request mutex is not initialized on the second one yet
* But it would be called without the following check.
*/
if (pCtl->AsyncIORequestMutex != NIL_RTSEMEVENT)
{
fAllIdle &= ataAsyncIOIsIdle(pCtl, false);
if (!fAllIdle)
break;
}
}
if ( fAllIdle
|| RTTimeMilliTS() - u64Start >= cMillies)
break;
/* Sleep for a bit. */
RTThreadSleep(100);
}
if (fVMLocked)
pDevIns->pDevHlpR3->pfnLockVM(pDevIns);
if (!fAllIdle)
LogRel(("PIIX3 ATA: Ctl#%d is still executing, DevSel=%d AIOIf=%d CmdIf0=%#04x CmdIf1=%#04x\n",
ATACONTROLLER_IDX(pCtl), pCtl->iSelectedIf, pCtl->iAIOIf,
pCtl->aIfs[0].uATARegCommand, pCtl->aIfs[1].uATARegCommand));
return fAllIdle;
}
DECLINLINE(void) ataRelocBuffer(PPDMDEVINS pDevIns, ATADevState *s)
{
if (s->pbIOBufferR3)
s->pbIOBufferRC = MMHyperR3ToRC(PDMDevHlpGetVM(pDevIns), s->pbIOBufferR3);
}
/**
* @copydoc FNPDMDEVRELOCATE
*/
static DECLCALLBACK(void) ataRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
pThis->aCts[i].pDevInsRC += offDelta;
pThis->aCts[i].aIfs[0].pDevInsRC += offDelta;
pThis->aCts[i].aIfs[0].pControllerRC += offDelta;
ataRelocBuffer(pDevIns, &pThis->aCts[i].aIfs[0]);
pThis->aCts[i].aIfs[1].pDevInsRC += offDelta;
pThis->aCts[i].aIfs[1].pControllerRC += offDelta;
ataRelocBuffer(pDevIns, &pThis->aCts[i].aIfs[1]);
}
}
/**
* Destroy a driver instance.
*
* Most VM resources are freed by the VM. This callback is provided so that any non-VM
* resources can be freed correctly.
*
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(int) ataDestruct(PPDMDEVINS pDevIns)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
int rc;
Log(("%s:\n", __FUNCTION__));
/*
* Terminate all async helper threads
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
if (pThis->aCts[i].AsyncIOThread != NIL_RTTHREAD)
{
ASMAtomicXchgU32(&pThis->aCts[i].fShutdown, true);
rc = RTSemEventSignal(pThis->aCts[i].AsyncIOSem);
AssertRC(rc);
}
}
/*
* Wait for them to complete whatever they are doing and then
* for them to terminate.
*/
if (ataWaitForAllAsyncIOIsIdle(pDevIns, 20000))
{
for (unsigned i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
rc = RTThreadWait(pThis->aCts[i].AsyncIOThread, 30000 /* 30 s*/, NULL);
AssertMsgRC(rc || rc == VERR_INVALID_HANDLE, ("rc=%Rrc i=%d\n", rc, i));
}
}
else
AssertMsgFailed(("Async I/O is still busy!\n"));
/*
* Now the request mutexes are no longer needed. Free resources.
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
if (pThis->aCts[i].AsyncIORequestMutex != NIL_RTSEMEVENT)
{
RTSemMutexDestroy(pThis->aCts[i].AsyncIORequestMutex);
pThis->aCts[i].AsyncIORequestMutex = NIL_RTSEMEVENT;
}
}
return VINF_SUCCESS;
}
/**
* Detach notification.
*
* The DVD drive has been unplugged.
*
* @param pDevIns The device instance.
* @param iLUN The logical unit which is being detached.
*/
static DECLCALLBACK(void) ataDetach(PPDMDEVINS pDevIns, unsigned iLUN)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl;
ATADevState *pIf;
unsigned iController;
unsigned iInterface;
/*
* Locate the controller and stuff.
*/
iController = iLUN / RT_ELEMENTS(pThis->aCts[0].aIfs);
AssertReleaseMsg(iController < RT_ELEMENTS(pThis->aCts), ("iController=%d iLUN=%d\n", iController, iLUN));
pCtl = &pThis->aCts[iController];
iInterface = iLUN % RT_ELEMENTS(pThis->aCts[0].aIfs);
pIf = &pCtl->aIfs[iInterface];
/*
* Zero some important members.
*/
pIf->pDrvBase = NULL;
pIf->pDrvBlock = NULL;
pIf->pDrvBlockBios = NULL;
pIf->pDrvMount = NULL;
/*
* In case there was a medium inserted.
*/
ataMediumRemoved(pIf);
}
/**
* Configure a LUN.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pIf The ATA unit state.
*/
static int ataConfigLun(PPDMDEVINS pDevIns, ATADevState *pIf)
{
int rc;
PDMBLOCKTYPE enmType;
/*
* Query Block, Bios and Mount interfaces.
*/
pIf->pDrvBlock = (PDMIBLOCK *)pIf->pDrvBase->pfnQueryInterface(pIf->pDrvBase, PDMINTERFACE_BLOCK);
if (!pIf->pDrvBlock)
{
AssertMsgFailed(("Configuration error: LUN#%d hasn't a block interface!\n", pIf->iLUN));
return VERR_PDM_MISSING_INTERFACE;
}
/** @todo implement the BIOS invisible code path. */
pIf->pDrvBlockBios = (PDMIBLOCKBIOS *)pIf->pDrvBase->pfnQueryInterface(pIf->pDrvBase, PDMINTERFACE_BLOCK_BIOS);
if (!pIf->pDrvBlockBios)
{
AssertMsgFailed(("Configuration error: LUN#%d hasn't a block BIOS interface!\n", pIf->iLUN));
return VERR_PDM_MISSING_INTERFACE;
}
pIf->pDrvMount = (PDMIMOUNT *)pIf->pDrvBase->pfnQueryInterface(pIf->pDrvBase, PDMINTERFACE_MOUNT);
/*
* Validate type.
*/
enmType = pIf->pDrvBlock->pfnGetType(pIf->pDrvBlock);
if ( enmType != PDMBLOCKTYPE_CDROM
&& enmType != PDMBLOCKTYPE_DVD
&& enmType != PDMBLOCKTYPE_HARD_DISK)
{
AssertMsgFailed(("Configuration error: LUN#%d isn't a disk or cd/dvd-rom. enmType=%d\n", pIf->iLUN, enmType));
return VERR_PDM_UNSUPPORTED_BLOCK_TYPE;
}
if ( ( enmType == PDMBLOCKTYPE_DVD
|| enmType == PDMBLOCKTYPE_CDROM)
&& !pIf->pDrvMount)
{
AssertMsgFailed(("Internal error: cdrom without a mountable interface, WTF???!\n"));
return VERR_INTERNAL_ERROR;
}
pIf->fATAPI = enmType == PDMBLOCKTYPE_DVD || enmType == PDMBLOCKTYPE_CDROM;
pIf->fATAPIPassthrough = pIf->fATAPI ? (pIf->pDrvBlock->pfnSendCmd != NULL) : false;
/*
* Allocate I/O buffer.
*/
PVM pVM = PDMDevHlpGetVM(pDevIns);
if (pIf->cbIOBuffer)
{
/* Buffer is (probably) already allocated. Validate the fields,
* because memory corruption can also overwrite pIf->cbIOBuffer. */
if (pIf->fATAPI)
AssertRelease(pIf->cbIOBuffer == _128K);
else
AssertRelease(pIf->cbIOBuffer == ATA_MAX_MULT_SECTORS * 512);
Assert(pIf->pbIOBufferR3);
Assert(pIf->pbIOBufferR0 == MMHyperR3ToR0(pVM, pIf->pbIOBufferR3));
Assert(pIf->pbIOBufferRC == MMHyperR3ToRC(pVM, pIf->pbIOBufferR3));
}
else
{
if (pIf->fATAPI)
pIf->cbIOBuffer = _128K;
else
pIf->cbIOBuffer = ATA_MAX_MULT_SECTORS * 512;
Assert(!pIf->pbIOBufferR3);
rc = MMR3HyperAllocOnceNoRel(pVM, pIf->cbIOBuffer, 0, MM_TAG_PDM_DEVICE_USER, (void **)&pIf->pbIOBufferR3);
if (RT_FAILURE(rc))
return VERR_NO_MEMORY;
pIf->pbIOBufferR0 = MMHyperR3ToR0(pVM, pIf->pbIOBufferR3);
pIf->pbIOBufferRC = MMHyperR3ToRC(pVM, pIf->pbIOBufferR3);
}
/*
* Init geometry (only for non-CD/DVD media).
*/
if (pIf->fATAPI)
{
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 2048;
pIf->PCHSGeometry.cCylinders = 0; /* dummy */
pIf->PCHSGeometry.cHeads = 0; /* dummy */
pIf->PCHSGeometry.cSectors = 0; /* dummy */
LogRel(("PIIX3 ATA: LUN#%d: CD/DVD, total number of sectors %Ld, passthrough %s\n", pIf->iLUN, pIf->cTotalSectors, (pIf->fATAPIPassthrough ? "enabled" : "disabled")));
}
else
{
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 512;
rc = pIf->pDrvBlockBios->pfnGetPCHSGeometry(pIf->pDrvBlockBios,
&pIf->PCHSGeometry);
if (rc == VERR_PDM_MEDIA_NOT_MOUNTED)
{
pIf->PCHSGeometry.cCylinders = 0;
pIf->PCHSGeometry.cHeads = 16; /*??*/
pIf->PCHSGeometry.cSectors = 63; /*??*/
}
else if (rc == VERR_PDM_GEOMETRY_NOT_SET)
{
pIf->PCHSGeometry.cCylinders = 0; /* autodetect marker */
rc = VINF_SUCCESS;
}
AssertRC(rc);
if ( pIf->PCHSGeometry.cCylinders == 0
|| pIf->PCHSGeometry.cHeads == 0
|| pIf->PCHSGeometry.cSectors == 0
)
{
uint64_t cCylinders = pIf->cTotalSectors / (16 * 63);
pIf->PCHSGeometry.cCylinders = RT_MAX(RT_MIN(cCylinders, 16383), 1);
pIf->PCHSGeometry.cHeads = 16;
pIf->PCHSGeometry.cSectors = 63;
/* Set the disk geometry information. */
rc = pIf->pDrvBlockBios->pfnSetPCHSGeometry(pIf->pDrvBlockBios,
&pIf->PCHSGeometry);
}
LogRel(("PIIX3 ATA: LUN#%d: disk, PCHS=%u/%u/%u, total number of sectors %Ld\n", pIf->iLUN, pIf->PCHSGeometry.cCylinders, pIf->PCHSGeometry.cHeads, pIf->PCHSGeometry.cSectors, pIf->cTotalSectors));
}
return VINF_SUCCESS;
}
/**
* Attach command.
*
* This is called when we change block driver for the DVD drive.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param iLUN The logical unit which is being detached.
*/
static DECLCALLBACK(int) ataAttach(PPDMDEVINS pDevIns, unsigned iLUN)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl;
ATADevState *pIf;
int rc;
unsigned iController;
unsigned iInterface;
/*
* Locate the controller and stuff.
*/
iController = iLUN / RT_ELEMENTS(pThis->aCts[0].aIfs);
AssertReleaseMsg(iController < RT_ELEMENTS(pThis->aCts), ("iController=%d iLUN=%d\n", iController, iLUN));
pCtl = &pThis->aCts[iController];
iInterface = iLUN % RT_ELEMENTS(pThis->aCts[0].aIfs);
pIf = &pCtl->aIfs[iInterface];
/* the usual paranoia */
AssertRelease(!pIf->pDrvBase);
AssertRelease(!pIf->pDrvBlock);
Assert(ATADEVSTATE_2_CONTROLLER(pIf) == pCtl);
Assert(pIf->iLUN == iLUN);
/*
* Try attach the block device and get the interfaces,
* required as well as optional.
*/
rc = PDMDevHlpDriverAttach(pDevIns, pIf->iLUN, &pIf->IBase, &pIf->pDrvBase, NULL);
if (RT_SUCCESS(rc))
{
rc = ataConfigLun(pDevIns, pIf);
/*
* In case there is a medium inserted.
*/
ataMediumInserted(pIf);
}
else
AssertMsgFailed(("Failed to attach LUN#%d. rc=%Rrc\n", pIf->iLUN, rc));
if (RT_FAILURE(rc))
{
pIf->pDrvBase = NULL;
pIf->pDrvBlock = NULL;
}
return rc;
}
/**
* Suspend notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataSuspend(PPDMDEVINS pDevIns)
{
Log(("%s:\n", __FUNCTION__));
if (!ataWaitForAllAsyncIOIsIdle(pDevIns, 20000))
AssertMsgFailed(("Async I/O didn't stop in 20 seconds!\n"));
return;
}
/**
* Resume notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataResume(PPDMDEVINS pDevIns)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
int rc;
Log(("%s:\n", __FUNCTION__));
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
if (pThis->aCts[i].fRedo && pThis->aCts[i].fRedoIdle)
{
rc = RTSemEventSignal(pThis->aCts[i].SuspendIOSem);
AssertRC(rc);
}
}
return;
}
/**
* Power Off notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataPowerOff(PPDMDEVINS pDevIns)
{
Log(("%s:\n", __FUNCTION__));
if (!ataWaitForAllAsyncIOIsIdle(pDevIns, 20000))
AssertMsgFailed(("Async I/O didn't stop in 20 seconds!\n"));
return;
}
/**
* Prepare state save and load operation.
*
* @returns VBox status code.
* @param pDevIns Device instance of the device which registered the data unit.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) ataSaveLoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
/* sanity - the suspend notification will wait on the async stuff. */
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
Assert(ataAsyncIOIsIdle(&pThis->aCts[i], false));
if (!ataAsyncIOIsIdle(&pThis->aCts[i], false))
return VERR_SSM_IDE_ASYNC_TIMEOUT;
}
return VINF_SUCCESS;
}
/**
* Saves a state of the ATA device.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSMHandle The handle to save the state to.
*/
static DECLCALLBACK(int) ataSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
SSMR3PutU8(pSSMHandle, pThis->aCts[i].iSelectedIf);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].iAIOIf);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].uAsyncIOState);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].fChainedTransfer);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].fReset);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].fRedo);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].fRedoIdle);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].fRedoDMALastDesc);
SSMR3PutMem(pSSMHandle, &pThis->aCts[i].BmDma, sizeof(pThis->aCts[i].BmDma));
SSMR3PutGCPhys32(pSSMHandle, pThis->aCts[i].pFirstDMADesc);
SSMR3PutGCPhys32(pSSMHandle, pThis->aCts[i].pLastDMADesc);
SSMR3PutGCPhys32(pSSMHandle, pThis->aCts[i].pRedoDMABuffer);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].cbRedoDMABuffer);
for (uint32_t j = 0; j < RT_ELEMENTS(pThis->aCts[i].aIfs); j++)
{
SSMR3PutBool(pSSMHandle, pThis->aCts[i].aIfs[j].fLBA48);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].aIfs[j].fATAPI);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].aIfs[j].fIrqPending);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].cMultSectors);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].PCHSGeometry.cCylinders);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].PCHSGeometry.cHeads);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].PCHSGeometry.cSectors);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].cSectorsPerIRQ);
SSMR3PutU64(pSSMHandle, pThis->aCts[i].aIfs[j].cTotalSectors);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegFeature);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegFeatureHOB);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegError);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegNSector);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegNSectorHOB);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegSector);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegSectorHOB);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegLCyl);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegLCylHOB);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegHCyl);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegHCylHOB);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegSelect);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegStatus);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegCommand);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATARegDevCtl);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uATATransferMode);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].uTxDir);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].iBeginTransfer);
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].iSourceSink);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].aIfs[j].fDMA);
SSMR3PutBool(pSSMHandle, pThis->aCts[i].aIfs[j].fATAPITransfer);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].cbTotalTransfer);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].cbElementaryTransfer);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].iIOBufferCur);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].iIOBufferEnd);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].iIOBufferPIODataStart);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].iIOBufferPIODataEnd);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].iATAPILBA);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].cbATAPISector);
SSMR3PutMem(pSSMHandle, &pThis->aCts[i].aIfs[j].aATAPICmd, sizeof(pThis->aCts[i].aIfs[j].aATAPICmd));
SSMR3PutMem(pSSMHandle, &pThis->aCts[i].aIfs[j].abATAPISense, sizeof(pThis->aCts[i].aIfs[j].abATAPISense));
SSMR3PutU8(pSSMHandle, pThis->aCts[i].aIfs[j].cNotifiedMediaChange);
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].MediaEventStatus);
SSMR3PutMem(pSSMHandle, &pThis->aCts[i].aIfs[j].Led, sizeof(pThis->aCts[i].aIfs[j].Led));
SSMR3PutU32(pSSMHandle, pThis->aCts[i].aIfs[j].cbIOBuffer);
if (pThis->aCts[i].aIfs[j].cbIOBuffer)
SSMR3PutMem(pSSMHandle, pThis->aCts[i].aIfs[j].CTX_SUFF(pbIOBuffer), pThis->aCts[i].aIfs[j].cbIOBuffer);
else
Assert(pThis->aCts[i].aIfs[j].CTX_SUFF(pbIOBuffer) == NULL);
}
}
SSMR3PutBool(pSSMHandle, pThis->fPIIX4);
return SSMR3PutU32(pSSMHandle, ~0); /* sanity/terminator */
}
/**
* Loads a saved ATA device state.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSMHandle The handle to the saved state.
* @param u32Version The data unit version number.
*/
static DECLCALLBACK(int) ataLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t u32Version)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
int rc;
uint32_t u32;
if ( u32Version != ATA_SAVED_STATE_VERSION
&& u32Version != ATA_SAVED_STATE_VERSION_WITHOUT_FULL_SENSE
&& u32Version != ATA_SAVED_STATE_VERSION_WITHOUT_EVENT_STATUS)
{
AssertMsgFailed(("u32Version=%d\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Restore valid parts of the PCIATAState structure
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
/* integrity check */
if (!ataAsyncIOIsIdle(&pThis->aCts[i], false))
{
AssertMsgFailed(("Async I/O for controller %d is active\n", i));
rc = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
return rc;
}
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].iSelectedIf);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].iAIOIf);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].uAsyncIOState);
SSMR3GetBool(pSSMHandle, &pThis->aCts[i].fChainedTransfer);
SSMR3GetBool(pSSMHandle, (bool *)&pThis->aCts[i].fReset);
SSMR3GetBool(pSSMHandle, (bool *)&pThis->aCts[i].fRedo);
SSMR3GetBool(pSSMHandle, (bool *)&pThis->aCts[i].fRedoIdle);
SSMR3GetBool(pSSMHandle, (bool *)&pThis->aCts[i].fRedoDMALastDesc);
SSMR3GetMem(pSSMHandle, &pThis->aCts[i].BmDma, sizeof(pThis->aCts[i].BmDma));
SSMR3GetGCPhys32(pSSMHandle, &pThis->aCts[i].pFirstDMADesc);
SSMR3GetGCPhys32(pSSMHandle, &pThis->aCts[i].pLastDMADesc);
SSMR3GetGCPhys32(pSSMHandle, &pThis->aCts[i].pRedoDMABuffer);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].cbRedoDMABuffer);
for (uint32_t j = 0; j < RT_ELEMENTS(pThis->aCts[i].aIfs); j++)
{
SSMR3GetBool(pSSMHandle, &pThis->aCts[i].aIfs[j].fLBA48);
SSMR3GetBool(pSSMHandle, &pThis->aCts[i].aIfs[j].fATAPI);
SSMR3GetBool(pSSMHandle, &pThis->aCts[i].aIfs[j].fIrqPending);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].cMultSectors);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].PCHSGeometry.cCylinders);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].PCHSGeometry.cHeads);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].PCHSGeometry.cSectors);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].cSectorsPerIRQ);
SSMR3GetU64(pSSMHandle, &pThis->aCts[i].aIfs[j].cTotalSectors);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegFeature);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegFeatureHOB);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegError);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegNSector);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegNSectorHOB);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegSector);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegSectorHOB);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegLCyl);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegLCylHOB);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegHCyl);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegHCylHOB);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegSelect);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegStatus);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegCommand);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATARegDevCtl);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uATATransferMode);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].uTxDir);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].iBeginTransfer);
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].iSourceSink);
SSMR3GetBool(pSSMHandle, &pThis->aCts[i].aIfs[j].fDMA);
SSMR3GetBool(pSSMHandle, &pThis->aCts[i].aIfs[j].fATAPITransfer);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].cbTotalTransfer);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].cbElementaryTransfer);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].iIOBufferCur);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].iIOBufferEnd);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].iIOBufferPIODataStart);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].iIOBufferPIODataEnd);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].iATAPILBA);
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].cbATAPISector);
SSMR3GetMem(pSSMHandle, &pThis->aCts[i].aIfs[j].aATAPICmd, sizeof(pThis->aCts[i].aIfs[j].aATAPICmd));
if (u32Version > ATA_SAVED_STATE_VERSION_WITHOUT_FULL_SENSE)
{
SSMR3GetMem(pSSMHandle, pThis->aCts[i].aIfs[j].abATAPISense, sizeof(pThis->aCts[i].aIfs[j].abATAPISense));
}
else
{
uint8_t uATAPISenseKey, uATAPIASC;
memset(pThis->aCts[i].aIfs[j].abATAPISense, '\0', sizeof(pThis->aCts[i].aIfs[j].abATAPISense));
pThis->aCts[i].aIfs[j].abATAPISense[0] = 0x70 | (1 << 7);
pThis->aCts[i].aIfs[j].abATAPISense[7] = 10;
SSMR3GetU8(pSSMHandle, &uATAPISenseKey);
SSMR3GetU8(pSSMHandle, &uATAPIASC);
pThis->aCts[i].aIfs[j].abATAPISense[2] = uATAPISenseKey & 0x0f;
pThis->aCts[i].aIfs[j].abATAPISense[12] = uATAPIASC;
}
/** @todo triple-check this hack after passthrough is working */
SSMR3GetU8(pSSMHandle, &pThis->aCts[i].aIfs[j].cNotifiedMediaChange);
if (u32Version > ATA_SAVED_STATE_VERSION_WITHOUT_EVENT_STATUS)
SSMR3GetU32(pSSMHandle, (uint32_t*)&pThis->aCts[i].aIfs[j].MediaEventStatus);
else
pThis->aCts[i].aIfs[j].MediaEventStatus = ATA_EVENT_STATUS_UNCHANGED;
SSMR3GetMem(pSSMHandle, &pThis->aCts[i].aIfs[j].Led, sizeof(pThis->aCts[i].aIfs[j].Led));
SSMR3GetU32(pSSMHandle, &pThis->aCts[i].aIfs[j].cbIOBuffer);
if (pThis->aCts[i].aIfs[j].cbIOBuffer)
{
if (pThis->aCts[i].aIfs[j].CTX_SUFF(pbIOBuffer))
SSMR3GetMem(pSSMHandle, pThis->aCts[i].aIfs[j].CTX_SUFF(pbIOBuffer), pThis->aCts[i].aIfs[j].cbIOBuffer);
else
{
LogRel(("ATA: No buffer for %d/%d\n", i, j));
if (SSMR3HandleGetAfter(pSSMHandle) != SSMAFTER_DEBUG_IT)
return VERR_SSM_LOAD_CONFIG_MISMATCH;
/* skip the buffer if we're loading for the debugger / animator. */
uint8_t u8Ignored;
size_t cbLeft = pThis->aCts[i].aIfs[j].cbIOBuffer;
while (cbLeft-- > 0)
SSMR3GetU8(pSSMHandle, &u8Ignored);
}
}
else
Assert(pThis->aCts[i].aIfs[j].CTX_SUFF(pbIOBuffer) == NULL);
}
}
SSMR3GetBool(pSSMHandle, &pThis->fPIIX4);
rc = SSMR3GetU32(pSSMHandle, &u32);
if (RT_FAILURE(rc))
return rc;
if (u32 != ~0U)
{
AssertMsgFailed(("u32=%#x expected ~0\n", u32));
rc = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
return rc;
}
return VINF_SUCCESS;
}
/**
* Construct a device instance for a VM.
*
* @returns VBox status.
* @param pDevIns The device instance data.
* If the registration structure is needed, pDevIns->pDevReg points to it.
* @param iInstance Instance number. Use this to figure out which registers and such to use.
* The device number is also found in pDevIns->iInstance, but since it's
* likely to be freqently used PDM passes it as parameter.
* @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration
* of the device instance. It's also found in pDevIns->pCfgHandle, but like
* iInstance it's expected to be used a bit in this function.
*/
static DECLCALLBACK(int) ataConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle)
{
PCIATAState *pThis = PDMINS_2_DATA(pDevIns, PCIATAState *);
PPDMIBASE pBase;
int rc;
bool fGCEnabled;
bool fR0Enabled;
uint32_t DelayIRQMillies;
Assert(iInstance == 0);
/*
* Initialize NIL handle values (for the destructor).
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
pThis->aCts[i].AsyncIOSem = NIL_RTSEMEVENT;
pThis->aCts[i].SuspendIOSem = NIL_RTSEMEVENT;
pThis->aCts[i].AsyncIORequestMutex = NIL_RTSEMEVENT;
}
/*
* Validate and read configuration.
*/
if (!CFGMR3AreValuesValid(pCfgHandle, "GCEnabled\0IRQDelay\0R0Enabled\0PIIX4\0"))
return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
N_("PIIX3 configuration error: unknown option specified"));
rc = CFGMR3QueryBoolDef(pCfgHandle, "GCEnabled", &fGCEnabled, true);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read GCEnabled as boolean"));
Log(("%s: fGCEnabled=%d\n", __FUNCTION__, fGCEnabled));
rc = CFGMR3QueryBoolDef(pCfgHandle, "R0Enabled", &fR0Enabled, true);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read R0Enabled as boolean"));
Log(("%s: fR0Enabled=%d\n", __FUNCTION__, fR0Enabled));
rc = CFGMR3QueryU32Def(pCfgHandle, "IRQDelay", &DelayIRQMillies, 0);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read IRQDelay as integer"));
Log(("%s: DelayIRQMillies=%d\n", __FUNCTION__, DelayIRQMillies));
Assert(DelayIRQMillies < 50);
rc = CFGMR3QueryBoolDef(pCfgHandle, "PIIX4", &pThis->fPIIX4, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read PIIX4 as boolean"));
Log(("%s: fPIIX4=%d\n", __FUNCTION__, pThis->fPIIX4));
/*
* Initialize data (most of it anyway).
*/
/* Status LUN. */
pThis->IBase.pfnQueryInterface = ataStatus_QueryInterface;
pThis->ILeds.pfnQueryStatusLed = ataStatus_QueryStatusLed;
/* PCI configuration space. */
PCIDevSetVendorId(&pThis->dev, 0x8086); /* Intel */
if (pThis->fPIIX4)
{
PCIDevSetDeviceId(&pThis->dev, 0x7111); /* PIIX4 IDE */
PCIDevSetRevisionId(&pThis->dev, 0x01); /* PIIX4E */
pThis->dev.config[0x48] = 0x00; /* UDMACTL */
pThis->dev.config[0x4A] = 0x00; /* UDMATIM */
pThis->dev.config[0x4B] = 0x00;
}
else
PCIDevSetDeviceId(&pThis->dev, 0x7010); /* PIIX3 IDE */
PCIDevSetCommand( &pThis->dev, PCI_COMMAND_IOACCESS | PCI_COMMAND_MEMACCESS | PCI_COMMAND_BUSMASTER);
PCIDevSetClassProg( &pThis->dev, 0x8a); /* programming interface = PCI_IDE bus master is supported */
PCIDevSetClassSub( &pThis->dev, 0x01); /* class_sub = PCI_IDE */
PCIDevSetClassBase( &pThis->dev, 0x01); /* class_base = PCI_mass_storage */
PCIDevSetHeaderType(&pThis->dev, 0x00);
pThis->pDevIns = pDevIns;
pThis->fGCEnabled = fGCEnabled;
pThis->fR0Enabled = fR0Enabled;
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
pThis->aCts[i].pDevInsR3 = pDevIns;
pThis->aCts[i].pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
pThis->aCts[i].pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
pThis->aCts[i].DelayIRQMillies = (uint32_t)DelayIRQMillies;
for (uint32_t j = 0; j < RT_ELEMENTS(pThis->aCts[i].aIfs); j++)
{
ATADevState *pIf = &pThis->aCts[i].aIfs[j];
pIf->iLUN = i * RT_ELEMENTS(pThis->aCts) + j;
pIf->pDevInsR3 = pDevIns;
pIf->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
pIf->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
pIf->pControllerR3 = &pThis->aCts[i];
pIf->pControllerR0 = MMHyperR3ToR0(PDMDevHlpGetVM(pDevIns), &pThis->aCts[i]);
pIf->pControllerRC = MMHyperR3ToRC(PDMDevHlpGetVM(pDevIns), &pThis->aCts[i]);
pIf->IBase.pfnQueryInterface = ataQueryInterface;
pIf->IMountNotify.pfnMountNotify = ataMountNotify;
pIf->IMountNotify.pfnUnmountNotify = ataUnmountNotify;
pIf->Led.u32Magic = PDMLED_MAGIC;
}
}
Assert(RT_ELEMENTS(pThis->aCts) == 2);
pThis->aCts[0].irq = 14;
pThis->aCts[0].IOPortBase1 = 0x1f0;
pThis->aCts[0].IOPortBase2 = 0x3f6;
pThis->aCts[1].irq = 15;
pThis->aCts[1].IOPortBase1 = 0x170;
pThis->aCts[1].IOPortBase2 = 0x376;
/*
* Register the PCI device.
* N.B. There's a hack in the PIIX3 PCI bridge device to assign this
* device the slot next to itself.
*/
rc = PDMDevHlpPCIRegister(pDevIns, &pThis->dev);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 cannot register PCI device"));
AssertMsg(pThis->dev.devfn == 9 || iInstance != 0, ("pThis->dev.devfn=%d\n", pThis->dev.devfn));
rc = PDMDevHlpPCIIORegionRegister(pDevIns, 4, 0x10, PCI_ADDRESS_SPACE_IO, ataBMDMAIORangeMap);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 cannot register PCI I/O region for BMDMA"));
/*
* Register the I/O ports.
* The ports are all hardcoded and enforced by the PIIX3 host bridge controller.
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
rc = PDMDevHlpIOPortRegister(pDevIns, pThis->aCts[i].IOPortBase1, 8, (RTHCPTR)i,
ataIOPortWrite1, ataIOPortRead1, ataIOPortWriteStr1, ataIOPortReadStr1, "ATA I/O Base 1");
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register I/O handlers"));
if (fGCEnabled)
{
rc = PDMDevHlpIOPortRegisterGC(pDevIns, pThis->aCts[i].IOPortBase1, 8, (RTGCPTR)i,
"ataIOPortWrite1", "ataIOPortRead1", "ataIOPortWriteStr1", "ataIOPortReadStr1", "ATA I/O Base 1");
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register I/O handlers (GC)"));
}
if (fR0Enabled)
{
#if 1
rc = PDMDevHlpIOPortRegisterR0(pDevIns, pThis->aCts[i].IOPortBase1, 8, (RTR0PTR)i,
"ataIOPortWrite1", "ataIOPortRead1", NULL, NULL, "ATA I/O Base 1");
#else
rc = PDMDevHlpIOPortRegisterR0(pDevIns, pThis->aCts[i].IOPortBase1, 8, (RTR0PTR)i,
"ataIOPortWrite1", "ataIOPortRead1", "ataIOPortWriteStr1", "ataIOPortReadStr1", "ATA I/O Base 1");
#endif
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, "PIIX3 cannot register I/O handlers (R0).");
}
rc = PDMDevHlpIOPortRegister(pDevIns, pThis->aCts[i].IOPortBase2, 1, (RTHCPTR)i,
ataIOPortWrite2, ataIOPortRead2, NULL, NULL, "ATA I/O Base 2");
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register base2 I/O handlers"));
if (fGCEnabled)
{
rc = PDMDevHlpIOPortRegisterGC(pDevIns, pThis->aCts[i].IOPortBase2, 1, (RTGCPTR)i,
"ataIOPortWrite2", "ataIOPortRead2", NULL, NULL, "ATA I/O Base 2");
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register base2 I/O handlers (GC)"));
}
if (fR0Enabled)
{
rc = PDMDevHlpIOPortRegisterR0(pDevIns, pThis->aCts[i].IOPortBase2, 1, (RTR0PTR)i,
"ataIOPortWrite2", "ataIOPortRead2", NULL, NULL, "ATA I/O Base 2");
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register base2 I/O handlers (R0)"));
}
for (uint32_t j = 0; j < RT_ELEMENTS(pThis->aCts[i].aIfs); j++)
{
ATADevState *pIf = &pThis->aCts[i].aIfs[j];
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATADMA, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATA DMA transfers.", "/Devices/ATA%d/Unit%d/DMA", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATAPIO, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATA PIO transfers.", "/Devices/ATA%d/Unit%d/PIO", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATAPIDMA, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATAPI DMA transfers.", "/Devices/ATA%d/Unit%d/AtapiDMA", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATAPIPIO, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATAPI PIO transfers.", "/Devices/ATA%d/Unit%d/AtapiPIO", i, j);
#ifdef VBOX_WITH_STATISTICS /** @todo release too. */
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatReads, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of the read operations.", "/Devices/ATA%d/Unit%d/Reads", i, j);
#endif
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatBytesRead, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data read.", "/Devices/ATA%d/Unit%d/ReadBytes", i, j);
#ifdef VBOX_INSTRUMENT_DMA_WRITES
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatInstrVDWrites,STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of the VD DMA write operations.","/Devices/ATA%d/Unit%d/InstrVDWrites", i, j);
#endif
#ifdef VBOX_WITH_STATISTICS
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatWrites, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of the write operations.","/Devices/ATA%d/Unit%d/Writes", i, j);
#endif
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatBytesWritten, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data written.", "/Devices/ATA%d/Unit%d/WrittenBytes", i, j);
#ifdef VBOX_WITH_STATISTICS
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatFlushes, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of the flush operations.","/Devices/ATA%d/Unit%d/Flushes", i, j);
#endif
}
#ifdef VBOX_WITH_STATISTICS /** @todo release too. */
PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aCts[i].StatAsyncOps, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "The number of async operations.", "/Devices/ATA%d/Async/Operations", i);
/** @todo STAMUNIT_MICROSECS */
PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aCts[i].StatAsyncMinWait, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Minimum wait in microseconds.", "/Devices/ATA%d/Async/MinWait", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aCts[i].StatAsyncMaxWait, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Maximum wait in microseconds.", "/Devices/ATA%d/Async/MaxWait", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aCts[i].StatAsyncTimeUS, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Total time spent in microseconds.","/Devices/ATA%d/Async/TotalTimeUS", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aCts[i].StatAsyncTime, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of async operations.", "/Devices/ATA%d/Async/Time", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aCts[i].StatLockWait, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of locks.", "/Devices/ATA%d/Async/LockWait", i);
#endif /* VBOX_WITH_STATISTICS */
/* Initialize per-controller critical section */
char szName[24];
RTStrPrintf(szName, sizeof(szName), "ATA%d", i);
rc = PDMDevHlpCritSectInit(pDevIns, &pThis->aCts[i].lock, szName);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot initialize critical section"));
}
/*
* Attach status driver (optional).
*/
rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThis->IBase, &pBase, "Status Port");
if (RT_SUCCESS(rc))
pThis->pLedsConnector = (PDMILEDCONNECTORS *)pBase->pfnQueryInterface(pBase, PDMINTERFACE_LED_CONNECTORS);
else if (rc != VERR_PDM_NO_ATTACHED_DRIVER)
{
AssertMsgFailed(("Failed to attach to status driver. rc=%Rrc\n", rc));
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot attach to status driver"));
}
/*
* Attach the units.
*/
uint32_t cbTotalBuffer = 0;
for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aCts); i++)
{
PATACONTROLLER pCtl = &pThis->aCts[i];
/*
* Start the worker thread.
*/
pCtl->uAsyncIOState = ATA_AIO_NEW;
rc = RTSemEventCreate(&pCtl->AsyncIOSem);
AssertRC(rc);
rc = RTSemEventCreate(&pCtl->SuspendIOSem);
AssertRC(rc);
rc = RTSemMutexCreate(&pCtl->AsyncIORequestMutex);
AssertRC(rc);
ataAsyncIOClearRequests(pCtl);
rc = RTThreadCreate(&pCtl->AsyncIOThread, ataAsyncIOLoop, (void *)pCtl, 128*1024, RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "ATA");
AssertRC(rc);
Assert(pCtl->AsyncIOThread != NIL_RTTHREAD && pCtl->AsyncIOSem != NIL_RTSEMEVENT && pCtl->SuspendIOSem != NIL_RTSEMEVENT && pCtl->AsyncIORequestMutex != NIL_RTSEMMUTEX);
Log(("%s: controller %d AIO thread id %#x; sem %p susp_sem %p mutex %p\n", __FUNCTION__, i, pCtl->AsyncIOThread, pCtl->AsyncIOSem, pCtl->SuspendIOSem, pCtl->AsyncIORequestMutex));
for (uint32_t j = 0; j < RT_ELEMENTS(pCtl->aIfs); j++)
{
static const char *s_apszDescs[RT_ELEMENTS(pThis->aCts)][RT_ELEMENTS(pCtl->aIfs)] =
{
{ "Primary Master", "Primary Slave" },
{ "Secondary Master", "Secondary Slave" }
};
/*
* Try attach the block device and get the interfaces,
* required as well as optional.
*/
ATADevState *pIf = &pCtl->aIfs[j];
rc = PDMDevHlpDriverAttach(pDevIns, pIf->iLUN, &pIf->IBase, &pIf->pDrvBase, s_apszDescs[i][j]);
if (RT_SUCCESS(rc))
{
rc = ataConfigLun(pDevIns, pIf);
if (RT_SUCCESS(rc))
{
/*
* Init vendor product data.
*/
static const char *s_apszCFGMKeys[RT_ELEMENTS(pThis->aCts)][RT_ELEMENTS(pCtl->aIfs)] =
{
{ "PrimaryMaster", "PrimarySlave" },
{ "SecondaryMaster", "SecondarySlave" }
};
char aSerial[ATA_SERIAL_NUMBER_LENGTH+1];
RTUUID Uuid;
if (pIf->pDrvBlock)
rc = pIf->pDrvBlock->pfnGetUuid(pIf->pDrvBlock, &Uuid);
else
RTUuidClear(&Uuid);
if (RT_FAILURE(rc) || RTUuidIsNull(&Uuid))
{
/* Generate a predictable serial for drives which don't have a UUID. */
RTStrPrintf(aSerial, sizeof(aSerial), "VB%x-%04x%04x",
pIf->iLUN + pDevIns->iInstance * 32,
pThis->aCts[i].IOPortBase1, pThis->aCts[i].IOPortBase2);
}
else
RTStrPrintf(aSerial, sizeof(aSerial), "VB%08x-%08x", Uuid.au32[0], Uuid.au32[3]);
strncpy(pIf->achSerialNumber, aSerial, sizeof(pIf->achSerialNumber));
strncpy(pIf->achFirmwareRevision, "1.0", sizeof(pIf->achSerialNumber));
if (pIf->fATAPI)
strncpy(pIf->achModelNumber, "VBOX CD-ROM", sizeof(pIf->achModelNumber));
else
strncpy(pIf->achModelNumber, "VBOX HARDDISK", sizeof(pIf->achModelNumber));
/* Check if the user provided some values to overwrite. */
PCFGMNODE pCfgNode = CFGMR3GetChild(pCfgHandle, s_apszCFGMKeys[i][j]);
if (pCfgNode)
{
rc = CFGMR3QueryString(pCfgNode, "SerialNumber", pIf->achSerialNumber, sizeof(pIf->achSerialNumber));
if (rc == VERR_CFGM_NOT_ENOUGH_SPACE)
{
return PDMDEV_SET_ERROR(pDevIns, VERR_INVALID_PARAMETER,
N_("PIIX3 configuration error: \"SerialNumber\" is longer than 20 bytes"));
}
else if (RT_FAILURE(rc) && (rc != VERR_CFGM_VALUE_NOT_FOUND))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read \"SerialNumber\" as string"));
rc = CFGMR3QueryString(pCfgNode, "FirmwareRevision", pIf->achFirmwareRevision, sizeof(pIf->achFirmwareRevision));
if (rc == VERR_CFGM_NOT_ENOUGH_SPACE)
{
return PDMDEV_SET_ERROR(pDevIns, VERR_INVALID_PARAMETER,
N_("PIIX3 configuration error: \"FirmwareRevision\" is longer than 8 bytes"));
}
else if (RT_FAILURE(rc) && (rc != VERR_CFGM_VALUE_NOT_FOUND))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read \"FirmwareRevision\" as string"));
rc = CFGMR3QueryString(pCfgNode, "ModelNumber", pIf->achModelNumber, sizeof(pIf->achModelNumber));
if (rc == VERR_CFGM_NOT_ENOUGH_SPACE)
{
return PDMDEV_SET_ERROR(pDevIns, VERR_INVALID_PARAMETER,
N_("PIIX3 configuration error: \"ModelNumber\" is longer than 40 bytes"));
}
else if (RT_FAILURE(rc) && (rc != VERR_CFGM_VALUE_NOT_FOUND))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read \"ModelNumber\" as string"));
}
}
}
else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
{
pIf->pDrvBase = NULL;
pIf->pDrvBlock = NULL;
pIf->cbIOBuffer = 0;
pIf->pbIOBufferR3 = NULL;
pIf->pbIOBufferR0 = NIL_RTR0PTR;
pIf->pbIOBufferRC = NIL_RTGCPTR;
LogRel(("PIIX3 ATA: LUN#%d: no unit\n", pIf->iLUN));
}
else
{
switch (rc)
{
case VERR_ACCESS_DENIED:
/* Error already catched by DrvHostBase */
return rc;
default:
return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS,
N_("PIIX3 cannot attach drive to the %s"),
s_apszDescs[i][j]);
}
}
cbTotalBuffer += pIf->cbIOBuffer;
}
}
rc = PDMDevHlpSSMRegister(pDevIns, pDevIns->pDevReg->szDeviceName, iInstance,
ATA_SAVED_STATE_VERSION, sizeof(*pThis) + cbTotalBuffer,
ataSaveLoadPrep, ataSaveExec, NULL,
ataSaveLoadPrep, ataLoadExec, NULL);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register save state handlers"));
/*
* Initialize the device state.
*/
ataReset(pDevIns);
return VINF_SUCCESS;
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DevicePIIX3IDE =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szDeviceName */
"piix3ide",
/* szRCMod */
"VBoxDDGC.gc",
/* szR0Mod */
"VBoxDDR0.r0",
/* pszDescription */
"Intel PIIX3 ATA controller.\n"
" LUN #0 is primary master.\n"
" LUN #1 is primary slave.\n"
" LUN #2 is secondary master.\n"
" LUN #3 is secondary slave.\n"
" LUN #999 is the LED/Status connector.",
/* fFlags */
PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_STORAGE,
/* cMaxInstances */
1,
/* cbInstance */
sizeof(PCIATAState),
/* pfnConstruct */
ataConstruct,
/* pfnDestruct */
ataDestruct,
/* pfnRelocate */
ataRelocate,
/* pfnIOCtl */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
ataReset,
/* pfnSuspend */
ataSuspend,
/* pfnResume */
ataResume,
/* pfnAttach */
ataAttach,
/* pfnDetach */
ataDetach,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
ataPowerOff,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */