DevATA.cpp revision 441ab5370c29c2b5adf5713eccd8f2e6a3b864c3
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/** @file
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync *
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * VBox storage devices:
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * ATA/ATAPI controller device (disk and cdrom).
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/*
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Copyright (C) 2006-2007 innotek GmbH
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync *
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * This file is part of VirtualBox Open Source Edition (OSE), as
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * available from http://www.virtualbox.org. This file is free software;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * you can redistribute it and/or modify it under the terms of the GNU
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * General Public License as published by the Free Software Foundation,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * distribution. VirtualBox OSE is distributed in the hope that it will
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * be useful, but WITHOUT ANY WARRANTY of any kind.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync *
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * If you received this file as part of a commercial VirtualBox
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * distribution, then only the terms of your commercial VirtualBox
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * license agreement apply instead of the previous paragraph.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/*******************************************************************************
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync* Header Files *
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync*******************************************************************************/
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define LOG_GROUP LOG_GROUP_DEV_IDE
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <VBox/pdm.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <VBox/vmm.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <VBox/err.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <VBox/log.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <iprt/assert.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <iprt/string.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#ifdef IN_RING3
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync# include <iprt/uuid.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync# include <iprt/semaphore.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync# include <iprt/thread.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync# include <iprt/time.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync# include <iprt/alloc.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#endif /* IN_RING3 */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <iprt/critsect.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <iprt/asm.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <VBox/stam.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <VBox/mm.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include <VBox/pgm.h>
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync#include <VBox/scsi.h>
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync#include "Builtins.h"
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include "PIIX3ATABmDma.h"
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#include "ide.h"
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
2c95722bb302f4ce9454d04324b09314c0ccc038vboxsync/**
2c95722bb302f4ce9454d04324b09314c0ccc038vboxsync * Maximum number of sectors to transfer in a READ/WRITE MULTIPLE request.
2c95722bb302f4ce9454d04324b09314c0ccc038vboxsync * Set to 1 to disable multi-sector read support. According to the ATA
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * specification this must be a power of 2 and it must fit in an 8 bit
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * value. Thus the only valid values are 1, 2, 4, 8, 16, 32, 64 and 128.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define ATA_MAX_MULT_SECTORS 128
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Fastest PIO mode supported by the drive.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define ATA_PIO_MODE_MAX 4
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Fastest MDMA mode supported by the drive.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define ATA_MDMA_MODE_MAX 2
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Fastest UDMA mode supported by the drive.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define ATA_UDMA_MODE_MAX 6
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * The SSM saved state version.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define ATA_SAVED_STATE_VERSION 15
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/** The maximum number of release log entries per device. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define MAX_LOG_REL_ERRORS 1024
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef struct ATADevState {
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag indicating whether the current command uses LBA48 mode. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fLBA48;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag indicating whether this drive implements the ATAPI command set. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fATAPI;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Set if this interface has asserted the IRQ. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fIrqPending;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Currently configured number of sectors in a multi-sector transfer. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t cMultSectors;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** PCHS disk geometry. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t cCHSCylinders, cCHSHeads, cCHSSectors;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Total number of sectors on this disk. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint64_t cTotalSectors;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Number of sectors to transfer per IRQ. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t cSectorsPerIRQ;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 1: feature (write-only). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegFeature;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 1: feature, high order byte. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegFeatureHOB;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 1: error (read-only). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegError;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 2: sector count (read/write). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegNSector;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 2: sector count, high order byte. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegNSectorHOB;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** ATA/ATAPI register 3: sector (read/write). */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync uint8_t uATARegSector;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** ATA/ATAPI register 3: sector, high order byte. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync uint8_t uATARegSectorHOB;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 4: cylinder low (read/write). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegLCyl;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 4: cylinder low, high order byte. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegLCylHOB;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 5: cylinder high (read/write). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegHCyl;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 5: cylinder high, high order byte. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegHCylHOB;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 6: select drive/head (read/write). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegSelect;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 7: status (read-only). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegStatus;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI register 7: command (write-only). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegCommand;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATA/ATAPI drive control register (write-only). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATARegDevCtl;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Currently active transfer mode (MDMA/UDMA) and speed. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATATransferMode;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Current transfer direction. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uTxDir;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Index of callback for begin transfer. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t iBeginTransfer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Index of callback for source/sink of data. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t iSourceSink;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag indicating whether the current command transfers data in DMA mode. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fDMA;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Set to indicate that ATAPI transfer semantics must be used. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fATAPITransfer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Total ATA/ATAPI transfer size, shared PIO/DMA. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t cbTotalTransfer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Elementary ATA/ATAPI transfer size, shared PIO/DMA. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t cbElementaryTransfer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Current read/write buffer position, shared PIO/DMA. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t iIOBufferCur;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** First element beyond end of valid buffer content, shared PIO/DMA. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t iIOBufferEnd;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** ATA/ATAPI current PIO read/write transfer position. Not shared with DMA for safety reasons. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync uint32_t iIOBufferPIODataStart;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** ATA/ATAPI current PIO read/write transfer end. Not shared with DMA for safety reasons. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync uint32_t iIOBufferPIODataEnd;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATAPI current LBA position. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t iATAPILBA;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATAPI current sector size. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t cbATAPISector;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATAPI current command. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t aATAPICmd[ATAPI_PACKET_SIZE];
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATAPI sense key. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATAPISenseKey;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** ATAPI additional sense code. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uATAPIASC;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** HACK: Countdown till we report a newly unmounted drive as mounted. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t cNotifiedMediaChange;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The status LED state for this drive. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync PDMLED Led;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Size of I/O buffer. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t cbIOBuffer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Pointer to the I/O buffer. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync HCPTRTYPE(uint8_t *) pbIOBufferHC;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Pointer to the I/O buffer. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync GCPTRTYPE(uint8_t *) pbIOBufferGC;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#if HC_ARCH_BITS == 64 && GC_ARCH_BITS != 64
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTGCPTR Aligmnent0; /**< Align the statistics at an 8-byte boundrary. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#endif
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /*
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * No data that is part of the saved state after this point!!!!!
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Release statistics: number of ATA DMA commands. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatATADMA;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Release statistics: number of ATA PIO commands. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatATAPIO;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Release statistics: number of ATAPI PIO commands. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatATAPIDMA;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Release statistics: number of ATAPI PIO commands. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatATAPIPIO;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Statistics: number of read operations and the time spent reading. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMPROFILEADV StatReads;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Statistics: number of bytes read. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatBytesRead;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Statistics: number of write operations and the time spent writing. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMPROFILEADV StatWrites;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Statistics: number of bytes written. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatBytesWritten;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Statistics: number of flush operations and the time spend flushing. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync STAMPROFILE StatFlushes;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Enable passing through commands directly to the ATAPI drive. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync bool fATAPIPassthrough;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Number of errors we've reported to the release log.
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync * This is to prevent flooding caused by something going horribly wrong.
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync * this value against MAX_LOG_REL_ERRORS in places likely to cause floods
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync * like the ones we currently seeing on the linux smoke tests (2006-11-10). */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync uint32_t cErrors;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Timestamp of last started command. 0 if no command pending. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync uint64_t u64CmdTS;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Pointer to the attached driver's base interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync HCPTRTYPE(PPDMIBASE) pDrvBase;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Pointer to the attached driver's block interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync HCPTRTYPE(PPDMIBLOCK) pDrvBlock;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Pointer to the attached driver's block bios interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync HCPTRTYPE(PPDMIBLOCKBIOS) pDrvBlockBios;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Pointer to the attached driver's mount interface.
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync * This is NULL if the driver isn't a removable unit. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync HCPTRTYPE(PPDMIMOUNT) pDrvMount;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** The base interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync PDMIBASE IBase;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** The block port interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync PDMIBLOCKPORT IPort;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** The mount notify interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync PDMIMOUNTNOTIFY IMountNotify;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** The LUN #. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync RTUINT iLUN;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#if HC_ARCH_BITS == 64
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync RTUINT Alignment2; /**< Align pDevInsHC correctly. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync#endif
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync /** Pointer to device instance. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync HCPTRTYPE(PPDMDEVINS) pDevInsHC;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync /** Pointer to controller instance. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync HCPTRTYPE(struct ATACONTROLLER *) pControllerHC;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync /** Pointer to device instance. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync GCPTRTYPE(PPDMDEVINS) pDevInsGC;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync /** Pointer to controller instance. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync GCPTRTYPE(struct ATACONTROLLER *) pControllerGC;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync} ATADevState;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsynctypedef struct ATATransferRequest
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync{
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync uint8_t iIf;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync uint8_t iBeginTransfer;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync uint8_t iSourceSink;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync uint32_t cbTotalTransfer;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync uint8_t uTxDir;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync} ATATransferRequest;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef struct ATAAbortRequest
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t iIf;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fResetDrive;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync} ATAAbortRequest;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef enum
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Begin a new transfer. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync ATA_AIO_NEW = 0,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Continue a DMA transfer. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync ATA_AIO_DMA,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Continue a PIO transfer. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATA_AIO_PIO,
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Reset the drives on current controller, stop all transfer activity. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATA_AIO_RESET_ASSERTED,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Reset the drives on current controller, resume operation. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync ATA_AIO_RESET_CLEARED,
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Abort the current transfer of a particular drive. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync ATA_AIO_ABORT
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync} ATAAIO;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef struct ATARequest
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAAIO ReqType;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync union
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync {
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATATransferRequest t;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAAbortRequest a;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync } u;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync} ATARequest;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef struct ATACONTROLLER
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The base of the first I/O Port range. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTIOPORT IOPortBase1;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The base of the second I/O Port range. (0 if none) */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTIOPORT IOPortBase2;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The assigned IRQ. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTUINT irq;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Access critical section */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync PDMCRITSECT lock;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Selected drive. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t iSelectedIf;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The interface on which to handle async I/O. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t iAIOIf;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The state of the async I/O thread. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t uAsyncIOState;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag indicating whether the next transfer is part of the current command. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fChainedTransfer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Set when the reset processing is currently active on this controller. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fReset;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag whether the current transfer needs to be redone. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fRedo;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag whether the redo suspend has been finished. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fRedoIdle;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag whether the DMA operation to be redone is the final transfer. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fRedoDMALastDesc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The BusMaster DMA state. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync BMDMAState BmDma;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Pointer to first DMA descriptor. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTGCPHYS pFirstDMADesc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Pointer to last DMA descriptor. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTGCPHYS pLastDMADesc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Pointer to current DMA buffer (for redo operations). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTGCPHYS pRedoDMABuffer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Size of current DMA buffer (for redo operations). */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t cbRedoDMABuffer;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The ATA/ATAPI interfaces of this controller. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATADevState aIfs[2];
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync /** Pointer to device instance. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync HCPTRTYPE(PPDMDEVINS) pDevInsHC;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Pointer to device instance. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync GCPTRTYPE(PPDMDEVINS) pDevInsGC;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Set when the destroying the device instance and the thread must exit. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t volatile fShutdown;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The async I/O thread handle. NIL_RTTHREAD if no thread. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTTHREAD AsyncIOThread;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The event semaphore the thread is waiting on for requests. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTSEMEVENT AsyncIOSem;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The request queue for the AIO thread. One element is always unused. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATARequest aAsyncIORequests[4];
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The position at which to insert a new request for the AIO thread. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t AsyncIOReqHead;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The position at which to get a new request for the AIO thread. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t AsyncIOReqTail;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t Alignment3[2]; /**< Explicit padding of the 2 byte gap. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Magic delay before triggering interrupts in DMA mode. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t DelayIRQMillies;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The mutex protecting the request queue. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTSEMMUTEX AsyncIORequestMutex;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** The event semaphore the thread is waiting on during suspended I/O. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync RTSEMEVENT SuspendIOSem;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#if HC_ARCH_BITS == 32
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint32_t Alignment0;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync#endif
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Statistics */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatAsyncOps;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint64_t StatAsyncMinWait;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint64_t StatAsyncMaxWait;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMCOUNTER StatAsyncTimeUS;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMPROFILEADV StatAsyncTime;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync STAMPROFILE StatLockWait;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync} ATACONTROLLER, *PATACONTROLLER;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef struct PCIATAState {
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync PCIDEVICE dev;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** The controllers. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync ATACONTROLLER aCts[2];
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Pointer to device instance. */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync PPDMDEVINSR3 pDevIns;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Status Port - Base interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync PDMIBASE IBase;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Status Port - Leds interface. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync PDMILEDPORTS ILeds;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Partner of ILeds. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync /** Flag whether GC is enabled. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync bool fGCEnabled;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /** Flag whether R0 is enabled. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync bool fR0Enabled;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync bool Alignment0[HC_ARCH_BITS == 64 ? 6 : 2]; /**< Align the struct size. */
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync} PCIATAState;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define ATADEVSTATE_2_CONTROLLER(pIf) ( (pIf)->CTXSUFF(pController) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define ATADEVSTATE_2_DEVINS(pIf) ( (pIf)->CTXSUFF(pDevIns) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define CONTROLLER_2_DEVINS(pController) ( (pController)->CTXSUFF(pDevIns) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define PDMIBASE_2_PCIATASTATE(pInterface) ( (PCIATAState *)((uintptr_t)(pInterface) - RT_OFFSETOF(PCIATAState, IBase)) )
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define PDMILEDPORTS_2_PCIATASTATE(pInterface) ( (PCIATAState *)((uintptr_t)(pInterface) - RT_OFFSETOF(PCIATAState, ILeds)) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define PDMIBASE_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IBase)) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define PDMIBLOCKPORT_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IPort)) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define PDMIMOUNT_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IMount)) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define PDMIMOUNTNOTIFY_2_ATASTATE(pInterface) ( (ATADevState *)((uintptr_t)(pInterface) - RT_OFFSETOF(ATADevState, IMountNotify)) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#define PCIDEV_2_PCIATASTATE(pPciDev) ( (PCIATAState *)(pPciDev) )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#define ATACONTROLLER_IDX(pController) ( (pController) - PDMINS2DATA(CONTROLLER_2_DEVINS(pController), PCIATAState *)->aCts )
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync#ifndef VBOX_DEVICE_STRUCT_TESTCASE
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync/*******************************************************************************
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync * Internal Functions *
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ******************************************************************************/
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync__BEGIN_DECLS
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsyncPDMBOTHCBDECL(int) ataIOPortWrite1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncPDMBOTHCBDECL(int) ataIOPortRead1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *u32, unsigned cb);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncPDMBOTHCBDECL(int) ataIOPortWriteStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrSrc, unsigned *pcTransfer, unsigned cb);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncPDMBOTHCBDECL(int) ataIOPortReadStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrDst, unsigned *pcTransfer, unsigned cb);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncPDMBOTHCBDECL(int) ataIOPortWrite2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncPDMBOTHCBDECL(int) ataIOPortRead2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *u32, unsigned cb);
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsyncPDMBOTHCBDECL(int) ataBMDMAIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncPDMBOTHCBDECL(int) ataBMDMAIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync__END_DECLS
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncDECLINLINE(void) ataSetStatusValue(ATADevState *s, uint8_t stat)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Freeze status register contents while processing RESET. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync if (!pCtl->fReset)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync {
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync s->uATARegStatus = stat;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, s->iLUN, s->uATARegStatus));
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync }
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync}
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncDECLINLINE(void) ataSetStatus(ATADevState *s, uint8_t stat)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Freeze status register contents while processing RESET. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync if (!pCtl->fReset)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync {
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync s->uATARegStatus |= stat;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, s->iLUN, s->uATARegStatus));
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync }
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync}
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncDECLINLINE(void) ataUnsetStatus(ATADevState *s, uint8_t stat)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync /* Freeze status register contents while processing RESET. */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync if (!pCtl->fReset)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync {
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync s->uATARegStatus &= ~stat;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, s->iLUN, s->uATARegStatus));
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync }
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync}
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync#ifdef IN_RING3
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef void (*PBeginTransferFunc)(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef bool (*PSourceSinkFunc)(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic void ataReadWriteSectorsBT(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic void ataPacketBT(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic void atapiCmdBT(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic void atapiPassthroughCmdBT(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool ataIdentifySS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool ataFlushSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool ataReadSectorsSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool ataWriteSectorsSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool ataExecuteDeviceDiagnosticSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool ataPacketSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiGetConfigurationSS(ATADevState *);
67c73271505adae0686ddbc74eaeef778ef16792vboxsyncstatic bool atapiIdentifySS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiInquirySS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiMechanismStatusSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiModeSenseErrorRecoverySS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiModeSenseCDStatusSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiReadSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiReadCapacitySS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiReadDiscInformationSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiReadTOCNormalSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiReadTOCMultiSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiReadTOCRawSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiReadTrackInformationSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiRequestSenseSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic bool atapiPassthroughSS(ATADevState *);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Begin of transfer function indexes for g_apfnBeginTransFuncs.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef enum ATAFNBT
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_BT_NULL = 0,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_BT_READ_WRITE_SECTORS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_BT_PACKET,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_BT_ATAPI_CMD,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_BT_ATAPI_PASSTHROUGH_CMD,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_BT_MAX
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync} ATAFNBT;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Array of end transfer functions, the index is ATAFNET.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Make sure ATAFNET and this array match!
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic const PBeginTransferFunc g_apfnBeginTransFuncs[ATAFN_BT_MAX] =
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync NULL,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataReadWriteSectorsBT,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataPacketBT,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiCmdBT,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiPassthroughCmdBT,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync};
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Source/sink function indexes for g_apfnSourceSinkFuncs.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsynctypedef enum ATAFNSS
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_NULL = 0,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_IDENTIFY,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_FLUSH,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_READ_SECTORS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_WRITE_SECTORS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_EXECUTE_DEVICE_DIAGNOSTIC,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_PACKET,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_GET_CONFIGURATION,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_IDENTIFY,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_INQUIRY,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_MECHANISM_STATUS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_MODE_SENSE_ERROR_RECOVERY,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_MODE_SENSE_CD_STATUS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_READ,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_READ_CAPACITY,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_READ_DISC_INFORMATION,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_READ_TOC_NORMAL,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_READ_TOC_MULTI,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_READ_TOC_RAW,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_READ_TRACK_INFORMATION,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_REQUEST_SENSE,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_ATAPI_PASSTHROUGH,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ATAFN_SS_MAX
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync} ATAFNSS;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Array of source/sink functions, the index is ATAFNSS.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Make sure ATAFNSS and this array match!
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic const PSourceSinkFunc g_apfnSourceSinkFuncs[ATAFN_SS_MAX] =
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync NULL,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataIdentifySS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataFlushSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataReadSectorsSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataWriteSectorsSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataExecuteDeviceDiagnosticSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync ataPacketSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiGetConfigurationSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiIdentifySS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiInquirySS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiMechanismStatusSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiModeSenseErrorRecoverySS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiModeSenseCDStatusSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiReadSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiReadCapacitySS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiReadDiscInformationSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiReadTOCNormalSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiReadTOCMultiSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiReadTOCRawSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiReadTrackInformationSS,
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync atapiRequestSenseSS,
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync atapiPassthroughSS
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync};
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic const ATARequest ataDMARequest = { ATA_AIO_DMA, };
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic const ATARequest ataPIORequest = { ATA_AIO_PIO, };
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic const ATARequest ataResetARequest = { ATA_AIO_RESET_ASSERTED, };
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic const ATARequest ataResetCRequest = { ATA_AIO_RESET_CLEARED, };
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsyncstatic void ataAsyncIOClearRequests(PATACONTROLLER pCtl)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync int rc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pCtl->AsyncIOReqHead = 0;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pCtl->AsyncIOReqTail = 0;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync}
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic void ataAsyncIOPutRequest(PATACONTROLLER pCtl, const ATARequest *pReq)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync int rc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync Assert((pCtl->AsyncIOReqHead + 1) % RT_ELEMENTS(pCtl->aAsyncIORequests) != pCtl->AsyncIOReqTail);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync memcpy(&pCtl->aAsyncIORequests[pCtl->AsyncIOReqHead], pReq, sizeof(*pReq));
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pCtl->AsyncIOReqHead++;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pCtl->AsyncIOReqHead %= RT_ELEMENTS(pCtl->aAsyncIORequests);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync LogBird(("ata: %x: signalling\n", pCtl->IOPortBase1));
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = PDMR3CritSectScheduleExitEvent(&pCtl->lock, pCtl->AsyncIOSem);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync if (VBOX_FAILURE(rc))
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync {
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync LogBird(("ata: %x: schedule failed, rc=%Vrc\n", pCtl->IOPortBase1, rc));
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemEventSignal(pCtl->AsyncIOSem);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync }
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync}
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic const ATARequest *ataAsyncIOGetCurrentRequest(PATACONTROLLER pCtl)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync int rc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync const ATARequest *pReq;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync AssertRC(rc);
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync if (pCtl->AsyncIOReqHead != pCtl->AsyncIOReqTail)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pReq = &pCtl->aAsyncIORequests[pCtl->AsyncIOReqTail];
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync else
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pReq = NULL;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync return pReq;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync}
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Remove the request with the given type, as it's finished. The request
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * is not removed blindly, as this could mean a RESET request that is not
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync * yet processed (but has cleared the request queue) is lost.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync *
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * @param pCtl Controller for which to remove the request.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * @param ReqType Type of the request to remove.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic void ataAsyncIORemoveCurrentRequest(PATACONTROLLER pCtl, ATAAIO ReqType)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync int rc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync if (pCtl->AsyncIOReqHead != pCtl->AsyncIOReqTail && pCtl->aAsyncIORequests[pCtl->AsyncIOReqTail].ReqType == ReqType)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync {
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pCtl->AsyncIOReqTail++;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync pCtl->AsyncIOReqTail %= RT_ELEMENTS(pCtl->aAsyncIORequests);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync }
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync}
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync/**
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * Dump the request queue for a particular controller. First dump the queue
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * contents, then the already processed entries, as long as they haven't been
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * overwritten.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync *
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync * @param pCtl Controller for which to dump the queue.
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync */
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsyncstatic void ataAsyncIODumpRequests(PATACONTROLLER pCtl)
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync{
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync int rc;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync uint8_t curr;
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync AssertRC(rc);
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync LogRel(("PIIX3 ATA: Ctl#%d: request queue dump (topmost is current):\n", ATACONTROLLER_IDX(pCtl)));
ae41886ba231ade1b868dd32ff24ee49813ebbabvboxsync curr = pCtl->AsyncIOReqTail;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync do
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (curr == pCtl->AsyncIOReqHead)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("PIIX3 ATA: Ctl#%d: processed requests (topmost is oldest):\n", ATACONTROLLER_IDX(pCtl)));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync switch (pCtl->aAsyncIORequests[curr].ReqType)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync case ATA_AIO_NEW:
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("new transfer request, iIf=%d iBeginTransfer=%d iSourceSink=%d cbTotalTransfer=%d uTxDir=%d\n", pCtl->aAsyncIORequests[curr].u.t.iIf, pCtl->aAsyncIORequests[curr].u.t.iBeginTransfer, pCtl->aAsyncIORequests[curr].u.t.iSourceSink, pCtl->aAsyncIORequests[curr].u.t.cbTotalTransfer, pCtl->aAsyncIORequests[curr].u.t.uTxDir));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync break;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync case ATA_AIO_DMA:
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("dma transfer finished\n"));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync break;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync case ATA_AIO_PIO:
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("pio transfer finished\n"));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync break;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync case ATA_AIO_RESET_ASSERTED:
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("reset asserted request\n"));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync break;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync case ATA_AIO_RESET_CLEARED:
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("reset cleared request\n"));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync break;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync case ATA_AIO_ABORT:
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("abort request, iIf=%d fResetDrive=%d\n", pCtl->aAsyncIORequests[curr].u.a.iIf, pCtl->aAsyncIORequests[curr].u.a.fResetDrive));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync break;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync default:
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("unknown request %d\n", pCtl->aAsyncIORequests[curr].ReqType));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
b377a71756cce9f39d25b561f72bfa33ce8a39devboxsync curr = (curr + 1) % RT_ELEMENTS(pCtl->aAsyncIORequests);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync } while (curr != pCtl->AsyncIOReqTail);
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync AssertRC(rc);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync/**
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync * Checks whether the request queue for a particular controller is empty
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync * or whether a particular controller is idle.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync *
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param pCtl Controller for which to check the queue.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param fStrict If set then the controller is checked to be idle.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic bool ataAsyncIOIsIdle(PATACONTROLLER pCtl, bool fStrict)
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync int rc;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync bool fIdle;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync rc = RTSemMutexRequest(pCtl->AsyncIORequestMutex, RT_INDEFINITE_WAIT);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync AssertRC(rc);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync fIdle = pCtl->fRedoIdle;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (!fIdle)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync fIdle = (pCtl->AsyncIOReqHead == pCtl->AsyncIOReqTail);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (fStrict)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync fIdle &= (pCtl->uAsyncIOState == ATA_AIO_NEW);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync rc = RTSemMutexRelease(pCtl->AsyncIORequestMutex);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync AssertRC(rc);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync return fIdle;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync/**
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * Send a transfer request to the async I/O thread.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync *
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param s Pointer to the ATA device state data.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param cbTotalTransfer Data transfer size.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param uTxDir Data transfer direction.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param iBeginTransfer Index of BeginTransfer callback.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param iSourceSink Index of SourceSink callback.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param fChainedTransfer Whether this is a transfer that is part of the previous command/transfer.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataStartTransfer(ATADevState *s, uint32_t cbTotalTransfer, uint8_t uTxDir, ATAFNBT iBeginTransfer, ATAFNSS iSourceSink, bool fChainedTransfer)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
b377a71756cce9f39d25b561f72bfa33ce8a39devboxsync ATARequest Req;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync Assert(PDMCritSectIsOwner(&pCtl->lock));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /* Do not issue new requests while the RESET line is asserted. */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (pCtl->fReset)
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync {
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync Log2(("%s: Ctl#%d: suppressed new request as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync return;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /* If the controller is already doing something else right now, ignore
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * the command that is being submitted. Some broken guests issue commands
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * twice (e.g. the Linux kernel that comes with Acronis True Image 8). */
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync if (!fChainedTransfer && !ataAsyncIOIsIdle(pCtl, true))
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync Log(("%s: Ctl#%d: ignored command %#04x, controller state %d\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), s->uATARegCommand, pCtl->uAsyncIOState));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync LogRel(("PIIX3 IDE: guest issued command %#04x while controller busy\n", s->uATARegCommand));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync return;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.ReqType = ATA_AIO_NEW;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (fChainedTransfer)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.t.iIf = pCtl->iAIOIf;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync else
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.t.iIf = pCtl->iSelectedIf;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.t.cbTotalTransfer = cbTotalTransfer;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.t.uTxDir = uTxDir;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.t.iBeginTransfer = iBeginTransfer;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.t.iSourceSink = iSourceSink;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync ataSetStatusValue(s, ATA_STAT_BUSY);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync pCtl->fChainedTransfer = fChainedTransfer;
b377a71756cce9f39d25b561f72bfa33ce8a39devboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /*
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * Kick the worker thread into action.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Log2(("%s: Ctl#%d: message to async I/O thread, new request\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync ataAsyncIOPutRequest(pCtl, &Req);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync/**
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * Send an abort command request to the async I/O thread.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync *
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param s Pointer to the ATA device state data.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * @param fResetDrive Whether to reset the drive or just abort a command.
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataAbortCurrentCommand(ATADevState *s, bool fResetDrive)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync ATARequest Req;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Assert(PDMCritSectIsOwner(&pCtl->lock));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /* Do not issue new requests while the RESET line is asserted. */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (pCtl->fReset)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Log2(("%s: Ctl#%d: suppressed aborting command as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync return;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.ReqType = ATA_AIO_ABORT;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.a.iIf = pCtl->iSelectedIf;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Req.u.a.fResetDrive = fResetDrive;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync ataSetStatus(s, ATA_STAT_BUSY);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Log2(("%s: Ctl#%d: message to async I/O thread, abort command on LUN#%d\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), s->iLUN));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync ataAsyncIOPutRequest(pCtl, &Req);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataSetIRQ(ATADevState *s)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PPDMDEVINS pDevIns = ATADEVSTATE_2_DEVINS(s);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (!(s->uATARegDevCtl & ATA_DEVCTL_DISABLE_IRQ))
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Log2(("%s: LUN#%d asserting IRQ\n", __FUNCTION__, s->iLUN));
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync /* The BMDMA unit unconditionally sets BM_STATUS_INT if the interrupt
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * line is asserted. It monitors the line for a rising edge. */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (!s->fIrqPending)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync pCtl->BmDma.u8Status |= BM_STATUS_INT;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /* Only actually set the IRQ line if updating the currently selected drive. */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (s == &pCtl->aIfs[pCtl->iSelectedIf])
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /** @todo experiment with adaptive IRQ delivery: for reads it is
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync * better to wait for IRQ delivery, as it reduces latency. */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (pCtl->irq == 16)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 1);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync else
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 1);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->fIrqPending = true;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync#endif /* IN_RING3 */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataUnsetIRQ(ATADevState *s)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PPDMDEVINS pDevIns = ATADEVSTATE_2_DEVINS(s);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (!(s->uATARegDevCtl & ATA_DEVCTL_DISABLE_IRQ))
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Log2(("%s: LUN#%d deasserting IRQ\n", __FUNCTION__, s->iLUN));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /* Only actually unset the IRQ line if updating the currently selected drive. */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (s == &pCtl->aIfs[pCtl->iSelectedIf])
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (pCtl->irq == 16)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 0);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync else
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 0);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->fIrqPending = false;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync#ifdef IN_RING3
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataPIOTransferStart(ATADevState *s, uint32_t start, uint32_t size)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync Log2(("%s: LUN#%d start %d size %d\n", __FUNCTION__, s->iLUN, start, size));
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync s->iIOBufferPIODataStart = start;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync s->iIOBufferPIODataEnd = start + size;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync ataSetStatus(s, ATA_STAT_DRQ);
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataPIOTransferStop(ATADevState *s)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Log2(("%s: LUN#%d\n", __FUNCTION__, s->iLUN));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (s->fATAPITransfer)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
0f77dc54d7ec617480988ccdfcd080f480e79698vboxsync Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync ataSetIRQ(s);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->fATAPITransfer = false;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->cbTotalTransfer = 0;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->cbElementaryTransfer = 0;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->iIOBufferPIODataStart = 0;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->iIOBufferPIODataEnd = 0;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->iBeginTransfer = ATAFN_BT_NULL;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->iSourceSink = ATAFN_SS_NULL;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataPIOTransferLimitATAPI(ATADevState *s)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync uint32_t cbLimit, cbTransfer;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync cbLimit = s->uATARegLCyl | (s->uATARegHCyl << 8);
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync Log2(("%s: byte count limit=%d\n", __FUNCTION__, cbLimit));
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (cbLimit == 0xffff)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync cbLimit--;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync cbTransfer = s->cbTotalTransfer;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (cbTransfer > cbLimit)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /* byte count limit must be even if this case */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (cbLimit & 1)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync cbLimit--;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync cbTransfer = cbLimit;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->uATARegLCyl = cbTransfer;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->uATARegHCyl = cbTransfer >> 8;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync s->cbElementaryTransfer = cbTransfer;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic uint32_t ataGetNSectors(ATADevState *s)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync /* 0 means either 256 (LBA28) or 65536 (LBA48) sectors. */
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (s->fLBA48)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (!s->uATARegNSector && !s->uATARegNSectorHOB)
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync return 65536;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync else
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync return s->uATARegNSectorHOB << 8 | s->uATARegNSector;
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync }
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync else
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync {
4aafb1203580a5c145a7bdae57ebf69a36fa4f01vboxsync if (!s->uATARegNSector)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync return 256;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync else
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync return s->uATARegNSector;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsyncstatic void ataPadString(uint8_t *pbDst, const char *pbSrc, uint32_t cbSize)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync{
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync for (uint32_t i = 0; i < cbSize; i++)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync {
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync if (*pbSrc)
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync pbDst[i ^ 1] = *pbSrc++;
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync else
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync pbDst[i ^ 1] = ' ';
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync }
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync}
bc0c1e33e433d1276ea1606ace81f61594ee3838vboxsync
static void ataSCSIPadStr(uint8_t *pbDst, const char *pbSrc, uint32_t cbSize)
{
for (uint32_t i = 0; i < cbSize; i++)
{
if (*pbSrc)
pbDst[i] = *pbSrc++;
else
pbDst[i] = ' ';
}
}
DECLINLINE(void) ataH2BE_U16(uint8_t *pbBuf, uint16_t val)
{
pbBuf[0] = val >> 8;
pbBuf[1] = val;
}
DECLINLINE(void) ataH2BE_U24(uint8_t *pbBuf, uint32_t val)
{
pbBuf[0] = val >> 16;
pbBuf[1] = val >> 8;
pbBuf[2] = val;
}
DECLINLINE(void) ataH2BE_U32(uint8_t *pbBuf, uint32_t val)
{
pbBuf[0] = val >> 24;
pbBuf[1] = val >> 16;
pbBuf[2] = val >> 8;
pbBuf[3] = val;
}
DECLINLINE(uint16_t) ataBE2H_U16(const uint8_t *pbBuf)
{
return (pbBuf[0] << 8) | pbBuf[1];
}
DECLINLINE(uint32_t) ataBE2H_U24(const uint8_t *pbBuf)
{
return (pbBuf[0] << 16) | (pbBuf[1] << 8) | pbBuf[2];
}
DECLINLINE(uint32_t) ataBE2H_U32(const uint8_t *pbBuf)
{
return (pbBuf[0] << 24) | (pbBuf[1] << 16) | (pbBuf[2] << 8) | pbBuf[3];
}
DECLINLINE(void) ataLBA2MSF(uint8_t *pbBuf, uint32_t iATAPILBA)
{
iATAPILBA += 150;
pbBuf[0] = (iATAPILBA / 75) / 60;
pbBuf[1] = (iATAPILBA / 75) % 60;
pbBuf[2] = iATAPILBA % 75;
}
DECLINLINE(uint32_t) ataMSF2LBA(const uint8_t *pbBuf)
{
return (pbBuf[0] * 60 + pbBuf[1]) * 75 + pbBuf[2];
}
static void ataCmdOK(ATADevState *s, uint8_t status)
{
s->uATARegError = 0; /* Not needed by ATA spec, but cannot hurt. */
ataSetStatusValue(s, ATA_STAT_READY | status);
}
static void ataCmdError(ATADevState *s, uint8_t uErrorCode)
{
Log(("%s: code=%#x\n", __FUNCTION__, uErrorCode));
s->uATARegError = uErrorCode;
ataSetStatusValue(s, ATA_STAT_READY | ATA_STAT_ERR);
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iIOBufferCur = 0;
s->iIOBufferEnd = 0;
s->uTxDir = PDMBLOCKTXDIR_NONE;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
}
static bool ataIdentifySS(ATADevState *s)
{
uint16_t *p;
char aSerial[20];
int rc;
RTUUID Uuid;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer == 512);
rc = s->pDrvBlock ? s->pDrvBlock->pfnGetUuid(s->pDrvBlock, &Uuid) : RTUuidClear(&Uuid);
if (VBOX_FAILURE(rc) || RTUuidIsNull(&Uuid))
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
/* Generate a predictable serial for drives which don't have a UUID. */
RTStrPrintf(aSerial, sizeof(aSerial), "VB%x-%04x%04x",
s->iLUN + ATADEVSTATE_2_DEVINS(s)->iInstance * 32,
pCtl->IOPortBase1, pCtl->IOPortBase2);
}
else
RTStrPrintf(aSerial, sizeof(aSerial), "VB%08x-%08x", Uuid.au32[0], Uuid.au32[3]);
p = (uint16_t *)s->CTXSUFF(pbIOBuffer);
memset(p, 0, 512);
p[0] = RT_H2LE_U16(0x0040);
p[1] = RT_H2LE_U16(RT_MIN(s->cCHSCylinders, 16383));
p[3] = RT_H2LE_U16(s->cCHSHeads);
/* Block size; obsolete, but required for the BIOS. */
p[5] = RT_H2LE_U16(512);
p[6] = RT_H2LE_U16(s->cCHSSectors);
ataPadString((uint8_t *)(p + 10), aSerial, 20); /* serial number */
p[20] = RT_H2LE_U16(3); /* XXX: retired, cache type */
p[21] = RT_H2LE_U16(512); /* XXX: retired, cache size in sectors */
p[22] = RT_H2LE_U16(0); /* ECC bytes per sector */
ataPadString((uint8_t *)(p + 23), "1.0", 8); /* firmware version */
ataPadString((uint8_t *)(p + 27), "VBOX HARDDISK", 40); /* model */
#if ATA_MAX_MULT_SECTORS > 1
p[47] = RT_H2LE_U16(0x8000 | ATA_MAX_MULT_SECTORS);
#endif
p[48] = RT_H2LE_U16(1); /* dword I/O, used by the BIOS */
p[49] = RT_H2LE_U16(1 << 11 | 1 << 9 | 1 << 8); /* DMA and LBA supported */
p[50] = RT_H2LE_U16(1 << 14); /* No drive specific standby timer minimum */
p[51] = RT_H2LE_U16(240); /* PIO transfer cycle */
p[52] = RT_H2LE_U16(240); /* DMA transfer cycle */
p[53] = RT_H2LE_U16(1 | 1 << 1 | 1 << 2); /* words 54-58,64-70,88 valid */
p[54] = RT_H2LE_U16(RT_MIN(s->cCHSCylinders, 16383));
p[55] = RT_H2LE_U16(s->cCHSHeads);
p[56] = RT_H2LE_U16(s->cCHSSectors);
p[57] = RT_H2LE_U16(RT_MIN(s->cCHSCylinders, 16383) * s->cCHSHeads * s->cCHSSectors);
p[58] = RT_H2LE_U16(RT_MIN(s->cCHSCylinders, 16383) * s->cCHSHeads * s->cCHSSectors >> 16);
if (s->cMultSectors)
p[59] = RT_H2LE_U16(0x100 | s->cMultSectors);
if (s->cTotalSectors <= (1 << 28) - 1)
{
p[60] = RT_H2LE_U16(s->cTotalSectors);
p[61] = RT_H2LE_U16(s->cTotalSectors >> 16);
}
else
{
/* Report maximum number of sectors possible with LBA28 */
p[60] = RT_H2LE_U16(((1 << 28) - 1) & 0xffff);
p[61] = RT_H2LE_U16(((1 << 28) - 1) >> 16);
}
p[63] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_MDMA, ATA_MDMA_MODE_MAX, s->uATATransferMode)); /* MDMA modes supported / mode enabled */
p[64] = RT_H2LE_U16(ATA_PIO_MODE_MAX > 2 ? (1 << (ATA_PIO_MODE_MAX - 2)) - 1 : 0); /* PIO modes beyond PIO2 supported */
p[65] = RT_H2LE_U16(120); /* minimum DMA multiword tx cycle time */
p[66] = RT_H2LE_U16(120); /* recommended DMA multiword tx cycle time */
p[67] = RT_H2LE_U16(120); /* minimum PIO cycle time without flow control */
p[68] = RT_H2LE_U16(120); /* minimum PIO cycle time with IORDY flow control */
p[80] = RT_H2LE_U16(0x7e); /* support everything up to ATA/ATAPI-6 */
p[81] = RT_H2LE_U16(0x22); /* conforms to ATA/ATAPI-6 */
p[82] = RT_H2LE_U16(1 << 3 | 1 << 5 | 1 << 6); /* supports power management, write cache and look-ahead */
if (s->cTotalSectors <= (1 << 28) - 1)
p[83] = RT_H2LE_U16(1 << 14 | 1 << 12); /* supports FLUSH CACHE */
else
p[83] = RT_H2LE_U16(1 << 14 | 1 << 10 | 1 << 12 | 1 << 13); /* supports LBA48, FLUSH CACHE and FLUSH CACHE EXT */
p[84] = RT_H2LE_U16(1 << 14);
p[85] = RT_H2LE_U16(1 << 3 | 1 << 5 | 1 << 6); /* enabled power management, write cache and look-ahead */
if (s->cTotalSectors <= (1 << 28) - 1)
p[86] = RT_H2LE_U16(1 << 12); /* enabled FLUSH CACHE */
else
p[86] = RT_H2LE_U16(1 << 10 | 1 << 12 | 1 << 13); /* enabled LBA48, FLUSH CACHE and FLUSH CACHE EXT */
p[87] = RT_H2LE_U16(1 << 14);
p[88] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_UDMA, ATA_UDMA_MODE_MAX, s->uATATransferMode)); /* UDMA modes supported / mode enabled */
p[93] = RT_H2LE_U16((1 | 1 << 1) << ((s->iLUN & 1) == 0 ? 0 : 8) | 1 << 13 | 1 << 14);
if (s->cTotalSectors > (1 << 28) - 1)
{
p[100] = RT_H2LE_U16(s->cTotalSectors);
p[101] = RT_H2LE_U16(s->cTotalSectors >> 16);
p[102] = RT_H2LE_U16(s->cTotalSectors >> 32);
p[103] = RT_H2LE_U16(s->cTotalSectors >> 48);
}
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
return false;
}
static bool ataFlushSS(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc;
Assert(s->uTxDir == PDMBLOCKTXDIR_NONE);
Assert(!s->cbElementaryTransfer);
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_START(&s->StatFlushes, f);
rc = s->pDrvBlock->pfnFlush(s->pDrvBlock);
AssertRC(rc);
STAM_PROFILE_STOP(&s->StatFlushes, f);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
ataCmdOK(s, 0);
return false;
}
static bool atapiIdentifySS(ATADevState *s)
{
uint16_t *p;
char aSerial[20];
RTUUID Uuid;
int rc;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer == 512);
rc = s->pDrvBlock ? s->pDrvBlock->pfnGetUuid(s->pDrvBlock, &Uuid) : RTUuidClear(&Uuid);
if (VBOX_FAILURE(rc) || RTUuidIsNull(&Uuid))
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
/* Generate a predictable serial for drives which don't have a UUID. */
RTStrPrintf(aSerial, sizeof(aSerial), "VB%x-%04x%04x",
s->iLUN + ATADEVSTATE_2_DEVINS(s)->iInstance * 32,
pCtl->IOPortBase1, pCtl->IOPortBase2);
}
else
RTStrPrintf(aSerial, sizeof(aSerial), "VB%08x-%08x", Uuid.au32[0], Uuid.au32[3]);
p = (uint16_t *)s->CTXSUFF(pbIOBuffer);
memset(p, 0, 512);
/* Removable CDROM, 50us response, 12 byte packets */
p[0] = RT_H2LE_U16(2 << 14 | 5 << 8 | 1 << 7 | 2 << 5 | 0 << 0);
ataPadString((uint8_t *)(p + 10), aSerial, 20); /* serial number */
p[20] = RT_H2LE_U16(3); /* XXX: retired, cache type */
p[21] = RT_H2LE_U16(512); /* XXX: retired, cache size in sectors */
ataPadString((uint8_t *)(p + 23), "1.0", 8); /* firmware version */
ataPadString((uint8_t *)(p + 27), "VBOX CD-ROM", 40); /* model */
p[49] = RT_H2LE_U16(1 << 11 | 1 << 9 | 1 << 8); /* DMA and LBA supported */
p[50] = RT_H2LE_U16(1 << 14); /* No drive specific standby timer minimum */
p[51] = RT_H2LE_U16(240); /* PIO transfer cycle */
p[52] = RT_H2LE_U16(240); /* DMA transfer cycle */
p[53] = RT_H2LE_U16(1 << 1 | 1 << 2); /* words 64-70,88 are valid */
p[63] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_MDMA, ATA_MDMA_MODE_MAX, s->uATATransferMode)); /* MDMA modes supported / mode enabled */
p[64] = RT_H2LE_U16(ATA_PIO_MODE_MAX > 2 ? (1 << (ATA_PIO_MODE_MAX - 2)) - 1 : 0); /* PIO modes beyond PIO2 supported */
p[65] = RT_H2LE_U16(120); /* minimum DMA multiword tx cycle time */
p[66] = RT_H2LE_U16(120); /* recommended DMA multiword tx cycle time */
p[67] = RT_H2LE_U16(120); /* minimum PIO cycle time without flow control */
p[68] = RT_H2LE_U16(120); /* minimum PIO cycle time with IORDY flow control */
p[73] = RT_H2LE_U16(0x003e); /* ATAPI CDROM major */
p[74] = RT_H2LE_U16(9); /* ATAPI CDROM minor */
p[75] = RT_H2LE_U16(1); /* queue depth 1 */
p[80] = RT_H2LE_U16(0x7e); /* support everything up to ATA/ATAPI-6 */
p[81] = RT_H2LE_U16(0x22); /* conforms to ATA/ATAPI-6 */
p[82] = RT_H2LE_U16(1 << 4 | 1 << 9); /* supports packet command set and DEVICE RESET */
p[83] = RT_H2LE_U16(1 << 14);
p[84] = RT_H2LE_U16(1 << 14);
p[85] = RT_H2LE_U16(1 << 4 | 1 << 9); /* enabled packet command set and DEVICE RESET */
p[86] = RT_H2LE_U16(0);
p[87] = RT_H2LE_U16(1 << 14);
p[88] = RT_H2LE_U16(ATA_TRANSFER_ID(ATA_MODE_UDMA, ATA_UDMA_MODE_MAX, s->uATATransferMode)); /* UDMA modes supported / mode enabled */
p[93] = RT_H2LE_U16((1 | 1 << 1) << ((s->iLUN & 1) == 0 ? 0 : 8) | 1 << 13 | 1 << 14);
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
return false;
}
static void ataSetSignature(ATADevState *s)
{
s->uATARegSelect &= 0xf0; /* clear head */
/* put signature */
s->uATARegNSector = 1;
s->uATARegSector = 1;
if (s->fATAPI)
{
s->uATARegLCyl = 0x14;
s->uATARegHCyl = 0xeb;
}
else if (s->pDrvBlock)
{
s->uATARegLCyl = 0;
s->uATARegHCyl = 0;
}
else
{
s->uATARegLCyl = 0xff;
s->uATARegHCyl = 0xff;
}
}
static uint64_t ataGetSector(ATADevState *s)
{
uint64_t iLBA;
if (s->uATARegSelect & 0x40)
{
/* any LBA variant */
if (s->fLBA48)
{
/* LBA48 */
iLBA = ((uint64_t)s->uATARegHCylHOB << 40) |
((uint64_t)s->uATARegLCylHOB << 32) |
((uint64_t)s->uATARegSectorHOB << 24) |
((uint64_t)s->uATARegHCyl << 16) |
((uint64_t)s->uATARegLCyl << 8) |
s->uATARegSector;
}
else
{
/* LBA */
iLBA = ((s->uATARegSelect & 0x0f) << 24) | (s->uATARegHCyl << 16) |
(s->uATARegLCyl << 8) | s->uATARegSector;
}
}
else
{
/* CHS */
iLBA = ((s->uATARegHCyl << 8) | s->uATARegLCyl) * s->cCHSHeads * s->cCHSSectors +
(s->uATARegSelect & 0x0f) * s->cCHSSectors +
(s->uATARegSector - 1);
}
return iLBA;
}
static void ataSetSector(ATADevState *s, uint64_t iLBA)
{
uint32_t cyl, r;
if (s->uATARegSelect & 0x40)
{
/* any LBA variant */
if (s->fLBA48)
{
/* LBA48 */
s->uATARegHCylHOB = iLBA >> 40;
s->uATARegLCylHOB = iLBA >> 32;
s->uATARegSectorHOB = iLBA >> 24;
s->uATARegHCyl = iLBA >> 16;
s->uATARegLCyl = iLBA >> 8;
s->uATARegSector = iLBA;
}
else
{
/* LBA */
s->uATARegSelect = (s->uATARegSelect & 0xf0) | (iLBA >> 24);
s->uATARegHCyl = (iLBA >> 16);
s->uATARegLCyl = (iLBA >> 8);
s->uATARegSector = (iLBA);
}
}
else
{
/* CHS */
cyl = iLBA / (s->cCHSHeads * s->cCHSSectors);
r = iLBA % (s->cCHSHeads * s->cCHSSectors);
s->uATARegHCyl = cyl >> 8;
s->uATARegLCyl = cyl;
s->uATARegSelect = (s->uATARegSelect & 0xf0) | ((r / s->cCHSSectors) & 0x0f);
s->uATARegSector = (r % s->cCHSSectors) + 1;
}
}
static int ataReadSectors(ATADevState *s, uint64_t u64Sector, void *pvBuf, uint32_t cSectors)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc;
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_ADV_START(&s->StatReads, r);
s->Led.Asserted.s.fReading = s->Led.Actual.s.fReading = 1;
rc = s->pDrvBlock->pfnRead(s->pDrvBlock, u64Sector * 512, pvBuf, cSectors * 512);
s->Led.Actual.s.fReading = 0;
STAM_PROFILE_ADV_STOP(&s->StatReads, r);
STAM_COUNTER_ADD(&s->StatBytesRead, cSectors * 512);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
return rc;
}
static int ataWriteSectors(ATADevState *s, uint64_t u64Sector, const void *pvBuf, uint32_t cSectors)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc;
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_ADV_START(&s->StatWrites, w);
s->Led.Asserted.s.fWriting = s->Led.Actual.s.fWriting = 1;
rc = s->pDrvBlock->pfnWrite(s->pDrvBlock, u64Sector * 512, pvBuf, cSectors * 512);
s->Led.Actual.s.fWriting = 0;
STAM_PROFILE_ADV_STOP(&s->StatWrites, w);
STAM_COUNTER_ADD(&s->StatBytesWritten, cSectors * 512);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
return rc;
}
static void ataReadWriteSectorsBT(ATADevState *s)
{
uint32_t cSectors;
cSectors = s->cbTotalTransfer / 512;
if (cSectors > s->cSectorsPerIRQ)
s->cbElementaryTransfer = s->cSectorsPerIRQ * 512;
else
s->cbElementaryTransfer = cSectors * 512;
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
ataCmdOK(s, 0);
}
static void ataWarningDiskFull(PPDMDEVINS pDevIns)
{
int rc;
LogRel(("PIIX3 ATA: Host disk full\n"));
rc = VMSetRuntimeError(PDMDevHlpGetVM(pDevIns),
false, "DevATA_DISKFULL",
N_("Host system reported disk full. VM execution is suspended. You can resume after freeing some space"));
AssertRC(rc);
}
static void ataWarningFileTooBig(PPDMDEVINS pDevIns)
{
int rc;
LogRel(("PIIX3 ATA: File too big\n"));
rc = VMSetRuntimeError(PDMDevHlpGetVM(pDevIns),
false, "DevATA_FILETOOBIG",
N_("Host system reported that the file size limit has been exceeded. VM execution is suspended. You need to move the file to a filesystem which allows bigger files"));
AssertRC(rc);
}
static void ataWarningISCSI(PPDMDEVINS pDevIns)
{
int rc;
LogRel(("PIIX3 ATA: iSCSI target unavailable\n"));
rc = VMSetRuntimeError(PDMDevHlpGetVM(pDevIns),
false, "DevATA_ISCSIDOWN",
N_("The iSCSI target has stopped responding. VM execution is suspended. You can resume when it is available again"));
AssertRC(rc);
}
static bool ataReadSectorsSS(ATADevState *s)
{
int rc;
uint32_t cSectors;
uint64_t iLBA;
cSectors = s->cbElementaryTransfer / 512;
Assert(cSectors);
iLBA = ataGetSector(s);
Log(("%s: %d sectors at LBA %d\n", __FUNCTION__, cSectors, iLBA));
rc = ataReadSectors(s, iLBA, s->CTXSUFF(pbIOBuffer), cSectors);
if (VBOX_SUCCESS(rc))
{
ataSetSector(s, iLBA + cSectors);
if (s->cbElementaryTransfer == s->cbTotalTransfer)
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
}
else
{
if (rc == VERR_DISK_FULL)
{
ataWarningDiskFull(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_FILE_TOO_BIG)
{
ataWarningFileTooBig(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_BROKEN_PIPE || rc == VERR_NET_CONNECTION_REFUSED)
{
/* iSCSI connection abort (first error) or failure to reestablish
* connection (second error). Pause VM. On resume we'll retry. */
ataWarningISCSI(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: disk read error (rc=%Vrc iSector=%#RX64 cSectors=%#RX32)\n",
s->iLUN, rc, iLBA, cSectors));
ataCmdError(s, ID_ERR);
}
/** @todo implement redo for iSCSI */
return false;
}
static bool ataWriteSectorsSS(ATADevState *s)
{
int rc;
uint32_t cSectors;
uint64_t iLBA;
cSectors = s->cbElementaryTransfer / 512;
Assert(cSectors);
iLBA = ataGetSector(s);
Log(("%s: %d sectors at LBA %d\n", __FUNCTION__, cSectors, iLBA));
rc = ataWriteSectors(s, iLBA, s->CTXSUFF(pbIOBuffer), cSectors);
if (VBOX_SUCCESS(rc))
{
ataSetSector(s, iLBA + cSectors);
if (!s->cbTotalTransfer)
s->iSourceSink = ATAFN_SS_NULL;
ataCmdOK(s, ATA_STAT_SEEK);
}
else
{
if (rc == VERR_DISK_FULL)
{
ataWarningDiskFull(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_FILE_TOO_BIG)
{
ataWarningFileTooBig(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (rc == VERR_BROKEN_PIPE || rc == VERR_NET_CONNECTION_REFUSED)
{
/* iSCSI connection abort (first error) or failure to reestablish
* connection (second error). Pause VM. On resume we'll retry. */
ataWarningISCSI(ATADEVSTATE_2_DEVINS(s));
return true;
}
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: disk write error (rc=%Vrc iSector=%#RX64 cSectors=%#RX32)\n",
s->iLUN, rc, iLBA, cSectors));
ataCmdError(s, ID_ERR);
}
/** @todo implement redo for iSCSI */
return false;
}
static void atapiCmdOK(ATADevState *s)
{
s->uATARegError = 0;
ataSetStatusValue(s, ATA_STAT_READY);
s->uATARegNSector = (s->uATARegNSector & ~7)
| ((s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE) ? ATAPI_INT_REASON_IO : 0)
| (!s->cbTotalTransfer ? ATAPI_INT_REASON_CD : 0);
Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
s->uATAPISenseKey = SCSI_SENSE_NONE;
s->uATAPIASC = SCSI_ASC_NONE;
}
static void atapiCmdError(ATADevState *s, uint8_t uATAPISenseKey, uint8_t uATAPIASC)
{
Log(("%s: sense=%#x asc=%#x\n", __FUNCTION__, uATAPISenseKey, uATAPIASC));
s->uATARegError = uATAPISenseKey << 4;
ataSetStatusValue(s, ATA_STAT_READY | ATA_STAT_ERR);
s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
s->uATAPISenseKey = uATAPISenseKey;
s->uATAPIASC = uATAPIASC;
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iIOBufferCur = 0;
s->iIOBufferEnd = 0;
s->uTxDir = PDMBLOCKTXDIR_NONE;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
}
static void atapiCmdBT(ATADevState *s)
{
s->fATAPITransfer = true;
s->cbElementaryTransfer = s->cbTotalTransfer;
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
atapiCmdOK(s);
}
static void atapiPassthroughCmdBT(ATADevState *s)
{
/* @todo implement an algorithm for correctly determining the read and
* write sector size without sending additional commands to the drive.
* This should be doable by saving processing the configuration requests
* and replies. */
#if 0
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
{
uint8_t cmd = s->aATAPICmd[0];
if (cmd == SCSI_WRITE_10 || cmd == SCSI_WRITE_12 || cmd == SCSI_WRITE_AND_VERIFY_10)
{
uint8_t aModeSenseCmd[10];
uint8_t aModeSenseResult[16];
uint8_t uDummySense;
uint32_t cbTransfer;
int rc;
cbTransfer = sizeof(aModeSenseResult);
aModeSenseCmd[0] = SCSI_MODE_SENSE_10;
aModeSenseCmd[1] = 0x08; /* disable block descriptor = 1 */
aModeSenseCmd[2] = (SCSI_PAGECONTROL_CURRENT << 6) | SCSI_MODEPAGE_WRITE_PARAMETER;
aModeSenseCmd[3] = 0; /* subpage code */
aModeSenseCmd[4] = 0; /* reserved */
aModeSenseCmd[5] = 0; /* reserved */
aModeSenseCmd[6] = 0; /* reserved */
aModeSenseCmd[7] = cbTransfer >> 8;
aModeSenseCmd[8] = cbTransfer & 0xff;
aModeSenseCmd[9] = 0; /* control */
rc = s->pDrvBlock->pfnSendCmd(s->pDrvBlock, aModeSenseCmd, PDMBLOCKTXDIR_FROM_DEVICE, aModeSenseResult, &cbTransfer, &uDummySense, 500);
if (VBOX_FAILURE(rc))
{
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_NONE);
return;
}
/* Select sector size based on the current data block type. */
switch (aModeSenseResult[12] & 0x0f)
{
case 0:
s->cbATAPISector = 2352;
break;
case 1:
s->cbATAPISector = 2368;
break;
case 2:
case 3:
s->cbATAPISector = 2448;
break;
case 8:
case 10:
s->cbATAPISector = 2048;
break;
case 9:
s->cbATAPISector = 2336;
break;
case 11:
s->cbATAPISector = 2056;
break;
case 12:
s->cbATAPISector = 2324;
break;
case 13:
s->cbATAPISector = 2332;
break;
default:
s->cbATAPISector = 0;
}
Log2(("%s: sector size %d\n", __FUNCTION__, s->cbATAPISector));
s->cbTotalTransfer *= s->cbATAPISector;
if (s->cbTotalTransfer == 0)
s->uTxDir = PDMBLOCKTXDIR_NONE;
}
}
#endif
atapiCmdBT(s);
}
static bool atapiReadSS(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc = VINF_SUCCESS;
uint32_t cbTransfer, cSectors;
s->iSourceSink = ATAFN_SS_NULL;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
cbTransfer = RT_MIN(s->cbTotalTransfer, s->cbIOBuffer);
cSectors = cbTransfer / s->cbATAPISector;
Assert(cSectors * s->cbATAPISector == cbTransfer);
Log(("%s: %d sectors at LBA %d\n", __FUNCTION__, cSectors, s->iATAPILBA));
PDMCritSectLeave(&pCtl->lock);
STAM_PROFILE_ADV_START(&s->StatReads, r);
s->Led.Asserted.s.fReading = s->Led.Actual.s.fReading = 1;
switch (s->cbATAPISector)
{
case 2048:
rc = s->pDrvBlock->pfnRead(s->pDrvBlock, (uint64_t)s->iATAPILBA * s->cbATAPISector, s->CTXSUFF(pbIOBuffer), s->cbATAPISector * cSectors);
break;
case 2352:
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
for (uint32_t i = s->iATAPILBA; i < s->iATAPILBA + cSectors; i++)
{
/* sync bytes */
*pbBuf++ = 0x00;
memset(pbBuf, 0xff, 11);
pbBuf += 11;
/* MSF */
ataLBA2MSF(pbBuf, i);
pbBuf += 3;
*pbBuf++ = 0x01; /* mode 1 data */
/* data */
rc = s->pDrvBlock->pfnRead(s->pDrvBlock, (uint64_t)i * 2048, pbBuf, 2048);
if (VBOX_FAILURE(rc))
break;
pbBuf += 2048;
/* ECC */
memset(pbBuf, 0, 288);
pbBuf += 288;
}
}
break;
default:
break;
}
STAM_PROFILE_ADV_STOP(&s->StatReads, r);
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
if (VBOX_SUCCESS(rc))
{
s->Led.Actual.s.fReading = 0;
STAM_COUNTER_ADD(&s->StatBytesRead, s->cbATAPISector * cSectors);
atapiCmdOK(s);
s->iATAPILBA += cSectors;
}
else
{
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM read error, %d sectors at LBA %d\n", s->iLUN, cSectors, s->iATAPILBA));
atapiCmdError(s, SCSI_SENSE_MEDIUM_ERROR, SCSI_ASC_READ_ERROR);
}
return false;
}
static bool atapiPassthroughSS(ATADevState *s)
{
PATACONTROLLER pCtl = ATADEVSTATE_2_CONTROLLER(s);
int rc = VINF_SUCCESS;
uint8_t uATAPISenseKey;
size_t cbTransfer;
PSTAMPROFILEADV pProf = NULL;
cbTransfer = s->cbElementaryTransfer;
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE)
Log3(("ATAPI PT data write (%d): %.*Vhxs\n", cbTransfer, cbTransfer, s->CTXSUFF(pbIOBuffer)));
/* Simple heuristics: if there is at least one sector of data
* to transfer, it's worth updating the LEDs. */
if (cbTransfer >= 2048)
{
if (s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
{
s->Led.Asserted.s.fReading = s->Led.Actual.s.fReading = 1;
pProf = &s->StatReads;
}
else
{
s->Led.Asserted.s.fWriting = s->Led.Actual.s.fWriting = 1;
pProf = &s->StatWrites;
}
}
PDMCritSectLeave(&pCtl->lock);
if (pProf) { STAM_PROFILE_ADV_START(pProf, b); }
if (cbTransfer > 100 * _1K)
{
/* Linux accepts commands with up to 100KB of data, but expects
* us to handle commands with up to 128KB of data. The usual
* imbalance of powers. */
uint8_t aATAPICmd[ATAPI_PACKET_SIZE];
uint32_t iATAPILBA, cSectors, cReqSectors;
size_t cbCurrTX;
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
switch (s->aATAPICmd[0])
{
case SCSI_READ_10:
case SCSI_WRITE_10:
case SCSI_WRITE_AND_VERIFY_10:
iATAPILBA = ataBE2H_U32(s->aATAPICmd + 2);
cSectors = ataBE2H_U16(s->aATAPICmd + 7);
break;
case SCSI_READ_12:
case SCSI_WRITE_12:
iATAPILBA = ataBE2H_U32(s->aATAPICmd + 2);
cSectors = ataBE2H_U32(s->aATAPICmd + 6);
break;
case SCSI_READ_CD:
iATAPILBA = ataBE2H_U32(s->aATAPICmd + 2);
cSectors = ataBE2H_U24(s->aATAPICmd + 6) / s->cbATAPISector;
break;
case SCSI_READ_CD_MSF:
iATAPILBA = ataMSF2LBA(s->aATAPICmd + 3);
cSectors = ataMSF2LBA(s->aATAPICmd + 6) - iATAPILBA;
break;
default:
AssertMsgFailed(("Don't know how to split command %#04x\n", s->aATAPICmd[0]));
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM passthrough split error\n", s->iLUN));
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
return false;
}
memcpy(aATAPICmd, s->aATAPICmd, ATAPI_PACKET_SIZE);
cReqSectors = 0;
for (uint32_t i = cSectors; i > 0; i -= cReqSectors)
{
if (i * s->cbATAPISector > 100 * _1K)
cReqSectors = (100 * _1K) / s->cbATAPISector;
else
cReqSectors = i;
cbCurrTX = s->cbATAPISector * cReqSectors;
switch (s->aATAPICmd[0])
{
case SCSI_READ_10:
case SCSI_WRITE_10:
case SCSI_WRITE_AND_VERIFY_10:
ataH2BE_U32(aATAPICmd + 2, iATAPILBA);
ataH2BE_U16(aATAPICmd + 7, cReqSectors);
break;
case SCSI_READ_12:
case SCSI_WRITE_12:
ataH2BE_U32(aATAPICmd + 2, iATAPILBA);
ataH2BE_U32(aATAPICmd + 6, cReqSectors);
break;
case SCSI_READ_CD:
ataH2BE_U32(s->aATAPICmd + 2, iATAPILBA);
ataH2BE_U24(s->aATAPICmd + 6, cbCurrTX);
break;
case SCSI_READ_CD_MSF:
ataLBA2MSF(aATAPICmd + 3, iATAPILBA);
ataLBA2MSF(aATAPICmd + 6, iATAPILBA + cReqSectors);
break;
}
rc = s->pDrvBlock->pfnSendCmd(s->pDrvBlock, aATAPICmd, (PDMBLOCKTXDIR)s->uTxDir, pbBuf, &cbCurrTX, &uATAPISenseKey, 30000 /**< @todo timeout */);
if (rc != VINF_SUCCESS)
break;
iATAPILBA += cReqSectors;
pbBuf += s->cbATAPISector * cReqSectors;
}
}
else
rc = s->pDrvBlock->pfnSendCmd(s->pDrvBlock, s->aATAPICmd, (PDMBLOCKTXDIR)s->uTxDir, s->CTXSUFF(pbIOBuffer), &cbTransfer, &uATAPISenseKey, 30000 /**< @todo timeout */);
if (pProf) { STAM_PROFILE_ADV_STOP(pProf, b); }
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
/* Update the LEDs and the read/write statistics. */
if (cbTransfer >= 2048)
{
if (s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
{
s->Led.Actual.s.fReading = 0;
STAM_COUNTER_ADD(&s->StatBytesRead, cbTransfer);
}
else
{
s->Led.Actual.s.fWriting = 0;
STAM_COUNTER_ADD(&s->StatBytesWritten, cbTransfer);
}
}
if (VBOX_SUCCESS(rc))
{
if (s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE)
{
Assert(cbTransfer <= s->cbTotalTransfer);
/* Reply with the same amount of data as the real drive. */
s->cbTotalTransfer = cbTransfer;
if (s->aATAPICmd[0] == SCSI_INQUIRY)
{
/* Make sure that the real drive cannot be identified.
* Motivation: changing the VM configuration should be as
* invisible as possible to the guest. */
Log3(("ATAPI PT inquiry data before (%d): %.*Vhxs\n", cbTransfer, cbTransfer, s->CTXSUFF(pbIOBuffer)));
ataSCSIPadStr(s->CTXSUFF(pbIOBuffer) + 8, "VBOX", 8);
ataSCSIPadStr(s->CTXSUFF(pbIOBuffer) + 16, "CD-ROM", 16);
ataSCSIPadStr(s->CTXSUFF(pbIOBuffer) + 32, "1.0", 4);
}
if (cbTransfer)
Log3(("ATAPI PT data read (%d): %.*Vhxs\n", cbTransfer, cbTransfer, s->CTXSUFF(pbIOBuffer)));
}
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
}
else
{
if (s->cErrors++ < MAX_LOG_REL_ERRORS)
{
uint8_t u8Cmd = s->aATAPICmd[0];
do
{
/* don't log superflous errors */
if ( rc == VERR_DEV_IO_ERROR
&& ( u8Cmd == SCSI_TEST_UNIT_READY
|| u8Cmd == SCSI_READ_CAPACITY
|| u8Cmd == SCSI_READ_TOC_PMA_ATIP))
break;
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM passthrough command (%#04x) error %d %Vrc\n", s->iLUN, u8Cmd, uATAPISenseKey, rc));
} while (0);
}
atapiCmdError(s, uATAPISenseKey, 0);
/* This is a drive-reported error. atapiCmdError() sets both the error
* error code in the ATA error register and in s->uATAPISenseKey. The
* former is correct, the latter is not. Otherwise the drive would not
* get the next REQUEST SENSE command which is necessary to clear the
* error status of the drive. Easy fix: clear s->uATAPISenseKey. */
s->uATAPISenseKey = SCSI_SENSE_NONE;
s->uATAPIASC = SCSI_ASC_NONE;
}
return false;
}
static bool atapiReadSectors(ATADevState *s, uint32_t iATAPILBA, uint32_t cSectors, uint32_t cbSector)
{
Assert(cSectors > 0);
s->iATAPILBA = iATAPILBA;
s->cbATAPISector = cbSector;
ataStartTransfer(s, cSectors * cbSector, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ, true);
return false;
}
static bool atapiReadCapacitySS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 8);
ataH2BE_U32(pbBuf, s->cTotalSectors - 1);
ataH2BE_U32(pbBuf + 4, 2048);
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadDiscInformationSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 34);
memset(pbBuf, '\0', 34);
ataH2BE_U16(pbBuf, 32);
pbBuf[2] = (0 << 4) | (3 << 2) | (2 << 0); /* not erasable, complete session, complete disc */
pbBuf[3] = 1; /* number of first track */
pbBuf[4] = 1; /* number of sessions (LSB) */
pbBuf[5] = 1; /* first track number in last session (LSB) */
pbBuf[6] = 1; /* last track number in last session (LSB) */
pbBuf[7] = (0 << 7) | (0 << 6) | (1 << 5) | (0 << 2) | (0 << 0); /* disc id not valid, disc bar code not valid, unrestricted use, not dirty, not RW medium */
pbBuf[8] = 0; /* disc type = CD-ROM */
pbBuf[9] = 0; /* number of sessions (MSB) */
pbBuf[10] = 0; /* number of sessions (MSB) */
pbBuf[11] = 0; /* number of sessions (MSB) */
ataH2BE_U32(pbBuf + 16, 0x00ffffff); /* last session lead-in start time is not available */
ataH2BE_U32(pbBuf + 20, 0x00ffffff); /* last possible start time for lead-out is not available */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTrackInformationSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 36);
/* Accept address/number type of 1 only, and only track 1 exists. */
if ((s->aATAPICmd[1] & 0x03) != 1 || ataBE2H_U32(&s->aATAPICmd[2]) != 1)
{
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
return false;
}
memset(pbBuf, '\0', 36);
ataH2BE_U16(pbBuf, 34);
pbBuf[2] = 1; /* track number (LSB) */
pbBuf[3] = 1; /* session number (LSB) */
pbBuf[5] = (0 << 5) | (0 << 4) | (4 << 0); /* not damaged, primary copy, data track */
pbBuf[6] = (0 << 7) | (0 << 6) | (0 << 5) | (0 << 6) | (1 << 0); /* not reserved track, not blank, not packet writing, not fixed packet, data mode 1 */
pbBuf[7] = (0 << 1) | (0 << 0); /* last recorded address not valid, next recordable address not valid */
ataH2BE_U32(pbBuf + 8, 0); /* track start address is 0 */
ataH2BE_U32(pbBuf + 24, s->cTotalSectors); /* track size */
pbBuf[32] = 0; /* track number (MSB) */
pbBuf[33] = 0; /* session number (MSB) */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiGetConfigurationSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 32);
/* Accept valid request types only, and only starting feature 0. */
if ((s->aATAPICmd[1] & 0x03) == 3 || ataBE2H_U16(&s->aATAPICmd[2]) != 0)
{
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
return false;
}
memset(pbBuf, '\0', 32);
ataH2BE_U32(pbBuf, 16);
/** @todo implement switching between CD-ROM and DVD-ROM profile (the only
* way to differentiate them right now is based on the image size). Also
* implement signalling "no current profile" if no medium is loaded. */
ataH2BE_U16(pbBuf + 6, 0x08); /* current profile: read-only CD */
ataH2BE_U16(pbBuf + 8, 0); /* feature 0: list of profiles supported */
pbBuf[10] = (0 << 2) | (1 << 1) | (1 || 0); /* version 0, persistent, current */
pbBuf[11] = 8; /* additional bytes for profiles */
/* The MMC-3 spec says that DVD-ROM read capability should be reported
* before CD-ROM read capability. */
ataH2BE_U16(pbBuf + 12, 0x10); /* profile: read-only DVD */
pbBuf[14] = (0 << 0); /* NOT current profile */
ataH2BE_U16(pbBuf + 16, 0x08); /* profile: read only CD */
pbBuf[18] = (1 << 0); /* current profile */
/* Other profiles we might want to add in the future: 0x40 (BD-ROM) and 0x50 (HDDVD-ROM) */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiInquirySS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 36);
pbBuf[0] = 0x05; /* CD-ROM */
pbBuf[1] = 0x80; /* removable */
#if 1/*ndef VBOX*/ /** @todo implement MESN + AENC. (async notification on removal and stuff.) */
pbBuf[2] = 0x00; /* ISO */
pbBuf[3] = 0x21; /* ATAPI-2 (XXX: put ATAPI-4 ?) */
#else
pbBuf[2] = 0x00; /* ISO */
pbBuf[3] = 0x91; /* format 1, MESN=1, AENC=9 ??? */
#endif
pbBuf[4] = 31; /* additional length */
pbBuf[5] = 0; /* reserved */
pbBuf[6] = 0; /* reserved */
pbBuf[7] = 0; /* reserved */
ataSCSIPadStr(pbBuf + 8, "VBOX", 8);
ataSCSIPadStr(pbBuf + 16, "CD-ROM", 16);
ataSCSIPadStr(pbBuf + 32, "1.0", 4);
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiModeSenseErrorRecoverySS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 16);
ataH2BE_U16(&pbBuf[0], 16 + 6);
pbBuf[2] = 0x70;
pbBuf[3] = 0;
pbBuf[4] = 0;
pbBuf[5] = 0;
pbBuf[6] = 0;
pbBuf[7] = 0;
pbBuf[8] = 0x01;
pbBuf[9] = 0x06;
pbBuf[10] = 0x00;
pbBuf[11] = 0x05;
pbBuf[12] = 0x00;
pbBuf[13] = 0x00;
pbBuf[14] = 0x00;
pbBuf[15] = 0x00;
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiModeSenseCDStatusSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 40);
ataH2BE_U16(&pbBuf[0], 38);
pbBuf[2] = 0x70;
pbBuf[3] = 0;
pbBuf[4] = 0;
pbBuf[5] = 0;
pbBuf[6] = 0;
pbBuf[7] = 0;
pbBuf[8] = 0x2a;
pbBuf[9] = 30; /* page length */
pbBuf[10] = 0x08; /* DVD-ROM read support */
pbBuf[11] = 0x00; /* no write support */
/* The following claims we support audio play. This is obviously false,
* but the Linux generic CDROM support makes many features depend on this
* capability. If it's not set, this causes many things to be disabled. */
pbBuf[12] = 0x71; /* multisession support, mode 2 form 1/2 support, audio play */
pbBuf[13] = 0x00; /* no subchannel reads supported */
pbBuf[14] = (1 << 0) | (1 << 3) | (1 << 5); /* lock supported, eject supported, tray type loading mechanism */
if (s->pDrvMount->pfnIsLocked(s->pDrvMount))
pbBuf[14] |= 1 << 1; /* report lock state */
pbBuf[15] = 0; /* no subchannel reads supported, no separate audio volume control, no changer etc. */
ataH2BE_U16(&pbBuf[16], 5632); /* (obsolete) claim 32x speed support */
ataH2BE_U16(&pbBuf[18], 2); /* number of audio volume levels */
ataH2BE_U16(&pbBuf[20], s->cbIOBuffer / _1K); /* buffer size supported in Kbyte */
ataH2BE_U16(&pbBuf[22], 5632); /* (obsolete) current read speed 32x */
pbBuf[24] = 0; /* reserved */
pbBuf[25] = 0; /* reserved for digital audio (see idx 15) */
ataH2BE_U16(&pbBuf[26], 0); /* (obsolete) maximum write speed */
ataH2BE_U16(&pbBuf[28], 0); /* (obsolete) current write speed */
ataH2BE_U16(&pbBuf[30], 0); /* copy management revision supported 0=no CSS */
pbBuf[32] = 0; /* reserved */
pbBuf[33] = 0; /* reserved */
pbBuf[34] = 0; /* reserved */
pbBuf[35] = 1; /* rotation control CAV */
ataH2BE_U16(&pbBuf[36], 0); /* current write speed */
ataH2BE_U16(&pbBuf[38], 0); /* number of write speed performance descriptors */
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiRequestSenseSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 18);
memset(pbBuf, 0, 18);
pbBuf[0] = 0x70 | (1 << 7);
pbBuf[2] = s->uATAPISenseKey;
pbBuf[7] = 10;
pbBuf[12] = s->uATAPIASC;
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiMechanismStatusSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 8);
ataH2BE_U16(pbBuf, 0);
/* no current LBA */
pbBuf[2] = 0;
pbBuf[3] = 0;
pbBuf[4] = 0;
pbBuf[5] = 1;
ataH2BE_U16(pbBuf + 6, 0);
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTOCNormalSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer), *q, iStartTrack;
bool fMSF;
uint32_t cbSize;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
fMSF = (s->aATAPICmd[1] >> 1) & 1;
iStartTrack = s->aATAPICmd[6];
if (iStartTrack > 1 && iStartTrack != 0xaa)
{
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
return false;
}
q = pbBuf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
if (iStartTrack <= 1)
{
*q++ = 0; /* reserved */
*q++ = 0x14; /* ADR, control */
*q++ = 1; /* track number */
*q++ = 0; /* reserved */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, 0);
q += 3;
}
else
{
/* sector 0 */
ataH2BE_U32(q, 0);
q += 4;
}
}
/* lead out track */
*q++ = 0; /* reserved */
*q++ = 0x14; /* ADR, control */
*q++ = 0xaa; /* track number */
*q++ = 0; /* reserved */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, s->cTotalSectors);
q += 3;
}
else
{
ataH2BE_U32(q, s->cTotalSectors);
q += 4;
}
cbSize = q - pbBuf;
ataH2BE_U16(pbBuf, cbSize - 2);
if (cbSize < s->cbTotalTransfer)
s->cbTotalTransfer = cbSize;
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTOCMultiSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer);
bool fMSF;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
Assert(s->cbElementaryTransfer <= 12);
fMSF = (s->aATAPICmd[1] >> 1) & 1;
/* multi session: only a single session defined */
/** @todo double-check this stuff against what a real drive says for a CD-ROM (not a CD-R) with only a single data session. Maybe solve the problem with "cdrdao read-toc" not being able to figure out whether numbers are in BCD or hex. */
memset(pbBuf, 0, 12);
pbBuf[1] = 0x0a;
pbBuf[2] = 0x01;
pbBuf[3] = 0x01;
pbBuf[5] = 0x14; /* ADR, control */
pbBuf[6] = 1; /* first track in last complete session */
if (fMSF)
{
pbBuf[8] = 0; /* reserved */
ataLBA2MSF(&pbBuf[9], 0);
}
else
{
/* sector 0 */
ataH2BE_U32(pbBuf + 8, 0);
}
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static bool atapiReadTOCRawSS(ATADevState *s)
{
uint8_t *pbBuf = s->CTXSUFF(pbIOBuffer), *q, iStartTrack;
bool fMSF;
uint32_t cbSize;
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
fMSF = (s->aATAPICmd[1] >> 1) & 1;
iStartTrack = s->aATAPICmd[6];
q = pbBuf + 2;
*q++ = 1; /* first session */
*q++ = 1; /* last session */
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa0; /* first track in program area */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* first track */
*q++ = 0x00; /* disk type CD-DA or CD data */
*q++ = 0;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa1; /* last track in program area */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
*q++ = 0;
*q++ = 1; /* last track */
*q++ = 0;
*q++ = 0;
*q++ = 1; /* session number */
*q++ = 0x14; /* data track */
*q++ = 0; /* track number */
*q++ = 0xa2; /* lead-out */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, s->cTotalSectors);
q += 3;
}
else
{
ataH2BE_U32(q, s->cTotalSectors);
q += 4;
}
*q++ = 1; /* session number */
*q++ = 0x14; /* ADR, control */
*q++ = 0; /* track number */
*q++ = 1; /* point */
*q++ = 0; /* min */
*q++ = 0; /* sec */
*q++ = 0; /* frame */
if (fMSF)
{
*q++ = 0; /* reserved */
ataLBA2MSF(q, 0);
q += 3;
}
else
{
/* sector 0 */
ataH2BE_U32(q, 0);
q += 4;
}
cbSize = q - pbBuf;
ataH2BE_U16(pbBuf, cbSize - 2);
if (cbSize < s->cbTotalTransfer)
s->cbTotalTransfer = cbSize;
s->iSourceSink = ATAFN_SS_NULL;
atapiCmdOK(s);
return false;
}
static void atapiParseCmdVirtualATAPI(ATADevState *s)
{
const uint8_t *pbPacket;
uint8_t *pbBuf;
uint32_t cbMax;
pbPacket = s->aATAPICmd;
pbBuf = s->CTXSUFF(pbIOBuffer);
switch (pbPacket[0])
{
case SCSI_TEST_UNIT_READY:
if (s->cNotifiedMediaChange > 0)
{
if (s->cNotifiedMediaChange-- > 2)
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
else
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
}
else if (s->pDrvMount->pfnIsMounted(s->pDrvMount))
atapiCmdOK(s);
else
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
case SCSI_MODE_SENSE_10:
{
uint8_t uPageControl, uPageCode;
cbMax = ataBE2H_U16(pbPacket + 7);
uPageControl = pbPacket[2] >> 6;
uPageCode = pbPacket[2] & 0x3f;
switch (uPageControl)
{
case SCSI_PAGECONTROL_CURRENT:
switch (uPageCode)
{
case SCSI_MODEPAGE_ERROR_RECOVERY:
ataStartTransfer(s, RT_MIN(cbMax, 16), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_MODE_SENSE_ERROR_RECOVERY, true);
break;
case SCSI_MODEPAGE_CD_STATUS:
ataStartTransfer(s, RT_MIN(cbMax, 40), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_MODE_SENSE_CD_STATUS, true);
break;
default:
goto error_cmd;
}
break;
case SCSI_PAGECONTROL_CHANGEABLE:
goto error_cmd;
case SCSI_PAGECONTROL_DEFAULT:
goto error_cmd;
default:
case SCSI_PAGECONTROL_SAVED:
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_SAVING_PARAMETERS_NOT_SUPPORTED);
break;
}
}
break;
case SCSI_REQUEST_SENSE:
cbMax = pbPacket[4];
ataStartTransfer(s, RT_MIN(cbMax, 18), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_REQUEST_SENSE, true);
break;
case SCSI_PREVENT_ALLOW_MEDIUM_REMOVAL:
if (s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
if (pbPacket[4] & 1)
s->pDrvMount->pfnLock(s->pDrvMount);
else
s->pDrvMount->pfnUnlock(s->pDrvMount);
atapiCmdOK(s);
}
else
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
case SCSI_READ_10:
case SCSI_READ_12:
{
uint32_t cSectors, iATAPILBA;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
if (pbPacket[0] == SCSI_READ_10)
cSectors = ataBE2H_U16(pbPacket + 7);
else
cSectors = ataBE2H_U32(pbPacket + 6);
iATAPILBA = ataBE2H_U32(pbPacket + 2);
if (cSectors == 0)
{
atapiCmdOK(s);
break;
}
if ((uint64_t)iATAPILBA + cSectors > s->cTotalSectors)
{
/* Rate limited logging, one log line per second. For
* guests that insist on reading from places outside the
* valid area this often generates too many release log
* entries otherwise. */
static uint64_t uLastLogTS = 0;
if (RTTimeMilliTS() >= uLastLogTS + 1000)
{
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM block number %Ld invalid (READ)\n", s->iLUN, (uint64_t)iATAPILBA + cSectors));
uLastLogTS = RTTimeMilliTS();
}
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_LOGICAL_BLOCK_OOR);
break;
}
atapiReadSectors(s, iATAPILBA, cSectors, 2048);
}
break;
case SCSI_READ_CD:
{
uint32_t cSectors, iATAPILBA;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cSectors = (pbPacket[6] << 16) | (pbPacket[7] << 8) | pbPacket[8];
iATAPILBA = ataBE2H_U32(pbPacket + 2);
if (cSectors == 0)
{
atapiCmdOK(s);
break;
}
if ((uint64_t)iATAPILBA + cSectors > s->cTotalSectors)
{
/* Rate limited logging, one log line per second. For
* guests that insist on reading from places outside the
* valid area this often generates too many release log
* entries otherwise. */
static uint64_t uLastLogTS = 0;
if (RTTimeMilliTS() >= uLastLogTS + 1000)
{
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM block number %Ld invalid (READ CD)\n", s->iLUN, (uint64_t)iATAPILBA + cSectors));
uLastLogTS = RTTimeMilliTS();
}
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_LOGICAL_BLOCK_OOR);
break;
}
switch (pbPacket[9] & 0xf8)
{
case 0x00:
/* nothing */
atapiCmdOK(s);
break;
case 0x10:
/* normal read */
atapiReadSectors(s, iATAPILBA, cSectors, 2048);
break;
case 0xf8:
/* read all data */
atapiReadSectors(s, iATAPILBA, cSectors, 2352);
break;
default:
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM sector format not supported\n", s->iLUN));
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
break;
}
}
break;
case SCSI_SEEK_10:
{
uint32_t iATAPILBA;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
iATAPILBA = ataBE2H_U32(pbPacket + 2);
if (iATAPILBA > s->cTotalSectors)
{
/* Rate limited logging, one log line per second. For
* guests that insist on seeking to places outside the
* valid area this often generates too many release log
* entries otherwise. */
static uint64_t uLastLogTS = 0;
if (RTTimeMilliTS() >= uLastLogTS + 1000)
{
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM block number %Ld invalid (SEEK)\n", s->iLUN, (uint64_t)iATAPILBA));
uLastLogTS = RTTimeMilliTS();
}
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_LOGICAL_BLOCK_OOR);
break;
}
atapiCmdOK(s);
ataSetStatus(s, ATA_STAT_SEEK); /* Linux expects this. */
}
break;
case SCSI_START_STOP_UNIT:
{
int rc = VINF_SUCCESS;
switch (pbPacket[4] & 3)
{
case 0: /* 00 - Stop motor */
case 1: /* 01 - Start motor */
break;
case 2: /* 10 - Eject media */
/* This must be done from EMT. */
{
PPDMDEVINS pDevIns = ATADEVSTATE_2_DEVINS(s);
PVMREQ pReq;
rc = VMR3ReqCall(PDMDevHlpGetVM(pDevIns), &pReq, RT_INDEFINITE_WAIT,
(PFNRT)s->pDrvMount->pfnUnmount, 2, s->pDrvMount, false);
AssertReleaseRC(rc);
VMR3ReqFree(pReq);
}
break;
case 3: /* 11 - Load media */
/** @todo rc = s->pDrvMount->pfnLoadMedia(s->pDrvMount) */
break;
}
if (VBOX_SUCCESS(rc))
atapiCmdOK(s);
else
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIA_LOAD_OR_EJECT_FAILED);
}
break;
case SCSI_MECHANISM_STATUS:
{
cbMax = ataBE2H_U16(pbPacket + 8);
ataStartTransfer(s, RT_MIN(cbMax, 8), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_MECHANISM_STATUS, true);
}
break;
case SCSI_READ_TOC_PMA_ATIP:
{
uint8_t format;
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cbMax = ataBE2H_U16(pbPacket + 7);
/* SCSI MMC-3 spec says format is at offset 2 (lower 4 bits),
* but Linux kernel uses offset 9 (topmost 2 bits). Hope that
* the other field is clear... */
format = (pbPacket[2] & 0xf) | (pbPacket[9] >> 6);
switch (format)
{
case 0:
ataStartTransfer(s, cbMax, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TOC_NORMAL, true);
break;
case 1:
ataStartTransfer(s, RT_MIN(cbMax, 12), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TOC_MULTI, true);
break;
case 2:
ataStartTransfer(s, cbMax, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TOC_RAW, true);
break;
default:
error_cmd:
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
break;
}
}
break;
case SCSI_READ_CAPACITY:
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
ataStartTransfer(s, 8, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_CAPACITY, true);
break;
case SCSI_READ_DISC_INFORMATION:
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cbMax = ataBE2H_U16(pbPacket + 7);
ataStartTransfer(s, RT_MIN(cbMax, 34), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_DISC_INFORMATION, true);
break;
case SCSI_READ_TRACK_INFORMATION:
if (s->cNotifiedMediaChange > 0)
{
s->cNotifiedMediaChange-- ;
atapiCmdError(s, SCSI_SENSE_UNIT_ATTENTION, SCSI_ASC_MEDIUM_MAY_HAVE_CHANGED); /* media changed */
break;
}
else if (!s->pDrvMount->pfnIsMounted(s->pDrvMount))
{
atapiCmdError(s, SCSI_SENSE_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT);
break;
}
cbMax = ataBE2H_U16(pbPacket + 7);
ataStartTransfer(s, RT_MIN(cbMax, 36), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_READ_TRACK_INFORMATION, true);
break;
case SCSI_GET_CONFIGURATION:
/* No media change stuff here, it can confuse Linux guests. */
cbMax = ataBE2H_U16(pbPacket + 7);
ataStartTransfer(s, RT_MIN(cbMax, 32), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_GET_CONFIGURATION, true);
break;
case SCSI_INQUIRY:
cbMax = pbPacket[4];
ataStartTransfer(s, RT_MIN(cbMax, 36), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_INQUIRY, true);
break;
default:
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
break;
}
}
/*
* Parse ATAPI commands, passing them directly to the CD/DVD drive.
*/
static void atapiParseCmdPassthrough(ATADevState *s)
{
const uint8_t *pbPacket;
uint8_t *pbBuf;
uint32_t cSectors, iATAPILBA;
uint32_t cbTransfer = 0;
PDMBLOCKTXDIR uTxDir = PDMBLOCKTXDIR_NONE;
pbPacket = s->aATAPICmd;
pbBuf = s->CTXSUFF(pbIOBuffer);
switch (pbPacket[0])
{
case SCSI_BLANK:
goto sendcmd;
case SCSI_CLOSE_TRACK_SESSION:
goto sendcmd;
case SCSI_ERASE_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cbTransfer = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d\n", iATAPILBA));
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_FORMAT_UNIT:
cbTransfer = s->uATARegLCyl | (s->uATARegHCyl << 8); /* use ATAPI transfer length */
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_GET_CONFIGURATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_GET_EVENT_STATUS_NOTIFICATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_GET_PERFORMANCE:
cbTransfer = s->uATARegLCyl | (s->uATARegHCyl << 8); /* use ATAPI transfer length */
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_INQUIRY:
cbTransfer = pbPacket[4];
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_LOAD_UNLOAD_MEDIUM:
goto sendcmd;
case SCSI_MECHANISM_STATUS:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_MODE_SELECT_10:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_MODE_SENSE_10:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_PAUSE_RESUME:
goto sendcmd;
case SCSI_PLAY_AUDIO_10:
goto sendcmd;
case SCSI_PLAY_AUDIO_12:
goto sendcmd;
case SCSI_PLAY_AUDIO_MSF:
goto sendcmd;
case SCSI_PREVENT_ALLOW_MEDIUM_REMOVAL:
/** @todo do not forget to unlock when a VM is shut down */
goto sendcmd;
case SCSI_READ_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_12:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U32(pbPacket + 6);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_BUFFER:
cbTransfer = ataBE2H_U24(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_BUFFER_CAPACITY:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_CAPACITY:
cbTransfer = 8;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_CD:
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = ataBE2H_U24(pbPacket + 6) / s->cbATAPISector * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_CD_MSF:
cSectors = ataMSF2LBA(pbPacket + 6) - ataMSF2LBA(pbPacket + 3);
if (cSectors > 32)
cSectors = 32; /* Limit transfer size to 64~74K. Safety first. In any case this can only harm software doing CDDA extraction. */
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_DISC_INFORMATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_DVD_STRUCTURE:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_FORMAT_CAPACITIES:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_SUBCHANNEL:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_TOC_PMA_ATIP:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_READ_TRACK_INFORMATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_REPAIR_TRACK:
goto sendcmd;
case SCSI_REPORT_KEY:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_REQUEST_SENSE:
cbTransfer = pbPacket[4];
if (s->uATAPISenseKey != SCSI_SENSE_NONE)
{
ataStartTransfer(s, RT_MIN(cbTransfer, 18), PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_ATAPI_CMD, ATAFN_SS_ATAPI_REQUEST_SENSE, true);
break;
}
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_RESERVE_TRACK:
goto sendcmd;
case SCSI_SCAN:
goto sendcmd;
case SCSI_SEEK_10:
goto sendcmd;
case SCSI_SEND_CUE_SHEET:
cbTransfer = ataBE2H_U24(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_DVD_STRUCTURE:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_EVENT:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_KEY:
cbTransfer = ataBE2H_U16(pbPacket + 8);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SEND_OPC_INFORMATION:
cbTransfer = ataBE2H_U16(pbPacket + 7);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_SET_CD_SPEED:
goto sendcmd;
case SCSI_SET_READ_AHEAD:
goto sendcmd;
case SCSI_SET_STREAMING:
cbTransfer = ataBE2H_U16(pbPacket + 9);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_START_STOP_UNIT:
goto sendcmd;
case SCSI_STOP_PLAY_SCAN:
goto sendcmd;
case SCSI_SYNCHRONIZE_CACHE:
goto sendcmd;
case SCSI_TEST_UNIT_READY:
goto sendcmd;
case SCSI_VERIFY_10:
goto sendcmd;
case SCSI_WRITE_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
#if 0
/* The sector size is determined by the async I/O thread. */
s->cbATAPISector = 0;
/* Preliminary, will be corrected once the sector size is known. */
cbTransfer = cSectors;
#else
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
#endif
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_WRITE_12:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U32(pbPacket + 6);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
#if 0
/* The sector size is determined by the async I/O thread. */
s->cbATAPISector = 0;
/* Preliminary, will be corrected once the sector size is known. */
cbTransfer = cSectors;
#else
s->cbATAPISector = 2048; /**< @todo this size is not always correct */
cbTransfer = cSectors * s->cbATAPISector;
#endif
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_WRITE_AND_VERIFY_10:
iATAPILBA = ataBE2H_U32(pbPacket + 2);
cSectors = ataBE2H_U16(pbPacket + 7);
Log2(("ATAPI PT: lba %d sectors %d\n", iATAPILBA, cSectors));
/* The sector size is determined by the async I/O thread. */
s->cbATAPISector = 0;
/* Preliminary, will be corrected once the sector size is known. */
cbTransfer = cSectors;
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
case SCSI_WRITE_BUFFER:
switch (pbPacket[1] & 0x1f)
{
case 0x04: /* download microcode */
case 0x05: /* download microcode and save */
case 0x06: /* download microcode with offsets */
case 0x07: /* download microcode with offsets and save */
case 0x0e: /* download microcode with offsets and defer activation */
case 0x0f: /* activate deferred microcode */
LogRel(("PIIX3 ATA: LUN#%d: CD-ROM passthrough command attempted to update firmware, blocked\n", s->iLUN));
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_INV_FIELD_IN_CMD_PACKET);
break;
default:
cbTransfer = ataBE2H_U16(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_TO_DEVICE;
goto sendcmd;
}
break;
case SCSI_REPORT_LUNS: /* Not part of MMC-3, but used by Windows. */
cbTransfer = ataBE2H_U32(pbPacket + 6);
uTxDir = PDMBLOCKTXDIR_FROM_DEVICE;
goto sendcmd;
case SCSI_REZERO_UNIT:
/* Obsolete command used by cdrecord. What else would one expect?
* This command is not sent to the drive, it is handled internally,
* as the Linux kernel doesn't like it (message "scsi: unknown
* opcode 0x01" in syslog) and replies with a sense code of 0,
* which sends cdrecord to an endless loop. */
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
break;
default:
LogRel(("PIIX3 ATA: LUN#%d: passthrough unimplemented for command %#x\n", s->iLUN, pbPacket[0]));
atapiCmdError(s, SCSI_SENSE_ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_OPCODE);
break;
sendcmd:
/* Send a command to the drive, passing data in/out as required. */
Log2(("ATAPI PT: max size %d\n", cbTransfer));
Assert(cbTransfer <= s->cbIOBuffer);
if (cbTransfer == 0)
uTxDir = PDMBLOCKTXDIR_NONE;
ataStartTransfer(s, cbTransfer, uTxDir, ATAFN_BT_ATAPI_PASSTHROUGH_CMD, ATAFN_SS_ATAPI_PASSTHROUGH, true);
}
}
static void atapiParseCmd(ATADevState *s)
{
const uint8_t *pbPacket;
pbPacket = s->aATAPICmd;
#ifdef DEBUG
Log(("%s: LUN#%d DMA=%d CMD=%#04x \"%s\"\n", __FUNCTION__, s->iLUN, s->fDMA, pbPacket[0], g_apszSCSICmdNames[pbPacket[0]]));
#else /* !DEBUG */
Log(("%s: LUN#%d DMA=%d CMD=%#04x\n", __FUNCTION__, s->iLUN, s->fDMA, pbPacket[0]));
#endif /* !DEBUG */
Log2(("%s: limit=%#x packet: %.*Vhxs\n", __FUNCTION__, s->uATARegLCyl | (s->uATARegHCyl << 8), ATAPI_PACKET_SIZE, pbPacket));
if (s->fATAPIPassthrough)
atapiParseCmdPassthrough(s);
else
atapiParseCmdVirtualATAPI(s);
}
static bool ataPacketSS(ATADevState *s)
{
s->fDMA = !!(s->uATARegFeature & 1);
memcpy(s->aATAPICmd, s->CTXSUFF(pbIOBuffer), ATAPI_PACKET_SIZE);
s->uTxDir = PDMBLOCKTXDIR_NONE;
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
atapiParseCmd(s);
return false;
}
/**
* Called when a media is mounted.
*
* @param pInterface Pointer to the interface structure containing the called function pointer.
*/
static DECLCALLBACK(void) ataMountNotify(PPDMIMOUNTNOTIFY pInterface)
{
ATADevState *pIf = PDMIMOUNTNOTIFY_2_ATASTATE(pInterface);
Log(("%s: changing LUN#%d\n", __FUNCTION__, pIf->iLUN));
/* Ignore the call if we're called while being attached. */
if (!pIf->pDrvBlock)
return;
if (pIf->fATAPI)
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 2048;
else
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 512;
/* Report media changed in TEST UNIT and other (probably incorrect) places. */
if (pIf->cNotifiedMediaChange < 2)
pIf->cNotifiedMediaChange = 2;
}
/**
* Called when a media is unmounted
* @param pInterface Pointer to the interface structure containing the called function pointer.
*/
static DECLCALLBACK(void) ataUnmountNotify(PPDMIMOUNTNOTIFY pInterface)
{
ATADevState *pIf = PDMIMOUNTNOTIFY_2_ATASTATE(pInterface);
Log(("%s:\n", __FUNCTION__));
pIf->cTotalSectors = 0;
/*
* Whatever I do, XP will not use the GET MEDIA STATUS nor the EVENT stuff.
* However, it will respond to TEST UNIT with a 0x6 0x28 (media changed) sense code.
* So, we'll give it 4 TEST UNIT command to catch up, two which the media is not
* present and 2 in which it is changed.
*/
pIf->cNotifiedMediaChange = 4;
}
static void ataPacketBT(ATADevState *s)
{
s->cbElementaryTransfer = s->cbTotalTransfer;
s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_CD;
Log2(("%s: interrupt reason %#04x\n", __FUNCTION__, s->uATARegNSector));
ataSetStatusValue(s, ATA_STAT_READY);
}
static void ataResetDevice(ATADevState *s)
{
s->cMultSectors = ATA_MAX_MULT_SECTORS;
s->cNotifiedMediaChange = 0;
ataUnsetIRQ(s);
s->uATARegSelect = 0x20;
ataSetStatusValue(s, ATA_STAT_READY);
ataSetSignature(s);
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iIOBufferPIODataStart = 0;
s->iIOBufferPIODataEnd = 0;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
s->fATAPITransfer = false;
s->uATATransferMode = ATA_MODE_UDMA | 2; /* PIIX3 supports only up to UDMA2 */
s->uATARegFeature = 0;
}
static bool ataExecuteDeviceDiagnosticSS(ATADevState *s)
{
ataSetSignature(s);
ataSetStatusValue(s, 0); /* NOTE: READY is _not_ set */
s->uATARegError = 0x01;
return false;
}
static void ataParseCmd(ATADevState *s, uint8_t cmd)
{
#ifdef DEBUG
Log(("%s: LUN#%d CMD=%#04x \"%s\"\n", __FUNCTION__, s->iLUN, cmd, g_apszATACmdNames[cmd]));
#else /* !DEBUG */
Log(("%s: LUN#%d CMD=%#04x\n", __FUNCTION__, s->iLUN, cmd));
#endif /* !DEBUG */
s->fLBA48 = false;
s->fDMA = false;
if (cmd == ATA_IDLE_IMMEDIATE)
{
/* Detect Linux timeout recovery, first tries IDLE IMMEDIATE (which
* would overwrite the failing command unfortunately), then RESET. */
int32_t uCmdWait = -1;
uint64_t uNow = RTTimeNanoTS();
if (s->u64CmdTS)
uCmdWait = (uNow - s->u64CmdTS) / 1000;
LogRel(("PIIX3 ATA: LUN#%d: IDLE IMMEDIATE, CmdIf=%#04x (%d usec ago)\n",
s->iLUN, s->uATARegCommand, uCmdWait));
}
s->uATARegCommand = cmd;
switch (cmd)
{
case ATA_IDENTIFY_DEVICE:
if (s->pDrvBlock && !s->fATAPI)
ataStartTransfer(s, 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_NULL, ATAFN_SS_IDENTIFY, false);
else
{
if (s->fATAPI)
ataSetSignature(s);
ataCmdError(s, ABRT_ERR);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
}
break;
case ATA_INITIALIZE_DEVICE_PARAMETERS:
case ATA_RECALIBRATE:
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_SET_MULTIPLE_MODE:
if ( s->uATARegNSector != 0
&& ( s->uATARegNSector > ATA_MAX_MULT_SECTORS
|| (s->uATARegNSector & (s->uATARegNSector - 1)) != 0))
{
ataCmdError(s, ABRT_ERR);
}
else
{
Log2(("%s: set multi sector count to %d\n", __FUNCTION__, s->uATARegNSector));
s->cMultSectors = s->uATARegNSector;
ataCmdOK(s, 0);
}
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_READ_VERIFY_SECTORS_EXT:
s->fLBA48 = true;
case ATA_READ_VERIFY_SECTORS:
case ATA_READ_VERIFY_SECTORS_WITHOUT_RETRIES:
/* do sector number check ? */
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_READ_SECTORS_EXT:
s->fLBA48 = true;
case ATA_READ_SECTORS:
case ATA_READ_SECTORS_WITHOUT_RETRIES:
if (!s->pDrvBlock)
goto abort_cmd;
s->cSectorsPerIRQ = 1;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_READ_SECTORS, false);
break;
case ATA_WRITE_SECTORS_EXT:
s->fLBA48 = true;
case ATA_WRITE_SECTORS:
case ATA_WRITE_SECTORS_WITHOUT_RETRIES:
s->cSectorsPerIRQ = 1;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_WRITE_SECTORS, false);
break;
case ATA_READ_MULTIPLE_EXT:
s->fLBA48 = true;
case ATA_READ_MULTIPLE:
if (!s->cMultSectors)
goto abort_cmd;
s->cSectorsPerIRQ = s->cMultSectors;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_READ_SECTORS, false);
break;
case ATA_WRITE_MULTIPLE_EXT:
s->fLBA48 = true;
case ATA_WRITE_MULTIPLE:
if (!s->cMultSectors)
goto abort_cmd;
s->cSectorsPerIRQ = s->cMultSectors;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_WRITE_SECTORS, false);
break;
case ATA_READ_DMA_EXT:
s->fLBA48 = true;
case ATA_READ_DMA:
case ATA_READ_DMA_WITHOUT_RETRIES:
if (!s->pDrvBlock)
goto abort_cmd;
s->cSectorsPerIRQ = ATA_MAX_MULT_SECTORS;
s->fDMA = true;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_READ_SECTORS, false);
break;
case ATA_WRITE_DMA_EXT:
s->fLBA48 = true;
case ATA_WRITE_DMA:
case ATA_WRITE_DMA_WITHOUT_RETRIES:
if (!s->pDrvBlock)
goto abort_cmd;
s->cSectorsPerIRQ = ATA_MAX_MULT_SECTORS;
s->fDMA = true;
ataStartTransfer(s, ataGetNSectors(s) * 512, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_READ_WRITE_SECTORS, ATAFN_SS_WRITE_SECTORS, false);
break;
case ATA_READ_NATIVE_MAX_ADDRESS_EXT:
s->fLBA48 = true;
ataSetSector(s, s->cTotalSectors - 1);
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_READ_NATIVE_MAX_ADDRESS:
ataSetSector(s, RT_MIN(s->cTotalSectors, 1 << 28) - 1);
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_CHECK_POWER_MODE:
s->uATARegNSector = 0xff; /* drive active or idle */
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_SET_FEATURES:
Log2(("%s: feature=%#x\n", __FUNCTION__, s->uATARegFeature));
if (!s->pDrvBlock)
goto abort_cmd;
switch (s->uATARegFeature)
{
case 0x02: /* write cache enable */
Log2(("%s: write cache enable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0xaa: /* read look-ahead enable */
Log2(("%s: read look-ahead enable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0x55: /* read look-ahead disable */
Log2(("%s: read look-ahead disable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0xcc: /* reverting to power-on defaults enable */
Log2(("%s: revert to power-on defaults enable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0x66: /* reverting to power-on defaults disable */
Log2(("%s: revert to power-on defaults disable\n", __FUNCTION__));
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case 0x82: /* write cache disable */
Log2(("%s: write cache disable\n", __FUNCTION__));
/* As per the ATA/ATAPI-6 specs, a write cache disable
* command MUST flush the write buffers to disc. */
ataStartTransfer(s, 0, PDMBLOCKTXDIR_NONE, ATAFN_BT_NULL, ATAFN_SS_FLUSH, false);
break;
case 0x03: { /* set transfer mode */
Log2(("%s: transfer mode %#04x\n", __FUNCTION__, s->uATARegNSector));
switch (s->uATARegNSector & 0xf8)
{
case 0x00: /* PIO default */
case 0x08: /* PIO mode */
break;
case ATA_MODE_MDMA: /* MDMA mode */
s->uATATransferMode = (s->uATARegNSector & 0xf8) | RT_MIN(s->uATARegNSector & 0x07, ATA_MDMA_MODE_MAX);
break;
case ATA_MODE_UDMA: /* UDMA mode */
s->uATATransferMode = (s->uATARegNSector & 0xf8) | RT_MIN(s->uATARegNSector & 0x07, ATA_UDMA_MODE_MAX);
break;
default:
goto abort_cmd;
}
ataCmdOK(s, ATA_STAT_SEEK);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
}
default:
goto abort_cmd;
}
/*
* OS/2 workarond:
* The OS/2 IDE driver from MCP2 appears to rely on the feature register being
* reset here. According to the specification, this is a driver bug as the register
* contents are undefined after the call. This means we can just as well reset it.
*/
s->uATARegFeature = 0;
break;
case ATA_FLUSH_CACHE_EXT:
case ATA_FLUSH_CACHE:
if (!s->pDrvBlock || s->fATAPI)
goto abort_cmd;
ataStartTransfer(s, 0, PDMBLOCKTXDIR_NONE, ATAFN_BT_NULL, ATAFN_SS_FLUSH, false);
break;
case ATA_STANDBY_IMMEDIATE:
ataCmdOK(s, 0);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
case ATA_IDLE_IMMEDIATE:
LogRel(("PIIX3 ATA: LUN#%d: aborting current command\n", s->iLUN));
ataAbortCurrentCommand(s, false);
break;
/* ATAPI commands */
case ATA_IDENTIFY_PACKET_DEVICE:
if (s->fATAPI)
ataStartTransfer(s, 512, PDMBLOCKTXDIR_FROM_DEVICE, ATAFN_BT_NULL, ATAFN_SS_ATAPI_IDENTIFY, false);
else
{
ataCmdError(s, ABRT_ERR);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
}
break;
case ATA_EXECUTE_DEVICE_DIAGNOSTIC:
ataStartTransfer(s, 0, PDMBLOCKTXDIR_NONE, ATAFN_BT_NULL, ATAFN_SS_EXECUTE_DEVICE_DIAGNOSTIC, false);
break;
case ATA_DEVICE_RESET:
if (!s->fATAPI)
goto abort_cmd;
LogRel(("PIIX3 ATA: LUN#%d: performing device RESET\n", s->iLUN));
ataAbortCurrentCommand(s, true);
break;
case ATA_PACKET:
if (!s->fATAPI)
goto abort_cmd;
/* overlapping commands not supported */
if (s->uATARegFeature & 0x02)
goto abort_cmd;
ataStartTransfer(s, ATAPI_PACKET_SIZE, PDMBLOCKTXDIR_TO_DEVICE, ATAFN_BT_PACKET, ATAFN_SS_PACKET, false);
break;
default:
abort_cmd:
ataCmdError(s, ABRT_ERR);
ataSetIRQ(s); /* Shortcut, do not use AIO thread. */
break;
}
}
/**
* Waits for a particular async I/O thread to complete whatever it
* is doing at the moment.
*
* @returns true on success.
* @returns false when the thread is still processing.
* @param pData Pointer to the controller data.
* @param cMillies How long to wait (total).
*/
static bool ataWaitForAsyncIOIsIdle(PATACONTROLLER pCtl, unsigned cMillies)
{
uint64_t u64Start;
/*
* Wait for any pending async operation to finish
*/
u64Start = RTTimeMilliTS();
for (;;)
{
if (ataAsyncIOIsIdle(pCtl, false))
return true;
if (RTTimeMilliTS() - u64Start >= cMillies)
break;
/* Sleep for a bit. */
RTThreadSleep(100);
}
return false;
}
#endif /* IN_RING3 */
static int ataIOPortWriteU8(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: write addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
addr &= 7;
switch (addr)
{
case 0:
break;
case 1: /* feature register */
/* NOTE: data is written to the two drives */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegFeatureHOB = pCtl->aIfs[0].uATARegFeature;
pCtl->aIfs[1].uATARegFeatureHOB = pCtl->aIfs[1].uATARegFeature;
pCtl->aIfs[0].uATARegFeature = val;
pCtl->aIfs[1].uATARegFeature = val;
break;
case 2: /* sector count */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegNSectorHOB = pCtl->aIfs[0].uATARegNSector;
pCtl->aIfs[1].uATARegNSectorHOB = pCtl->aIfs[1].uATARegNSector;
pCtl->aIfs[0].uATARegNSector = val;
pCtl->aIfs[1].uATARegNSector = val;
break;
case 3: /* sector number */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegSectorHOB = pCtl->aIfs[0].uATARegSector;
pCtl->aIfs[1].uATARegSectorHOB = pCtl->aIfs[1].uATARegSector;
pCtl->aIfs[0].uATARegSector = val;
pCtl->aIfs[1].uATARegSector = val;
break;
case 4: /* cylinder low */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegLCylHOB = pCtl->aIfs[0].uATARegLCyl;
pCtl->aIfs[1].uATARegLCylHOB = pCtl->aIfs[1].uATARegLCyl;
pCtl->aIfs[0].uATARegLCyl = val;
pCtl->aIfs[1].uATARegLCyl = val;
break;
case 5: /* cylinder high */
pCtl->aIfs[0].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[1].uATARegDevCtl &= ~ATA_DEVCTL_HOB;
pCtl->aIfs[0].uATARegHCylHOB = pCtl->aIfs[0].uATARegHCyl;
pCtl->aIfs[1].uATARegHCylHOB = pCtl->aIfs[1].uATARegHCyl;
pCtl->aIfs[0].uATARegHCyl = val;
pCtl->aIfs[1].uATARegHCyl = val;
break;
case 6: /* drive/head */
pCtl->aIfs[0].uATARegSelect = (val & ~0x10) | 0xa0;
pCtl->aIfs[1].uATARegSelect = (val | 0x10) | 0xa0;
if ((((val >> 4)) & 1) != pCtl->iSelectedIf)
{
PPDMDEVINS pDevIns = CONTROLLER_2_DEVINS(pCtl);
/* select another drive */
pCtl->iSelectedIf = (val >> 4) & 1;
/* The IRQ line is multiplexed between the two drives, so
* update the state when switching to another drive. Only need
* to update interrupt line if it is enabled and there is a
* state change. */
if ( !(pCtl->aIfs[pCtl->iSelectedIf].uATARegDevCtl & ATA_DEVCTL_DISABLE_IRQ)
&& ( pCtl->aIfs[pCtl->iSelectedIf].fIrqPending
!= pCtl->aIfs[pCtl->iSelectedIf ^ 1].fIrqPending))
{
if (pCtl->aIfs[pCtl->iSelectedIf].fIrqPending)
{
Log2(("%s: LUN#%d asserting IRQ (drive select change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
/* The BMDMA unit unconditionally sets BM_STATUS_INT if
* the interrupt line is asserted. It monitors the line
* for a rising edge. */
pCtl->BmDma.u8Status |= BM_STATUS_INT;
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 1);
else
PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 1);
}
else
{
Log2(("%s: LUN#%d deasserting IRQ (drive select change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(pDevIns, 0, 0);
else
PDMDevHlpISASetIrqNoWait(pDevIns, pCtl->irq, 0);
}
}
}
break;
default:
case 7: /* command */
/* ignore commands to non existant slave */
if (pCtl->iSelectedIf && !pCtl->aIfs[pCtl->iSelectedIf].pDrvBlock)
break;
#ifndef IN_RING3
/* Don't do anything complicated in GC */
return VINF_IOM_HC_IOPORT_WRITE;
#else /* IN_RING3 */
ataParseCmd(&pCtl->aIfs[pCtl->iSelectedIf], val);
#endif /* !IN_RING3 */
}
return VINF_SUCCESS;
}
static int ataIOPortReadU8(PATACONTROLLER pCtl, uint32_t addr, uint32_t *pu32)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint32_t val;
bool fHOB;
fHOB = !!(s->uATARegDevCtl & (1 << 7));
switch (addr & 7)
{
case 0: /* data register */
val = 0xff;
break;
case 1: /* error register */
/* The ATA specification is very terse when it comes to specifying
* the precise effects of reading back the error/feature register.
* The error register (read-only) shares the register number with
* the feature register (write-only), so it seems that it's not
* necessary to support the usual HOB readback here. */
if (!s->pDrvBlock)
val = 0;
else
val = s->uATARegError;
break;
case 2: /* sector count */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegNSectorHOB;
else
val = s->uATARegNSector;
break;
case 3: /* sector number */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegSectorHOB;
else
val = s->uATARegSector;
break;
case 4: /* cylinder low */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegLCylHOB;
else
val = s->uATARegLCyl;
break;
case 5: /* cylinder high */
if (!s->pDrvBlock)
val = 0;
else if (fHOB)
val = s->uATARegHCylHOB;
else
val = s->uATARegHCyl;
break;
case 6: /* drive/head */
/* This register must always work as long as there is at least
* one drive attached to the controller. It is common between
* both drives anyway (completely identical content). */
if (!pCtl->aIfs[0].pDrvBlock && !pCtl->aIfs[1].pDrvBlock)
val = 0;
else
val = s->uATARegSelect;
break;
default:
case 7: /* primary status */
{
/* Counter for number of busy status seen in GC in a row. */
static unsigned cBusy = 0;
if (!s->pDrvBlock)
val = 0;
else
val = s->uATARegStatus;
/* Give the async I/O thread an opportunity to make progress,
* don't let it starve by guests polling frequently. EMT has a
* lower priority than the async I/O thread, but sometimes the
* host OS doesn't care. With some guests we are only allowed to
* be busy for about 5 milliseconds in some situations. Note that
* this is no guarantee for any other VBox thread getting
* scheduled, so this just lowers the CPU load a bit when drives
* are busy. It cannot help with timing problems. */
if (val & ATA_STAT_BUSY)
{
#ifdef IN_RING3
cBusy = 0;
PDMCritSectLeave(&pCtl->lock);
RTThreadYield();
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
val = s->uATARegStatus;
#else /* !IN_RING3 */
/* Cannot yield CPU in guest context. And switching to host
* context for each and every busy status is too costly,
* especially on SMP systems where we don't gain much by
* yielding the CPU to someone else. */
if (++cBusy >= 20)
{
cBusy = 0;
return VINF_IOM_HC_IOPORT_READ;
}
#endif /* !IN_RING3 */
}
else
cBusy = 0;
ataUnsetIRQ(s);
break;
}
}
Log2(("%s: addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
*pu32 = val;
return VINF_SUCCESS;
}
static uint32_t ataStatusRead(PATACONTROLLER pCtl, uint32_t addr)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint32_t val;
if ((!pCtl->aIfs[0].pDrvBlock && !pCtl->aIfs[1].pDrvBlock) ||
(pCtl->iSelectedIf == 1 && !s->pDrvBlock))
val = 0;
else
val = s->uATARegStatus;
Log2(("%s: addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
return val;
}
static int ataControlWrite(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
#ifndef IN_RING3
if ((val ^ pCtl->aIfs[0].uATARegDevCtl) & ATA_DEVCTL_RESET)
return VINF_IOM_HC_IOPORT_WRITE; /* The RESET stuff is too complicated for GC. */
#endif /* !IN_RING3 */
Log2(("%s: addr=%#x val=%#04x\n", __FUNCTION__, addr, val));
/* RESET is common for both drives attached to a controller. */
if (!(pCtl->aIfs[0].uATARegDevCtl & ATA_DEVCTL_RESET) &&
(val & ATA_DEVCTL_RESET))
{
#ifdef IN_RING3
/* Software RESET low to high */
int32_t uCmdWait0 = -1, uCmdWait1 = -1;
uint64_t uNow = RTTimeNanoTS();
if (pCtl->aIfs[0].u64CmdTS)
uCmdWait0 = (uNow - pCtl->aIfs[0].u64CmdTS) / 1000;
if (pCtl->aIfs[1].u64CmdTS)
uCmdWait1 = (uNow - pCtl->aIfs[1].u64CmdTS) / 1000;
LogRel(("PIIX3 ATA: Ctl#%d: RESET, DevSel=%d AIOIf=%d CmdIf0=%#04x (%d usec ago) CmdIf1=%#04x (%d usec ago)\n",
ATACONTROLLER_IDX(pCtl), pCtl->iSelectedIf, pCtl->iAIOIf,
pCtl->aIfs[0].uATARegCommand, uCmdWait0,
pCtl->aIfs[1].uATARegCommand, uCmdWait1));
pCtl->fReset = true;
/* Everything must be done after the reset flag is set, otherwise
* there are unavoidable races with the currently executing request
* (which might just finish in the mean time). */
pCtl->fChainedTransfer = false;
for (uint32_t i = 0; i < RT_ELEMENTS(pCtl->aIfs); i++)
{
ataResetDevice(&pCtl->aIfs[i]);
/* The following cannot be done using ataSetStatusValue() since the
* reset flag is already set, which suppresses all status changes. */
pCtl->aIfs[i].uATARegStatus = ATA_STAT_BUSY | ATA_STAT_SEEK;
Log2(("%s: LUN#%d status %#04x\n", __FUNCTION__, pCtl->aIfs[i].iLUN, pCtl->aIfs[i].uATARegStatus));
pCtl->aIfs[i].uATARegError = 0x01;
}
ataAsyncIOClearRequests(pCtl);
Log2(("%s: Ctl#%d: message to async I/O thread, resetA\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
if (val & ATA_DEVCTL_HOB)
{
val &= ~ATA_DEVCTL_HOB;
Log2(("%s: ignored setting HOB\n", __FUNCTION__));
}
ataAsyncIOPutRequest(pCtl, &ataResetARequest);
#else /* !IN_RING3 */
AssertMsgFailed(("RESET handling is too complicated for GC\n"));
#endif /* IN_RING3 */
}
else if ((pCtl->aIfs[0].uATARegDevCtl & ATA_DEVCTL_RESET) &&
!(val & ATA_DEVCTL_RESET))
{
#ifdef IN_RING3
/* Software RESET high to low */
Log(("%s: deasserting RESET\n", __FUNCTION__));
Log2(("%s: Ctl#%d: message to async I/O thread, resetC\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
if (val & ATA_DEVCTL_HOB)
{
val &= ~ATA_DEVCTL_HOB;
Log2(("%s: ignored setting HOB\n", __FUNCTION__));
}
ataAsyncIOPutRequest(pCtl, &ataResetCRequest);
#else /* !IN_RING3 */
AssertMsgFailed(("RESET handling is too complicated for GC\n"));
#endif /* IN_RING3 */
}
/* Change of interrupt disable flag. Update interrupt line if interrupt
* is pending on the current interface. */
if ((val ^ pCtl->aIfs[0].uATARegDevCtl) & ATA_DEVCTL_DISABLE_IRQ
&& pCtl->aIfs[pCtl->iSelectedIf].fIrqPending)
{
if (!(val & ATA_DEVCTL_DISABLE_IRQ))
{
Log2(("%s: LUN#%d asserting IRQ (interrupt disable change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
/* The BMDMA unit unconditionally sets BM_STATUS_INT if the
* interrupt line is asserted. It monitors the line for a rising
* edge. */
pCtl->BmDma.u8Status |= BM_STATUS_INT;
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), 0, 1);
else
PDMDevHlpISASetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), pCtl->irq, 1);
}
else
{
Log2(("%s: LUN#%d deasserting IRQ (interrupt disable change)\n", __FUNCTION__, pCtl->aIfs[pCtl->iSelectedIf].iLUN));
if (pCtl->irq == 16)
PDMDevHlpPCISetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), 0, 0);
else
PDMDevHlpISASetIrqNoWait(CONTROLLER_2_DEVINS(pCtl), pCtl->irq, 0);
}
}
if (val & ATA_DEVCTL_HOB)
Log2(("%s: set HOB\n", __FUNCTION__));
pCtl->aIfs[0].uATARegDevCtl = val;
pCtl->aIfs[1].uATARegDevCtl = val;
return VINF_SUCCESS;
}
#ifdef IN_RING3
static void ataPIOTransfer(PATACONTROLLER pCtl)
{
ATADevState *s;
s = &pCtl->aIfs[pCtl->iAIOIf];
Log3(("%s: if=%p\n", __FUNCTION__, s));
if (s->cbTotalTransfer && s->iIOBufferCur > s->iIOBufferEnd)
{
LogRel(("PIIX3 ATA: LUN#%d: %s data in the middle of a PIO transfer - VERY SLOW\n", s->iLUN, s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE ? "storing" : "loading"));
/* Any guest OS that triggers this case has a pathetic ATA driver.
* In a real system it would block the CPU via IORDY, here we do it
* very similarly by not continuing with the current instruction
* until the transfer to/from the storage medium is completed. */
if (s->iSourceSink != ATAFN_SS_NULL)
{
bool fRedo;
uint8_t status = s->uATARegStatus;
ataSetStatusValue(s, ATA_STAT_BUSY);
Log2(("%s: calling source/sink function\n", __FUNCTION__));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
pCtl->fRedo = fRedo;
if (RT_UNLIKELY(fRedo))
return;
ataSetStatusValue(s, status);
s->iIOBufferCur = 0;
s->iIOBufferEnd = s->cbElementaryTransfer;
}
}
if (s->cbTotalTransfer)
{
if (s->fATAPITransfer)
ataPIOTransferLimitATAPI(s);
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE && s->cbElementaryTransfer > s->cbTotalTransfer)
s->cbElementaryTransfer = s->cbTotalTransfer;
Log2(("%s: %s tx_size=%d elem_tx_size=%d index=%d end=%d\n",
__FUNCTION__, s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE ? "T2I" : "I2T",
s->cbTotalTransfer, s->cbElementaryTransfer,
s->iIOBufferCur, s->iIOBufferEnd));
ataPIOTransferStart(s, s->iIOBufferCur, s->cbElementaryTransfer);
s->cbTotalTransfer -= s->cbElementaryTransfer;
s->iIOBufferCur += s->cbElementaryTransfer;
if (s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE && s->cbElementaryTransfer > s->cbTotalTransfer)
s->cbElementaryTransfer = s->cbTotalTransfer;
}
else
ataPIOTransferStop(s);
}
DECLINLINE(void) ataPIOTransferFinish(PATACONTROLLER pCtl, ATADevState *s)
{
/* Do not interfere with RESET processing if the PIO transfer finishes
* while the RESET line is asserted. */
if (pCtl->fReset)
{
Log2(("%s: Ctl#%d: suppressed continuing PIO transfer as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
return;
}
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE || s->iSourceSink != ATAFN_SS_NULL)
{
/* Need to continue the transfer in the async I/O thread. This is
* the case for write operations or generally for not yet finished
* transfers (some data might need to be read). */
ataUnsetStatus(s, ATA_STAT_READY | ATA_STAT_DRQ);
ataSetStatus(s, ATA_STAT_BUSY);
Log2(("%s: Ctl#%d: message to async I/O thread, continuing PIO transfer\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataPIORequest);
}
else
{
/* Everything finished (though maybe a couple of chunks need to be
* transferred, but all without source/sink callback). */
/* Continue a previously started transfer. */
ataUnsetStatus(s, ATA_STAT_DRQ);
ataSetStatus(s, ATA_STAT_READY);
if (s->cbTotalTransfer)
{
/* There is more to transfer, happens usually for large ATAPI
* reads - the protocol limits the chunk size to 65534 bytes. */
ataPIOTransfer(pCtl);
ataSetIRQ(s);
}
else
{
Log2(("%s: Ctl#%d: skipping message to async I/O thread, ending PIO transfer\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
/* Finish PIO transfer. */
ataPIOTransfer(pCtl);
Assert(!pCtl->fRedo);
}
}
}
#endif /* IN_RING3 */
static int ataDataWrite(PATACONTROLLER pCtl, uint32_t addr, uint32_t cbSize, const uint8_t *pbBuf)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint8_t *p;
if (s->iIOBufferPIODataStart < s->iIOBufferPIODataEnd)
{
Assert(s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE);
p = s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart;
#ifndef IN_RING3
/* All but the last transfer unit is simple enough for GC, but
* sending a request to the async IO thread is too complicated. */
if (s->iIOBufferPIODataStart + cbSize < s->iIOBufferPIODataEnd)
{
memcpy(p, pbBuf, cbSize);
s->iIOBufferPIODataStart += cbSize;
}
else
return VINF_IOM_HC_IOPORT_WRITE;
#else /* IN_RING3 */
memcpy(p, pbBuf, cbSize);
s->iIOBufferPIODataStart += cbSize;
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* !IN_RING3 */
}
else
Log2(("%s: DUMMY data\n", __FUNCTION__));
Log3(("%s: addr=%#x val=%.*Vhxs\n", __FUNCTION__, addr, cbSize, pbBuf));
return VINF_SUCCESS;
}
static int ataDataRead(PATACONTROLLER pCtl, uint32_t addr, uint32_t cbSize, uint8_t *pbBuf)
{
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
uint8_t *p;
if (s->iIOBufferPIODataStart < s->iIOBufferPIODataEnd)
{
Assert(s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE);
p = s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart;
#ifndef IN_RING3
/* All but the last transfer unit is simple enough for GC, but
* sending a request to the async IO thread is too complicated. */
if (s->iIOBufferPIODataStart + cbSize < s->iIOBufferPIODataEnd)
{
memcpy(pbBuf, p, cbSize);
s->iIOBufferPIODataStart += cbSize;
}
else
return VINF_IOM_HC_IOPORT_READ;
#else /* IN_RING3 */
memcpy(pbBuf, p, cbSize);
s->iIOBufferPIODataStart += cbSize;
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* !IN_RING3 */
}
else
{
Log2(("%s: DUMMY data\n", __FUNCTION__));
memset(pbBuf, '\xff', cbSize);
}
Log3(("%s: addr=%#x val=%.*Vhxs\n", __FUNCTION__, addr, cbSize, pbBuf));
return VINF_SUCCESS;
}
#ifdef IN_RING3
/* Attempt to guess the LCHS disk geometry from the MS-DOS master boot
* record (partition table). */
static int ataGuessDiskLCHS(ATADevState *s, uint32_t *pcCylinders, uint32_t *pcHeads, uint32_t *pcSectors)
{
uint8_t aMBR[512], *p;
int rc;
uint32_t iEndHead, iEndSector, cCHSCylinders, cCHSHeads, cCHSSectors;
if (s->fATAPI || !s->pDrvBlock)
return VERR_INVALID_PARAMETER;
rc = s->pDrvBlock->pfnRead(s->pDrvBlock, 0, aMBR, 1 * 512);
if (VBOX_FAILURE(rc))
return rc;
/* Test MBR magic number. */
if (aMBR[510] != 0x55 || aMBR[511] != 0xaa)
return VERR_INVALID_PARAMETER;
for (uint32_t i = 0; i < 4; i++)
{
/* Figure out the start of a partition table entry. */
p = &aMBR[0x1be + i * 16];
iEndHead = p[5];
iEndSector = p[6] & 63;
if ((p[12] | p[13] | p[14] | p[15]) && iEndSector & iEndHead)
{
/* Assumption: partition terminates on a cylinder boundary. */
cCHSHeads = iEndHead + 1;
cCHSSectors = iEndSector;
cCHSCylinders = s->cTotalSectors / (cCHSHeads * cCHSSectors);
if (cCHSCylinders >= 1)
{
*pcHeads = cCHSHeads;
*pcSectors = cCHSSectors;
*pcCylinders = cCHSCylinders;
Log(("%s: LCHS=%d %d %d\n", __FUNCTION__, cCHSCylinders, cCHSHeads, cCHSSectors));
return VINF_SUCCESS;
}
}
}
return VERR_INVALID_PARAMETER;
}
static void ataDMATransferStop(ATADevState *s)
{
s->cbTotalTransfer = 0;
s->cbElementaryTransfer = 0;
s->iBeginTransfer = ATAFN_BT_NULL;
s->iSourceSink = ATAFN_SS_NULL;
}
/**
* Perform the entire DMA transfer in one go (unless a source/sink operation
* has to be redone or a RESET comes in between). Unlike the PIO counterpart
* this function cannot handle empty transfers.
*
* @param pCtl Controller for which to perform the transfer.
*/
static void ataDMATransfer(PATACONTROLLER pCtl)
{
PPDMDEVINS pDevIns = CONTROLLER_2_DEVINS(pCtl);
ATADevState *s = &pCtl->aIfs[pCtl->iAIOIf];
bool fRedo;
RTGCPHYS pDesc;
uint32_t cbTotalTransfer, cbElementaryTransfer;
uint32_t iIOBufferCur, iIOBufferEnd;
uint32_t dmalen;
PDMBLOCKTXDIR uTxDir;
bool fLastDesc = false;
Assert(sizeof(BMDMADesc) == 8);
fRedo = pCtl->fRedo;
if (RT_LIKELY(!fRedo))
Assert(s->cbTotalTransfer);
uTxDir = (PDMBLOCKTXDIR)s->uTxDir;
cbTotalTransfer = s->cbTotalTransfer;
cbElementaryTransfer = s->cbElementaryTransfer;
iIOBufferCur = s->iIOBufferCur;
iIOBufferEnd = s->iIOBufferEnd;
/* The DMA loop is designed to hold the lock only when absolutely
* necessary. This avoids long freezes should the guest access the
* ATA registers etc. for some reason. */
PDMCritSectLeave(&pCtl->lock);
Log2(("%s: %s tx_size=%d elem_tx_size=%d index=%d end=%d\n",
__FUNCTION__, uTxDir == PDMBLOCKTXDIR_FROM_DEVICE ? "T2I" : "I2T",
cbTotalTransfer, cbElementaryTransfer,
iIOBufferCur, iIOBufferEnd));
for (pDesc = pCtl->pFirstDMADesc; pDesc <= pCtl->pLastDMADesc; pDesc += sizeof(BMDMADesc))
{
BMDMADesc DMADesc;
RTGCPHYS pBuffer;
uint32_t cbBuffer;
if (RT_UNLIKELY(fRedo))
{
pBuffer = pCtl->pRedoDMABuffer;
cbBuffer = pCtl->cbRedoDMABuffer;
fLastDesc = pCtl->fRedoDMALastDesc;
}
else
{
PDMDevHlpPhysRead(pDevIns, pDesc, &DMADesc, sizeof(BMDMADesc));
pBuffer = RT_LE2H_U32(DMADesc.pBuffer);
cbBuffer = RT_LE2H_U32(DMADesc.cbBuffer);
fLastDesc = !!(cbBuffer & 0x80000000);
cbBuffer &= 0xfffe;
if (cbBuffer == 0)
cbBuffer = 0x10000;
if (cbBuffer > cbTotalTransfer)
cbBuffer = cbTotalTransfer;
}
while (RT_UNLIKELY(fRedo) || (cbBuffer && cbTotalTransfer))
{
if (RT_LIKELY(!fRedo))
{
dmalen = RT_MIN(cbBuffer, iIOBufferEnd - iIOBufferCur);
Log2(("%s: DMA desc %#010x: addr=%#010x size=%#010x\n", __FUNCTION__,
(int)pDesc, pBuffer, cbBuffer));
if (uTxDir == PDMBLOCKTXDIR_FROM_DEVICE)
PDMDevHlpPhysWrite(pDevIns, pBuffer, s->CTXSUFF(pbIOBuffer) + iIOBufferCur, dmalen);
else
PDMDevHlpPhysRead(pDevIns, pBuffer, s->CTXSUFF(pbIOBuffer) + iIOBufferCur, dmalen);
iIOBufferCur += dmalen;
cbTotalTransfer -= dmalen;
cbBuffer -= dmalen;
pBuffer += dmalen;
}
if ( iIOBufferCur == iIOBufferEnd
&& (uTxDir == PDMBLOCKTXDIR_TO_DEVICE || cbTotalTransfer))
{
if (uTxDir == PDMBLOCKTXDIR_FROM_DEVICE && cbElementaryTransfer > cbTotalTransfer)
cbElementaryTransfer = cbTotalTransfer;
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
/* The RESET handler could have cleared the DMA transfer
* state (since we didn't hold the lock until just now
* the guest can continue in parallel). If so, the state
* is already set up so the loop is exited immediately. */
if (s->iSourceSink != ATAFN_SS_NULL)
{
s->iIOBufferCur = iIOBufferCur;
s->iIOBufferEnd = iIOBufferEnd;
s->cbElementaryTransfer = cbElementaryTransfer;
s->cbTotalTransfer = cbTotalTransfer;
Log2(("%s: calling source/sink function\n", __FUNCTION__));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
if (RT_UNLIKELY(fRedo))
{
pCtl->pFirstDMADesc = pDesc;
pCtl->pRedoDMABuffer = pBuffer;
pCtl->cbRedoDMABuffer = cbBuffer;
pCtl->fRedoDMALastDesc = fLastDesc;
}
else
{
cbTotalTransfer = s->cbTotalTransfer;
cbElementaryTransfer = s->cbElementaryTransfer;
if (uTxDir == PDMBLOCKTXDIR_TO_DEVICE && cbElementaryTransfer > cbTotalTransfer)
cbElementaryTransfer = cbTotalTransfer;
iIOBufferCur = 0;
iIOBufferEnd = cbElementaryTransfer;
}
pCtl->fRedo = fRedo;
}
else
{
/* This forces the loop to exit immediately. */
pDesc = pCtl->pLastDMADesc + 1;
}
PDMCritSectLeave(&pCtl->lock);
if (RT_UNLIKELY(fRedo))
break;
}
}
if (RT_UNLIKELY(fRedo))
break;
/* end of transfer */
if (!cbTotalTransfer || fLastDesc)
break;
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
if (!(pCtl->BmDma.u8Cmd & BM_CMD_START) || pCtl->fReset)
{
LogRel(("PIIX3 ATA: Ctl#%d: ABORT DMA%s\n", ATACONTROLLER_IDX(pCtl), pCtl->fReset ? " due to RESET" : ""));
if (!pCtl->fReset)
ataDMATransferStop(s);
/* This forces the loop to exit immediately. */
pDesc = pCtl->pLastDMADesc + 1;
}
PDMCritSectLeave(&pCtl->lock);
}
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
if (RT_UNLIKELY(fRedo))
return;
if (fLastDesc)
pCtl->BmDma.u8Status &= ~BM_STATUS_DMAING;
s->cbTotalTransfer = cbTotalTransfer;
s->cbElementaryTransfer = cbElementaryTransfer;
s->iIOBufferCur = iIOBufferCur;
s->iIOBufferEnd = iIOBufferEnd;
}
/**
* Suspend I/O operations on a controller. Also suspends EMT, because it's
* waiting for I/O to make progress. The next attempt to perform an I/O
* operation will be made when EMT is resumed up again (as the resume
* callback below restarts I/O).
*
* @param pCtl Controller for which to suspend I/O.
*/
static void ataSuspendRedo(PATACONTROLLER pCtl)
{
PPDMDEVINS pDevIns = CONTROLLER_2_DEVINS(pCtl);
PVMREQ pReq;
int rc;
pCtl->fRedoIdle = true;
rc = VMR3ReqCall(PDMDevHlpGetVM(pDevIns), &pReq, RT_INDEFINITE_WAIT,
(PFNRT)pDevIns->pDevHlp->pfnVMSuspend, 1, pDevIns);
AssertReleaseRC(rc);
VMR3ReqFree(pReq);
}
/** Asynch I/O thread for an interface. Once upon a time this was readable
* code with several loops and a different semaphore for each purpose. But
* then came the "how can one save the state in the middle of a PIO transfer"
* question. The solution was to use an ASM, which is what's there now. */
static DECLCALLBACK(int) ataAsyncIOLoop(RTTHREAD ThreadSelf, void *pvUser)
{
const ATARequest *pReq;
uint64_t u64TS = 0; /* shut up gcc */
uint64_t uWait;
int rc = VINF_SUCCESS;
PATACONTROLLER pCtl = (PATACONTROLLER)pvUser;
ATADevState *s;
pReq = NULL;
pCtl->fChainedTransfer = false;
while (!pCtl->fShutdown)
{
/* Keep this thread from doing anything as long as EMT is suspended. */
while (pCtl->fRedoIdle)
{
rc = RTSemEventWait(pCtl->SuspendIOSem, RT_INDEFINITE_WAIT);
if (VBOX_FAILURE(rc) || pCtl->fShutdown)
break;
pCtl->fRedoIdle = false;
}
/* Wait for work. */
if (pReq == NULL)
{
LogBird(("ata: %x: going to sleep...\n", pCtl->IOPortBase1));
rc = RTSemEventWait(pCtl->AsyncIOSem, RT_INDEFINITE_WAIT);
LogBird(("ata: %x: waking up\n", pCtl->IOPortBase1));
if (VBOX_FAILURE(rc) || pCtl->fShutdown)
break;
pReq = ataAsyncIOGetCurrentRequest(pCtl);
}
if (pReq == NULL)
continue;
ATAAIO ReqType = pReq->ReqType;
Log2(("%s: Ctl#%d: state=%d, req=%d\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), pCtl->uAsyncIOState, ReqType));
if (pCtl->uAsyncIOState != ReqType)
{
/* The new state is not the state that was expected by the normal
* state changes. This is either a RESET/ABORT or there's something
* really strange going on. */
if ( (pCtl->uAsyncIOState == ATA_AIO_PIO || pCtl->uAsyncIOState == ATA_AIO_DMA)
&& (ReqType == ATA_AIO_PIO || ReqType == ATA_AIO_DMA))
{
/* Incorrect sequence of PIO/DMA states. Dump request queue. */
ataAsyncIODumpRequests(pCtl);
}
AssertReleaseMsg(ReqType == ATA_AIO_RESET_ASSERTED || ReqType == ATA_AIO_RESET_CLEARED || ReqType == ATA_AIO_ABORT || pCtl->uAsyncIOState == ReqType, ("I/O state inconsistent: state=%d request=%d\n", pCtl->uAsyncIOState, ReqType));
}
/* Do our work. */
{
STAM_PROFILE_START(&pCtl->StatLockWait, a);
LogBird(("ata: %x: entering critsect\n", pCtl->IOPortBase1));
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
LogBird(("ata: %x: entered\n", pCtl->IOPortBase1));
STAM_PROFILE_STOP(&pCtl->StatLockWait, a);
}
if (pCtl->uAsyncIOState == ATA_AIO_NEW && !pCtl->fChainedTransfer)
{
u64TS = RTTimeNanoTS();
#if defined(DEBUG) || defined(VBOX_WITH_STATISTICS)
STAM_PROFILE_ADV_START(&pCtl->StatAsyncTime, a);
#endif /* DEBUG || VBOX_WITH_STATISTICS */
}
switch (ReqType)
{
case ATA_AIO_NEW:
pCtl->iAIOIf = pReq->u.t.iIf;
s = &pCtl->aIfs[pCtl->iAIOIf];
s->cbTotalTransfer = pReq->u.t.cbTotalTransfer;
s->uTxDir = pReq->u.t.uTxDir;
s->iBeginTransfer = pReq->u.t.iBeginTransfer;
s->iSourceSink = pReq->u.t.iSourceSink;
s->iIOBufferEnd = 0;
s->u64CmdTS = u64TS;
if (s->fATAPI)
{
if (pCtl->fChainedTransfer)
{
/* Only count the actual transfers, not the PIO
* transfer of the ATAPI command bytes. */
if (s->fDMA)
STAM_REL_COUNTER_INC(&s->StatATAPIDMA);
else
STAM_REL_COUNTER_INC(&s->StatATAPIPIO);
}
}
else
{
if (s->fDMA)
STAM_REL_COUNTER_INC(&s->StatATADMA);
else
STAM_REL_COUNTER_INC(&s->StatATAPIO);
}
pCtl->fChainedTransfer = false;
if (s->iBeginTransfer != ATAFN_BT_NULL)
{
Log2(("%s: Ctl#%d: calling begin transfer function\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
g_apfnBeginTransFuncs[s->iBeginTransfer](s);
s->iBeginTransfer = ATAFN_BT_NULL;
if (s->uTxDir != PDMBLOCKTXDIR_FROM_DEVICE)
s->iIOBufferEnd = s->cbElementaryTransfer;
}
else
{
s->cbElementaryTransfer = s->cbTotalTransfer;
s->iIOBufferEnd = s->cbTotalTransfer;
}
s->iIOBufferCur = 0;
if (s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
{
if (s->iSourceSink != ATAFN_SS_NULL)
{
bool fRedo;
Log2(("%s: Ctl#%d: calling source/sink function\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
pCtl->fRedo = fRedo;
if (RT_UNLIKELY(fRedo))
{
/* Operation failed at the initial transfer, restart
* everything from scratch by resending the current
* request. Occurs very rarely, not worth optimizing. */
LogRel(("%s: Ctl#%d: redo entire operation\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, pReq);
ataSuspendRedo(pCtl);
break;
}
}
else
ataCmdOK(s, 0);
s->iIOBufferEnd = s->cbElementaryTransfer;
}
/* Do not go into the transfer phase if RESET is asserted.
* The CritSect is released while waiting for the host OS
* to finish the I/O, thus RESET is possible here. Most
* important: do not change uAsyncIOState. */
if (pCtl->fReset)
break;
if (s->fDMA)
{
if (s->cbTotalTransfer)
{
ataSetStatus(s, ATA_STAT_DRQ);
pCtl->uAsyncIOState = ATA_AIO_DMA;
/* If BMDMA is already started, do the transfer now. */
if (pCtl->BmDma.u8Cmd & BM_CMD_START)
{
Log2(("%s: Ctl#%d: message to async I/O thread, continuing DMA transfer immediately\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataDMARequest);
}
}
else
{
Assert(s->uTxDir == PDMBLOCKTXDIR_NONE); /* Any transfer which has an initial transfer size of 0 must be marked as such. */
/* Finish DMA transfer. */
ataDMATransferStop(s);
ataSetIRQ(s);
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
else
{
if (s->cbTotalTransfer)
{
ataPIOTransfer(pCtl);
Assert(!pCtl->fRedo);
if (s->fATAPITransfer || s->uTxDir != PDMBLOCKTXDIR_TO_DEVICE)
ataSetIRQ(s);
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE || s->iSourceSink != ATAFN_SS_NULL)
{
/* Write operations and not yet finished transfers
* must be completed in the async I/O thread. */
pCtl->uAsyncIOState = ATA_AIO_PIO;
}
else
{
/* Finished read operation can be handled inline
* in the end of PIO transfer handling code. Linux
* depends on this, as it waits only briefly for
* devices to become ready after incoming data
* transfer. Cannot find anything in the ATA spec
* that backs this assumption, but as all kernels
* are affected (though most of the time it does
* not cause any harm) this must work. */
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
else
{
Assert(s->uTxDir == PDMBLOCKTXDIR_NONE); /* Any transfer which has an initial transfer size of 0 must be marked as such. */
/* Finish PIO transfer. */
ataPIOTransfer(pCtl);
Assert(!pCtl->fRedo);
if (!s->fATAPITransfer)
ataSetIRQ(s);
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
break;
case ATA_AIO_DMA:
{
BMDMAState *bm = &pCtl->BmDma;
s = &pCtl->aIfs[pCtl->iAIOIf]; /* Do not remove or there's an instant crash after loading the saved state */
ATAFNSS iOriginalSourceSink = (ATAFNSS)s->iSourceSink; /* Used by the hack below, but gets reset by then. */
if (s->uTxDir == PDMBLOCKTXDIR_FROM_DEVICE)
AssertRelease(bm->u8Cmd & BM_CMD_WRITE);
else
AssertRelease(!(bm->u8Cmd & BM_CMD_WRITE));
if (RT_LIKELY(!pCtl->fRedo))
{
/* The specs say that the descriptor table must not cross a
* 4K boundary. */
pCtl->pFirstDMADesc = bm->pvAddr;
pCtl->pLastDMADesc = RT_ALIGN_32(bm->pvAddr + 1, _4K) - sizeof(BMDMADesc);
}
ataDMATransfer(pCtl);
if (RT_UNLIKELY(pCtl->fRedo))
{
LogRel(("PIIX3 ATA: Ctl#%d: redo DMA operation\n", ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataDMARequest);
ataSuspendRedo(pCtl);
break;
}
/* The infamous delay IRQ hack. */
if ( iOriginalSourceSink == ATAFN_SS_WRITE_SECTORS
&& s->cbTotalTransfer == 0
&& pCtl->DelayIRQMillies)
{
/* Delay IRQ for writing. Required to get the Win2K
* installation work reliably (otherwise it crashes,
* usually during component install). So far no better
* solution has been found. */
Log(("%s: delay IRQ hack\n", __FUNCTION__));
PDMCritSectLeave(&pCtl->lock);
RTThreadSleep(pCtl->DelayIRQMillies);
PDMCritSectEnter(&pCtl->lock, VINF_SUCCESS);
}
ataUnsetStatus(s, ATA_STAT_DRQ);
Assert(!pCtl->fChainedTransfer);
Assert(s->iSourceSink == ATAFN_SS_NULL);
if (s->fATAPITransfer)
{
s->uATARegNSector = (s->uATARegNSector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
Log2(("%s: Ctl#%d: interrupt reason %#04x\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), s->uATARegNSector));
s->fATAPITransfer = false;
}
ataSetIRQ(s);
pCtl->uAsyncIOState = ATA_AIO_NEW;
break;
}
case ATA_AIO_PIO:
s = &pCtl->aIfs[pCtl->iAIOIf]; /* Do not remove or there's an instant crash after loading the saved state */
if (s->iSourceSink != ATAFN_SS_NULL)
{
bool fRedo;
Log2(("%s: Ctl#%d: calling source/sink function\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
fRedo = g_apfnSourceSinkFuncs[s->iSourceSink](s);
pCtl->fRedo = fRedo;
if (RT_UNLIKELY(fRedo))
{
LogRel(("PIIX3 ATA: Ctl#%d: redo PIO operation\n", ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataPIORequest);
ataSuspendRedo(pCtl);
break;
}
s->iIOBufferCur = 0;
s->iIOBufferEnd = s->cbElementaryTransfer;
}
else
{
/* Continue a previously started transfer. */
ataUnsetStatus(s, ATA_STAT_BUSY);
ataSetStatus(s, ATA_STAT_READY);
}
/* It is possible that the drives on this controller get RESET
* during the above call to the source/sink function. If that's
* the case, don't restart the transfer and don't finish it the
* usual way. RESET handling took care of all that already.
* Most important: do not change uAsyncIOState. */
if (pCtl->fReset)
break;
if (s->cbTotalTransfer)
{
ataPIOTransfer(pCtl);
ataSetIRQ(s);
if (s->uTxDir == PDMBLOCKTXDIR_TO_DEVICE || s->iSourceSink != ATAFN_SS_NULL)
{
/* Write operations and not yet finished transfers
* must be completed in the async I/O thread. */
pCtl->uAsyncIOState = ATA_AIO_PIO;
}
else
{
/* Finished read operation can be handled inline
* in the end of PIO transfer handling code. Linux
* depends on this, as it waits only briefly for
* devices to become ready after incoming data
* transfer. Cannot find anything in the ATA spec
* that backs this assumption, but as all kernels
* are affected (though most of the time it does
* not cause any harm) this must work. */
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
}
else
{
/* Finish PIO transfer. */
ataPIOTransfer(pCtl);
if ( !pCtl->fChainedTransfer
&& !s->fATAPITransfer
&& s->uTxDir != PDMBLOCKTXDIR_FROM_DEVICE)
{
ataSetIRQ(s);
}
pCtl->uAsyncIOState = ATA_AIO_NEW;
}
break;
case ATA_AIO_RESET_ASSERTED:
pCtl->uAsyncIOState = ATA_AIO_RESET_CLEARED;
ataPIOTransferStop(&pCtl->aIfs[0]);
ataPIOTransferStop(&pCtl->aIfs[1]);
/* Do not change the DMA registers, they are not affected by the
* ATA controller reset logic. It should be sufficient to issue a
* new command, which is now possible as the state is cleared. */
break;
case ATA_AIO_RESET_CLEARED:
pCtl->uAsyncIOState = ATA_AIO_NEW;
pCtl->fReset = false;
LogRel(("PIIX3 ATA: Ctl#%d: finished processing RESET\n",
ATACONTROLLER_IDX(pCtl)));
for (uint32_t i = 0; i < RT_ELEMENTS(pCtl->aIfs); i++)
{
if (pCtl->aIfs[i].fATAPI)
ataSetStatusValue(&pCtl->aIfs[i], 0); /* NOTE: READY is _not_ set */
else
ataSetStatusValue(&pCtl->aIfs[i], ATA_STAT_READY | ATA_STAT_SEEK);
ataSetSignature(&pCtl->aIfs[i]);
}
break;
case ATA_AIO_ABORT:
/* Abort the current command only if it operates on the same interface. */
if (pCtl->iAIOIf == pReq->u.a.iIf)
{
s = &pCtl->aIfs[pCtl->iAIOIf];
pCtl->uAsyncIOState = ATA_AIO_NEW;
/* Do not change the DMA registers, they are not affected by the
* ATA controller reset logic. It should be sufficient to issue a
* new command, which is now possible as the state is cleared. */
if (pReq->u.a.fResetDrive)
{
ataResetDevice(s);
ataExecuteDeviceDiagnosticSS(s);
}
else
{
ataPIOTransferStop(s);
ataUnsetStatus(s, ATA_STAT_BUSY | ATA_STAT_DRQ | ATA_STAT_SEEK | ATA_STAT_ERR);
ataSetStatus(s, ATA_STAT_READY);
ataSetIRQ(s);
}
}
break;
default:
AssertMsgFailed(("Undefined async I/O state %d\n", pCtl->uAsyncIOState));
}
ataAsyncIORemoveCurrentRequest(pCtl, ReqType);
pReq = ataAsyncIOGetCurrentRequest(pCtl);
if (pCtl->uAsyncIOState == ATA_AIO_NEW && !pCtl->fChainedTransfer)
{
#if defined(DEBUG) || defined(VBOX_WITH_STATISTICS)
STAM_PROFILE_ADV_STOP(&pCtl->StatAsyncTime, a);
#endif /* DEBUG || VBOX_WITH_STATISTICS */
u64TS = RTTimeNanoTS() - u64TS;
uWait = u64TS / 1000;
Log(("%s: Ctl#%d: LUN#%d finished I/O transaction in %d microseconds\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), pCtl->aIfs[pCtl->iAIOIf].iLUN, (uint32_t)(uWait)));
/* Mark command as finished. */
pCtl->aIfs[pCtl->iAIOIf].u64CmdTS = 0;
/*
* Release logging of command execution times depends on the
* command type. ATAPI commands often take longer (due to CD/DVD
* spin up time etc.) so the threshold is different.
*/
if (pCtl->aIfs[pCtl->iAIOIf].uATARegCommand != ATA_PACKET)
{
if (uWait > 8 * 1000 * 1000)
{
/*
* Command took longer than 8 seconds. This is close
* enough or over the guest's command timeout, so place
* an entry in the release log to allow tracking such
* timing errors (which are often caused by the host).
*/
LogRel(("PIIX3 ATA: execution time for ATA command %#04x was %d seconds\n", pCtl->aIfs[pCtl->iAIOIf].uATARegCommand, uWait / (1000 * 1000)));
}
}
else
{
if (uWait > 20 * 1000 * 1000)
{
/*
* Command took longer than 20 seconds. This is close
* enough or over the guest's command timeout, so place
* an entry in the release log to allow tracking such
* timing errors (which are often caused by the host).
*/
LogRel(("PIIX3 ATA: execution time for ATAPI command %#04x was %d seconds\n", pCtl->aIfs[pCtl->iAIOIf].aATAPICmd[0], uWait / (1000 * 1000)));
}
}
#if defined(DEBUG) || defined(VBOX_WITH_STATISTICS)
if (uWait < pCtl->StatAsyncMinWait || !pCtl->StatAsyncMinWait)
pCtl->StatAsyncMinWait = uWait;
if (uWait > pCtl->StatAsyncMaxWait)
pCtl->StatAsyncMaxWait = uWait;
STAM_COUNTER_ADD(&pCtl->StatAsyncTimeUS, uWait);
STAM_COUNTER_INC(&pCtl->StatAsyncOps);
#endif /* DEBUG || VBOX_WITH_STATISTICS */
}
LogBird(("ata: %x: leaving critsect\n", pCtl->IOPortBase1));
PDMCritSectLeave(&pCtl->lock);
}
/* Cleanup the state. */
if (pCtl->AsyncIOSem)
{
RTSemEventDestroy(pCtl->AsyncIOSem);
pCtl->AsyncIOSem = NIL_RTSEMEVENT;
}
if (pCtl->SuspendIOSem)
{
RTSemEventDestroy(pCtl->SuspendIOSem);
pCtl->SuspendIOSem = NIL_RTSEMEVENT;
}
/* Do not destroy request mutex yet, still needed for proper shutdown. */
pCtl->fShutdown = false;
/* This must be last, as it also signals thread exit to EMT. */
pCtl->AsyncIOThread = NIL_RTTHREAD;
Log2(("%s: Ctl#%d: return %Vrc\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl), rc));
return rc;
}
#endif /* IN_RING3 */
static uint32_t ataBMDMACmdReadB(PATACONTROLLER pCtl, uint32_t addr)
{
uint32_t val = pCtl->BmDma.u8Cmd;
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
return val;
}
static void ataBMDMACmdWriteB(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
if (!(val & BM_CMD_START))
{
pCtl->BmDma.u8Status &= ~BM_STATUS_DMAING;
pCtl->BmDma.u8Cmd = val & (BM_CMD_START | BM_CMD_WRITE);
}
else
{
#ifdef IN_RING3
/* Check whether the guest OS wants to change DMA direction in
* mid-flight. Not allowed, according to the PIIX3 specs. */
Assert(!(pCtl->BmDma.u8Status & BM_STATUS_DMAING) || !((val ^ pCtl->BmDma.u8Cmd) & 0x04));
pCtl->BmDma.u8Status |= BM_STATUS_DMAING;
pCtl->BmDma.u8Cmd = val & (BM_CMD_START | BM_CMD_WRITE);
/* Do not continue DMA transfers while the RESET line is asserted. */
if (pCtl->fReset)
{
Log2(("%s: Ctl#%d: suppressed continuing DMA transfer as RESET is active\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
return;
}
/* Do not start DMA transfers if there's a PIO transfer going on. */
if (!pCtl->aIfs[pCtl->iSelectedIf].fDMA)
return;
if (pCtl->aIfs[pCtl->iAIOIf].uATARegStatus & ATA_STAT_DRQ)
{
Log2(("%s: Ctl#%d: message to async I/O thread, continuing DMA transfer\n", __FUNCTION__, ATACONTROLLER_IDX(pCtl)));
ataAsyncIOPutRequest(pCtl, &ataDMARequest);
}
#else /* !IN_RING3 */
AssertMsgFailed(("DMA START handling is too complicated for GC\n"));
#endif /* IN_RING3 */
}
}
static uint32_t ataBMDMAStatusReadB(PATACONTROLLER pCtl, uint32_t addr)
{
uint32_t val = pCtl->BmDma.u8Status;
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
return val;
}
static void ataBMDMAStatusWriteB(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#04x\n", __FUNCTION__, addr, val));
pCtl->BmDma.u8Status = (val & (BM_STATUS_D0DMA | BM_STATUS_D1DMA))
| (pCtl->BmDma.u8Status & BM_STATUS_DMAING)
| (pCtl->BmDma.u8Status & ~val & (BM_STATUS_ERROR | BM_STATUS_INT));
}
static uint32_t ataBMDMAAddrReadL(PATACONTROLLER pCtl, uint32_t addr)
{
uint32_t val = (uint32_t)pCtl->BmDma.pvAddr;
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
return val;
}
static void ataBMDMAAddrWriteL(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
pCtl->BmDma.pvAddr = val & ~3;
}
static void ataBMDMAAddrWriteLowWord(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
pCtl->BmDma.pvAddr = (pCtl->BmDma.pvAddr & 0xFFFF0000) | RT_LOWORD(val & ~3);
}
static void ataBMDMAAddrWriteHighWord(PATACONTROLLER pCtl, uint32_t addr, uint32_t val)
{
Log2(("%s: addr=%#06x val=%#010x\n", __FUNCTION__, addr, val));
pCtl->BmDma.pvAddr = (RT_LOWORD(val) << 16) | RT_LOWORD(pCtl->BmDma.pvAddr);
}
#define VAL(port, size) ( ((port) & 7) | ((size) << 3) )
/**
* Port I/O Handler for bus master DMA IN operations.
* @see FNIOMIOPORTIN for details.
*/
PDMBOTHCBDECL(int) ataBMDMAIOPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
switch (VAL(Port, cb))
{
case VAL(0, 1): *pu32 = ataBMDMACmdReadB(pCtl, Port); break;
case VAL(0, 2): *pu32 = ataBMDMACmdReadB(pCtl, Port); break;
case VAL(2, 1): *pu32 = ataBMDMAStatusReadB(pCtl, Port); break;
case VAL(2, 2): *pu32 = ataBMDMAStatusReadB(pCtl, Port); break;
case VAL(4, 4): *pu32 = ataBMDMAAddrReadL(pCtl, Port); break;
default:
AssertMsgFailed(("%s: Unsupported read from port %x size=%d\n", __FUNCTION__, Port, cb));
PDMCritSectLeave(&pCtl->lock);
return VERR_IOM_IOPORT_UNUSED;
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
/**
* Port I/O Handler for bus master DMA OUT operations.
* @see FNIOMIOPORTOUT for details.
*/
PDMBOTHCBDECL(int) ataBMDMAIOPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
switch (VAL(Port, cb))
{
case VAL(0, 1):
#ifndef IN_RING3
if (u32 & BM_CMD_START)
{
rc = VINF_IOM_HC_IOPORT_WRITE;
break;
}
#endif /* !IN_RING3 */
ataBMDMACmdWriteB(pCtl, Port, u32);
break;
case VAL(2, 1): ataBMDMAStatusWriteB(pCtl, Port, u32); break;
case VAL(4, 4): ataBMDMAAddrWriteL(pCtl, Port, u32); break;
case VAL(4, 2): ataBMDMAAddrWriteLowWord(pCtl, Port, u32); break;
case VAL(6, 2): ataBMDMAAddrWriteHighWord(pCtl, Port, u32); break;
default: AssertMsgFailed(("%s: Unsupported write to port %x size=%d val=%x\n", __FUNCTION__, Port, cb, u32)); break;
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
#undef VAL
#ifdef IN_RING3
/**
* Callback function for mapping an PCI I/O region.
*
* @return VBox status code.
* @param pPciDev Pointer to PCI device. Use pPciDev->pDevIns to get the device instance.
* @param iRegion The region number.
* @param GCPhysAddress Physical address of the region. If iType is PCI_ADDRESS_SPACE_IO, this is an
* I/O port, else it's a physical address.
* This address is *NOT* relative to pci_mem_base like earlier!
* @param enmType One of the PCI_ADDRESS_SPACE_* values.
*/
static DECLCALLBACK(int) ataBMDMAIORangeMap(PPCIDEVICE pPciDev, /*unsigned*/ int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType)
{
PCIATAState *pData = PCIDEV_2_PCIATASTATE(pPciDev);
int rc = VINF_SUCCESS;
Assert(enmType == PCI_ADDRESS_SPACE_IO);
Assert(iRegion == 4);
AssertMsg(RT_ALIGN(GCPhysAddress, 8) == GCPhysAddress, ("Expected 8 byte alignment. GCPhysAddress=%#x\n", GCPhysAddress));
/* Register the port range. */
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
int rc2 = PDMDevHlpIOPortRegister(pPciDev->pDevIns, (RTIOPORT)GCPhysAddress + i * 8, 8,
(RTHCPTR)i, ataBMDMAIOPortWrite, ataBMDMAIOPortRead, NULL, NULL, "ATA Bus Master DMA");
AssertRC(rc2);
if (rc2 < rc)
rc = rc2;
if (pData->fGCEnabled)
{
rc2 = PDMDevHlpIOPortRegisterGC(pPciDev->pDevIns, (RTIOPORT)GCPhysAddress + i * 8, 8,
(RTGCPTR)i, "ataBMDMAIOPortWrite", "ataBMDMAIOPortRead", NULL, NULL, "ATA Bus Master DMA");
AssertRC(rc2);
if (rc2 < rc)
rc = rc2;
}
if (pData->fR0Enabled)
{
rc2 = PDMDevHlpIOPortRegisterR0(pPciDev->pDevIns, (RTIOPORT)GCPhysAddress + i * 8, 8,
(RTR0PTR)i, "ataBMDMAIOPortWrite", "ataBMDMAIOPortRead", NULL, NULL, "ATA Bus Master DMA");
AssertRC(rc2);
if (rc2 < rc)
rc = rc2;
}
}
return rc;
}
/**
* Reset notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataReset(PPDMDEVINS pDevIns)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
pData->aCts[i].iSelectedIf = 0;
pData->aCts[i].iAIOIf = 0;
pData->aCts[i].BmDma.u8Cmd = 0;
/* Report that both drives present on the bus are in DMA mode. This
* pretends that there is a BIOS that has set it up. Normal reset
* default is 0x00. */
pData->aCts[i].BmDma.u8Status = (pData->aCts[i].aIfs[0].pDrvBase != NULL ? BM_STATUS_D0DMA : 0)
| (pData->aCts[i].aIfs[1].pDrvBase != NULL ? BM_STATUS_D1DMA : 0);
pData->aCts[i].BmDma.pvAddr = 0;
pData->aCts[i].fReset = true;
pData->aCts[i].fRedo = false;
pData->aCts[i].fRedoIdle = false;
ataAsyncIOClearRequests(&pData->aCts[i]);
Log2(("%s: Ctl#%d: message to async I/O thread, reset controller\n", __FUNCTION__, i));
ataAsyncIOPutRequest(&pData->aCts[i], &ataResetARequest);
ataAsyncIOPutRequest(&pData->aCts[i], &ataResetCRequest);
if (!ataWaitForAsyncIOIsIdle(&pData->aCts[i], 30000))
AssertReleaseMsgFailed(("Async I/O thread busy after reset\n"));
for (uint32_t j = 0; j < RT_ELEMENTS(pData->aCts[i].aIfs); j++)
ataResetDevice(&pData->aCts[i].aIfs[j]);
}
}
/* -=-=-=-=-=- PCIATAState::IBase -=-=-=-=-=- */
/**
* Queries an interface to the driver.
*
* @returns Pointer to interface.
* @returns NULL if the interface was not supported by the device.
* @param pInterface Pointer to ATADevState::IBase.
* @param enmInterface The requested interface identification.
*/
static DECLCALLBACK(void *) ataStatus_QueryInterface(PPDMIBASE pInterface, PDMINTERFACE enmInterface)
{
PCIATAState *pData = PDMIBASE_2_PCIATASTATE(pInterface);
switch (enmInterface)
{
case PDMINTERFACE_BASE:
return &pData->IBase;
case PDMINTERFACE_LED_PORTS:
return &pData->ILeds;
default:
return NULL;
}
}
/* -=-=-=-=-=- PCIATAState::ILeds -=-=-=-=-=- */
/**
* Gets the pointer to the status LED of a unit.
*
* @returns VBox status code.
* @param pInterface Pointer to the interface structure containing the called function pointer.
* @param iLUN The unit which status LED we desire.
* @param ppLed Where to store the LED pointer.
*/
static DECLCALLBACK(int) ataStatus_QueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed)
{
PCIATAState *pData = PDMILEDPORTS_2_PCIATASTATE(pInterface);
if (iLUN >= 0 && iLUN <= 4)
{
switch (iLUN)
{
case 0: *ppLed = &pData->aCts[0].aIfs[0].Led; break;
case 1: *ppLed = &pData->aCts[0].aIfs[1].Led; break;
case 2: *ppLed = &pData->aCts[1].aIfs[0].Led; break;
case 3: *ppLed = &pData->aCts[1].aIfs[1].Led; break;
}
Assert((*ppLed)->u32Magic == PDMLED_MAGIC);
return VINF_SUCCESS;
}
return VERR_PDM_LUN_NOT_FOUND;
}
/* -=-=-=-=-=- ATADevState::IBase -=-=-=-=-=- */
/**
* Queries an interface to the driver.
*
* @returns Pointer to interface.
* @returns NULL if the interface was not supported by the device.
* @param pInterface Pointer to ATADevState::IBase.
* @param enmInterface The requested interface identification.
*/
static DECLCALLBACK(void *) ataQueryInterface(PPDMIBASE pInterface, PDMINTERFACE enmInterface)
{
ATADevState *pIf = PDMIBASE_2_ATASTATE(pInterface);
switch (enmInterface)
{
case PDMINTERFACE_BASE:
return &pIf->IBase;
case PDMINTERFACE_BLOCK_PORT:
return &pIf->IPort;
case PDMINTERFACE_MOUNT_NOTIFY:
return &pIf->IMountNotify;
default:
return NULL;
}
}
#endif /* IN_RING3 */
/* -=-=-=-=-=- Wrappers -=-=-=-=-=- */
/**
* Port I/O Handler for primary port range OUT operations.
* @see FNIOMIOPORTOUT for details.
*/
PDMBOTHCBDECL(int) ataIOPortWrite1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc = VINF_SUCCESS;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
if (cb == 1)
rc = ataIOPortWriteU8(pCtl, Port, u32);
else if (Port == pCtl->IOPortBase1)
{
Assert(cb == 2 || cb == 4);
rc = ataDataWrite(pCtl, Port, cb, (const uint8_t *)&u32);
}
else
AssertMsgFailed(("ataIOPortWrite1: unsupported write to port %x val=%x size=%d\n", Port, u32, cb));
LogBird(("ata: leaving critsect\n"));
PDMCritSectLeave(&pCtl->lock);
LogBird(("ata: left critsect\n"));
return rc;
}
/**
* Port I/O Handler for primary port range IN operations.
* @see FNIOMIOPORTIN for details.
*/
PDMBOTHCBDECL(int) ataIOPortRead1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc = VINF_SUCCESS;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
if (cb == 1)
{
rc = ataIOPortReadU8(pCtl, Port, pu32);
}
else if (Port == pCtl->IOPortBase1)
{
Assert(cb == 2 || cb == 4);
rc = ataDataRead(pCtl, Port, cb, (uint8_t *)pu32);
if (cb == 2)
*pu32 &= 0xffff;
}
else
{
AssertMsgFailed(("ataIOPortRead1: unsupported read from port %x size=%d\n", Port, cb));
rc = VERR_IOM_IOPORT_UNUSED;
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
#ifndef IN_RING0
/**
* Port I/O Handler for primary port range IN string operations.
* @see FNIOMIOPORTINSTRING for details.
*/
PDMBOTHCBDECL(int) ataIOPortReadStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrDst, unsigned *pcTransfer, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc = VINF_SUCCESS;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
if (Port == pCtl->IOPortBase1)
{
uint32_t cTransAvailable, cTransfer = *pcTransfer, cbTransfer;
RTGCPTR GCDst = *pGCPtrDst;
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
Assert(cb == 2 || cb == 4);
cTransAvailable = (s->iIOBufferPIODataEnd - s->iIOBufferPIODataStart) / cb;
#ifndef IN_RING3
/* The last transfer unit cannot be handled in GC, as it involves thread communication. */
cTransAvailable--;
#endif /* !IN_RING3 */
/* Do not handle the dummy transfer stuff here, leave it to the single-word transfers.
* They are not performance-critical and generally shouldn't occur at all. */
if (cTransAvailable > cTransfer)
cTransAvailable = cTransfer;
cbTransfer = cTransAvailable * cb;
#ifdef IN_GC
for (uint32_t i = 0; i < cbTransfer; i += cb)
MMGCRamWriteNoTrapHandler((char *)GCDst + i, s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart + i, cb);
#else /* !IN_GC */
rc = PGMPhysWriteGCPtrDirty(PDMDevHlpGetVM(pDevIns), GCDst, s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart, cbTransfer);
Assert(rc == VINF_SUCCESS);
#endif /* IN_GC */
if (cbTransfer)
Log3(("%s: addr=%#x val=%.*Vhxs\n", __FUNCTION__, Port, cbTransfer, s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart));
s->iIOBufferPIODataStart += cbTransfer;
*pGCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCDst + cbTransfer);
*pcTransfer = cTransfer - cTransAvailable;
#ifdef IN_RING3
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* IN_RING3 */
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
/**
* Port I/O Handler for primary port range OUT string operations.
* @see FNIOMIOPORTOUTSTRING for details.
*/
PDMBOTHCBDECL(int) ataIOPortWriteStr1(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, RTGCPTR *pGCPtrSrc, unsigned *pcTransfer, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc;
Assert(i < 2);
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
if (Port == pCtl->IOPortBase1)
{
uint32_t cTransAvailable, cTransfer = *pcTransfer, cbTransfer;
RTGCPTR GCSrc = *pGCPtrSrc;
ATADevState *s = &pCtl->aIfs[pCtl->iSelectedIf];
Assert(cb == 2 || cb == 4);
cTransAvailable = (s->iIOBufferPIODataEnd - s->iIOBufferPIODataStart) / cb;
#ifndef IN_RING3
/* The last transfer unit cannot be handled in GC, as it involves thread communication. */
cTransAvailable--;
#endif /* !IN_RING3 */
/* Do not handle the dummy transfer stuff here, leave it to the single-word transfers.
* They are not performance-critical and generally shouldn't occur at all. */
if (cTransAvailable > cTransfer)
cTransAvailable = cTransfer;
cbTransfer = cTransAvailable * cb;
#ifdef IN_GC
for (uint32_t i = 0; i < cbTransfer; i += cb)
MMGCRamReadNoTrapHandler(s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart + i, (char *)GCSrc + i, cb);
#else /* !IN_GC */
rc = PGMPhysReadGCPtr(PDMDevHlpGetVM(pDevIns), s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart, GCSrc, cbTransfer);
Assert(rc == VINF_SUCCESS);
#endif /* IN_GC */
if (cbTransfer)
Log3(("%s: addr=%#x val=%.*Vhxs\n", __FUNCTION__, Port, cbTransfer, s->CTXSUFF(pbIOBuffer) + s->iIOBufferPIODataStart));
s->iIOBufferPIODataStart += cbTransfer;
*pGCPtrSrc = (RTGCPTR)((RTGCUINTPTR)GCSrc + cbTransfer);
*pcTransfer = cTransfer - cTransAvailable;
#ifdef IN_RING3
if (s->iIOBufferPIODataStart >= s->iIOBufferPIODataEnd)
ataPIOTransferFinish(pCtl, s);
#endif /* IN_RING3 */
}
PDMCritSectLeave(&pCtl->lock);
return rc;
}
#endif /* !IN_RING0 */
/**
* Port I/O Handler for secondary port range OUT operations.
* @see FNIOMIOPORTOUT for details.
*/
PDMBOTHCBDECL(int) ataIOPortWrite2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc;
Assert(i < 2);
if (cb != 1)
return VINF_SUCCESS;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_WRITE);
if (rc != VINF_SUCCESS)
return rc;
rc = ataControlWrite(pCtl, Port, u32);
PDMCritSectLeave(&pCtl->lock);
return rc;
}
/**
* Port I/O Handler for secondary port range IN operations.
* @see FNIOMIOPORTIN for details.
*/
PDMBOTHCBDECL(int) ataIOPortRead2(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
uint32_t i = (uint32_t)(uintptr_t)pvUser;
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl = &pData->aCts[i];
int rc;
Assert(i < 2);
if (cb != 1)
return VERR_IOM_IOPORT_UNUSED;
rc = PDMCritSectEnter(&pCtl->lock, VINF_IOM_HC_IOPORT_READ);
if (rc != VINF_SUCCESS)
return rc;
*pu32 = ataStatusRead(pCtl, Port);
PDMCritSectLeave(&pCtl->lock);
return VINF_SUCCESS;
}
#ifdef IN_RING3
/**
* Waits for all async I/O threads to complete whatever they
* are doing at the moment.
*
* @returns true on success.
* @returns false when one or more threads is still processing.
* @param pData Pointer to the instance data.
* @param cMillies How long to wait (total).
*/
static bool ataWaitForAllAsyncIOIsIdle(PPDMDEVINS pDevIns, unsigned cMillies)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
bool fVMLocked;
uint64_t u64Start;
PATACONTROLLER pCtl;
bool fAllIdle = false;
/* The only way to deal cleanly with the VM lock is to check whether
* it is owned now (it always is owned by EMT, which is the current
* thread). Since this function is called several times during VM
* shutdown, and the VM lock is only held for the first call (which
* can be either from ataPowerOff or ataSuspend), there is no other
* reasonable solution. */
fVMLocked = VMMR3LockIsOwner(PDMDevHlpGetVM(pDevIns));
if (fVMLocked)
pDevIns->pDevHlp->pfnUnlockVM(pDevIns);
/*
* Wait for any pending async operation to finish
*/
u64Start = RTTimeMilliTS();
for (;;)
{
/* Check all async I/O threads. */
fAllIdle = true;
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
pCtl = &pData->aCts[i];
fAllIdle &= ataAsyncIOIsIdle(pCtl, false);
if (!fAllIdle)
break;
}
if ( fAllIdle
|| RTTimeMilliTS() - u64Start >= cMillies)
break;
/* Sleep for a bit. */
RTThreadSleep(100);
}
if (fVMLocked)
pDevIns->pDevHlp->pfnLockVM(pDevIns);
if (!fAllIdle)
LogRel(("PIIX3 ATA: Ctl#%d is still executing, DevSel=%d AIOIf=%d CmdIf0=%#04x CmdIf1=%#04x\n",
ATACONTROLLER_IDX(pCtl), pCtl->iSelectedIf, pCtl->iAIOIf,
pCtl->aIfs[0].uATARegCommand, pCtl->aIfs[1].uATARegCommand));
return fAllIdle;
}
DECLINLINE(void) ataRelocBuffer(PPDMDEVINS pDevIns, ATADevState *s)
{
if (s->pbIOBufferHC)
s->pbIOBufferGC = MMHyperHC2GC(PDMDevHlpGetVM(pDevIns), s->pbIOBufferHC);
}
/**
* @copydoc FNPDMDEVRELOCATE
*/
static DECLCALLBACK(void) ataRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
pData->aCts[i].pDevInsGC += offDelta;
pData->aCts[i].aIfs[0].pDevInsGC += offDelta;
pData->aCts[i].aIfs[0].pControllerGC += offDelta;
ataRelocBuffer(pDevIns, &pData->aCts[i].aIfs[0]);
pData->aCts[i].aIfs[1].pDevInsGC += offDelta;
pData->aCts[i].aIfs[1].pControllerGC += offDelta;
ataRelocBuffer(pDevIns, &pData->aCts[i].aIfs[1]);
}
}
/**
* Destroy a driver instance.
*
* Most VM resources are freed by the VM. This callback is provided so that any non-VM
* resources can be freed correctly.
*
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(int) ataDestruct(PPDMDEVINS pDevIns)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
int rc;
Log(("%s:\n", __FUNCTION__));
/*
* Terminate all async helper threads
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
if (pData->aCts[i].AsyncIOThread != NIL_RTTHREAD)
{
ASMAtomicXchgU32(&pData->aCts[i].fShutdown, true);
rc = RTSemEventSignal(pData->aCts[i].AsyncIOSem);
AssertRC(rc);
}
}
/*
* Wait for them to complete whatever they are doing and then
* for them to terminate.
*/
if (ataWaitForAllAsyncIOIsIdle(pDevIns, 20000))
{
uint64_t u64Start = RTTimeMilliTS();
bool fAllDone;
for (;;)
{
/* check */
fAllDone = true;
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts) && fAllDone; i++)
fAllDone &= (pData->aCts[i].AsyncIOThread == NIL_RTTHREAD);
if ( fAllDone
|| RTTimeMilliTS() - u64Start >= 500)
break;
/* Sleep for a bit. */
RTThreadSleep(100);
}
AssertMsg(fAllDone, ("Some of the async I/O threads are still running!\n"));
}
else
AssertMsgFailed(("Async I/O is still busy!\n"));
/*
* Now the request mutexes are no longer needed. Free resources.
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
if (pData->aCts[i].AsyncIORequestMutex)
{
RTSemMutexDestroy(pData->aCts[i].AsyncIORequestMutex);
pData->aCts[i].AsyncIORequestMutex = NIL_RTSEMEVENT;
}
}
return VINF_SUCCESS;
}
/**
* Detach notification.
*
* The DVD drive has been unplugged.
*
* @param pDevIns The device instance.
* @param iLUN The logical unit which is being detached.
*/
static DECLCALLBACK(void) ataDetach(PPDMDEVINS pDevIns, unsigned iLUN)
{
PCIATAState *pThis = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl;
ATADevState *pIf;
unsigned iController;
unsigned iInterface;
/*
* Locate the controller and stuff.
*/
iController = iLUN / RT_ELEMENTS(pThis->aCts[0].aIfs);
AssertReleaseMsg(iController < RT_ELEMENTS(pThis->aCts), ("iController=%d iLUN=%d\n", iController, iLUN));
pCtl = &pThis->aCts[iController];
iInterface = iLUN % RT_ELEMENTS(pThis->aCts[0].aIfs);
pIf = &pCtl->aIfs[iInterface];
/*
* Zero some important members.
*/
pIf->pDrvBase = NULL;
pIf->pDrvBlock = NULL;
pIf->pDrvBlockBios = NULL;
pIf->pDrvMount = NULL;
}
/**
* Configure a LUN.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pIf The ATA unit state.
*/
static int ataConfigLun(PPDMDEVINS pDevIns, ATADevState *pIf)
{
int rc;
PDMBLOCKTYPE enmType;
/*
* Query Block, Bios and Mount interfaces.
*/
pIf->pDrvBlock = (PDMIBLOCK *)pIf->pDrvBase->pfnQueryInterface(pIf->pDrvBase, PDMINTERFACE_BLOCK);
if (!pIf->pDrvBlock)
{
AssertMsgFailed(("Configuration error: LUN#%d hasn't a block interface!\n", pIf->iLUN));
return VERR_PDM_MISSING_INTERFACE;
}
/** @todo implement the BIOS invisible code path. */
pIf->pDrvBlockBios = (PDMIBLOCKBIOS *)pIf->pDrvBase->pfnQueryInterface(pIf->pDrvBase, PDMINTERFACE_BLOCK_BIOS);
if (!pIf->pDrvBlockBios)
{
AssertMsgFailed(("Configuration error: LUN#%d hasn't a block BIOS interface!\n", pIf->iLUN));
return VERR_PDM_MISSING_INTERFACE;
}
pIf->pDrvMount = (PDMIMOUNT *)pIf->pDrvBase->pfnQueryInterface(pIf->pDrvBase, PDMINTERFACE_MOUNT);
/*
* Validate type.
*/
enmType = pIf->pDrvBlock->pfnGetType(pIf->pDrvBlock);
if ( enmType != PDMBLOCKTYPE_CDROM
&& enmType != PDMBLOCKTYPE_DVD
&& enmType != PDMBLOCKTYPE_HARD_DISK)
{
AssertMsgFailed(("Configuration error: LUN#%d isn't a disk or cd/dvd-rom. enmType=%d\n", pIf->iLUN, enmType));
return VERR_PDM_UNSUPPORTED_BLOCK_TYPE;
}
if ( ( enmType == PDMBLOCKTYPE_DVD
|| enmType == PDMBLOCKTYPE_CDROM)
&& !pIf->pDrvMount)
{
AssertMsgFailed(("Internal error: cdrom without a mountable interface, WTF???!\n"));
return VERR_INTERNAL_ERROR;
}
pIf->fATAPI = enmType == PDMBLOCKTYPE_DVD || enmType == PDMBLOCKTYPE_CDROM;
pIf->fATAPIPassthrough = pIf->fATAPI ? (pIf->pDrvBlock->pfnSendCmd != NULL) : false;
/*
* Allocate I/O buffer.
*/
PVM pVM = PDMDevHlpGetVM(pDevIns);
if (pIf->cbIOBuffer)
{
/* Buffer is (probably) already allocated. Validate the fields,
* because memory corruption can also overwrite pIf->cbIOBuffer. */
if (pIf->fATAPI)
AssertRelease(pIf->cbIOBuffer == _128K);
else
AssertRelease(pIf->cbIOBuffer == ATA_MAX_MULT_SECTORS * 512);
Assert(pIf->pbIOBufferHC);
Assert(pIf->pbIOBufferGC == MMHyperHC2GC(pVM, pIf->pbIOBufferHC));
}
else
{
if (pIf->fATAPI)
pIf->cbIOBuffer = _128K;
else
pIf->cbIOBuffer = ATA_MAX_MULT_SECTORS * 512;
Assert(!pIf->pbIOBufferHC);
rc = MMHyperAlloc(pVM, pIf->cbIOBuffer, 1, MM_TAG_PDM_DEVICE_USER, (void **)&pIf->pbIOBufferHC);
if (VBOX_FAILURE(rc))
return VERR_NO_MEMORY;
pIf->pbIOBufferGC = MMHyperHC2GC(pVM, pIf->pbIOBufferHC);
}
/*
* Init geometry.
*/
if (pIf->fATAPI)
{
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 2048;
rc = pIf->pDrvBlockBios->pfnGetGeometry(pIf->pDrvBlockBios, &pIf->cCHSCylinders, &pIf->cCHSHeads, &pIf->cCHSSectors);
pIf->cCHSCylinders = 0; /* dummy */
pIf->cCHSHeads = 0; /* dummy */
pIf->cCHSSectors = 0; /* dummy */
if (rc != VERR_PDM_MEDIA_NOT_MOUNTED)
{
pIf->pDrvBlockBios->pfnSetTranslation(pIf->pDrvBlockBios, PDMBIOSTRANSLATION_NONE);
pIf->pDrvBlockBios->pfnSetGeometry(pIf->pDrvBlockBios, pIf->cCHSCylinders, pIf->cCHSHeads, pIf->cCHSSectors);
}
LogRel(("PIIX3 ATA: LUN#%d: CD/DVD, total number of sectors %Ld, passthrough %s\n", pIf->iLUN, pIf->cTotalSectors, (pIf->fATAPIPassthrough ? "enabled" : "disabled")));
}
else
{
pIf->cTotalSectors = pIf->pDrvBlock->pfnGetSize(pIf->pDrvBlock) / 512;
rc = pIf->pDrvBlockBios->pfnGetGeometry(pIf->pDrvBlockBios, &pIf->cCHSCylinders, &pIf->cCHSHeads, &pIf->cCHSSectors);
if (rc == VERR_PDM_MEDIA_NOT_MOUNTED)
{
pIf->cCHSCylinders = 0;
pIf->cCHSHeads = 16; /*??*/
pIf->cCHSSectors = 63; /*??*/
}
else if (VBOX_FAILURE(rc))
{
PDMBIOSTRANSLATION enmTranslation;
rc = pIf->pDrvBlockBios->pfnGetTranslation(pIf->pDrvBlockBios, &enmTranslation);
if (rc == VERR_PDM_TRANSLATION_NOT_SET)
{
enmTranslation = PDMBIOSTRANSLATION_AUTO;
pIf->cCHSCylinders = 0;
rc = VINF_SUCCESS;
}
AssertRC(rc);
if ( enmTranslation == PDMBIOSTRANSLATION_AUTO
&& ( pIf->cCHSCylinders == 0
|| pIf->cCHSHeads == 0
|| pIf->cCHSSectors == 0
)
)
{
/* Image contains no geometry information, detect geometry. */
rc = ataGuessDiskLCHS(pIf, &pIf->cCHSCylinders, &pIf->cCHSHeads, &pIf->cCHSSectors);
if (VBOX_SUCCESS(rc))
{
/* Caution: the above function returns LCHS, but the
* disk must report proper PCHS values for disks bigger
* than approximately 512MB. */
if (pIf->cCHSSectors == 63 && (pIf->cCHSHeads != 16 || pIf->cCHSCylinders >= 1024))
{
pIf->cCHSCylinders = pIf->cTotalSectors / 63 / 16;
pIf->cCHSHeads = 16;
pIf->cCHSSectors = 63;
/* Set the disk CHS translation mode. */
pIf->pDrvBlockBios->pfnSetTranslation(pIf->pDrvBlockBios, PDMBIOSTRANSLATION_LBA);
}
/* Set the disk geometry information. */
rc = pIf->pDrvBlockBios->pfnSetGeometry(pIf->pDrvBlockBios, pIf->cCHSCylinders, pIf->cCHSHeads, pIf->cCHSSectors);
}
else
{
/* Flag geometry as invalid, will be replaced below by the
* default geometry. */
pIf->cCHSCylinders = 0;
}
}
if (!pIf->cCHSCylinders)
{
/* If there is no geometry, use standard physical disk geometry.
* This uses LCHS to LBA translation in the BIOS (which selects
* the logical sector count 63 and the logical head count to be
* the smallest of 16,32,64,128,255 which makes the logical
* cylinder count smaller than 1024 - if that's not possible, it
* uses 255 heads, so up to about 8 GByte maximum with the
* standard int13 interface, which supports 1024 cylinders). */
uint64_t cCHSCylinders = pIf->cTotalSectors / (16 * 63);
pIf->cCHSCylinders = (uint32_t)RT_MAX(cCHSCylinders, 1);
pIf->cCHSHeads = 16;
pIf->cCHSSectors = 63;
/* Set the disk geometry information. */
rc = pIf->pDrvBlockBios->pfnSetGeometry(pIf->pDrvBlockBios, pIf->cCHSCylinders, pIf->cCHSHeads, pIf->cCHSSectors);
}
}
else
{
PDMBIOSTRANSLATION enmTranslation;
rc = pIf->pDrvBlockBios->pfnGetTranslation(pIf->pDrvBlockBios, &enmTranslation);
if (( rc == VERR_PDM_TRANSLATION_NOT_SET
|| enmTranslation == PDMBIOSTRANSLATION_LBA)
&& pIf->cCHSSectors == 63
&& (pIf->cCHSHeads != 16 || pIf->cCHSCylinders >= 1024))
{
/* Use the official LBA physical CHS geometry. */
uint64_t cCHSCylinders = pIf->cTotalSectors / (16 * 63);
pIf->cCHSCylinders = RT_MAX((uint32_t)RT_MIN(cCHSCylinders, 16383), 1);
pIf->cCHSHeads = 16;
pIf->cCHSSectors = 63;
/* DO NOT write back the disk geometry information. This
* intentionally sets the ATA geometry only. */
}
}
LogRel(("PIIX3 ATA: LUN#%d: disk, CHS=%d/%d/%d, total number of sectors %Ld\n", pIf->iLUN, pIf->cCHSCylinders, pIf->cCHSHeads, pIf->cCHSSectors, pIf->cTotalSectors));
}
return VINF_SUCCESS;
}
/**
* Attach command.
*
* This is called when we change block driver for the DVD drive.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param iLUN The logical unit which is being detached.
*/
static DECLCALLBACK(int) ataAttach(PPDMDEVINS pDevIns, unsigned iLUN)
{
PCIATAState *pThis = PDMINS2DATA(pDevIns, PCIATAState *);
PATACONTROLLER pCtl;
ATADevState *pIf;
int rc;
unsigned iController;
unsigned iInterface;
/*
* Locate the controller and stuff.
*/
iController = iLUN / RT_ELEMENTS(pThis->aCts[0].aIfs);
AssertReleaseMsg(iController < RT_ELEMENTS(pThis->aCts), ("iController=%d iLUN=%d\n", iController, iLUN));
pCtl = &pThis->aCts[iController];
iInterface = iLUN % RT_ELEMENTS(pThis->aCts[0].aIfs);
pIf = &pCtl->aIfs[iInterface];
/* the usual paranoia */
AssertRelease(!pIf->pDrvBase);
AssertRelease(!pIf->pDrvBlock);
Assert(ATADEVSTATE_2_CONTROLLER(pIf) == pCtl);
Assert(pIf->iLUN == iLUN);
/*
* Try attach the block device and get the interfaces,
* required as well as optional.
*/
rc = PDMDevHlpDriverAttach(pDevIns, pIf->iLUN, &pIf->IBase, &pIf->pDrvBase, NULL);
if (VBOX_SUCCESS(rc))
rc = ataConfigLun(pDevIns, pIf);
else
AssertMsgFailed(("Failed to attach LUN#%d. rc=%Vrc\n", pIf->iLUN, rc));
if (VBOX_FAILURE(rc))
{
pIf->pDrvBase = NULL;
pIf->pDrvBlock = NULL;
}
return rc;
}
/**
* Suspend notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataSuspend(PPDMDEVINS pDevIns)
{
Log(("%s:\n", __FUNCTION__));
if (!ataWaitForAllAsyncIOIsIdle(pDevIns, 20000))
AssertMsgFailed(("Async I/O didn't stop in 20 seconds!\n"));
return;
}
/**
* Resume notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataResume(PPDMDEVINS pDevIns)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
int rc;
Log(("%s:\n", __FUNCTION__));
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
if (pData->aCts[i].fRedo && pData->aCts[i].fRedoIdle)
{
rc = RTSemEventSignal(pData->aCts[i].SuspendIOSem);
AssertRC(rc);
}
}
return;
}
/**
* Power Off notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*/
static DECLCALLBACK(void) ataPowerOff(PPDMDEVINS pDevIns)
{
Log(("%s:\n", __FUNCTION__));
if (!ataWaitForAllAsyncIOIsIdle(pDevIns, 20000))
AssertMsgFailed(("Async I/O didn't stop in 20 seconds!\n"));
return;
}
/**
* Prepare state save and load operation.
*
* @returns VBox status code.
* @param pDevIns Device instance of the device which registered the data unit.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) ataSaveLoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
/* sanity - the suspend notification will wait on the async stuff. */
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
Assert(ataAsyncIOIsIdle(&pData->aCts[i], false));
if (!ataAsyncIOIsIdle(&pData->aCts[i], false))
return VERR_SSM_IDE_ASYNC_TIMEOUT;
}
return VINF_SUCCESS;
}
/**
* Saves a state of the ATA device.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSMHandle The handle to save the state to.
*/
static DECLCALLBACK(int) ataSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
SSMR3PutU8(pSSMHandle, pData->aCts[i].iSelectedIf);
SSMR3PutU8(pSSMHandle, pData->aCts[i].iAIOIf);
SSMR3PutU8(pSSMHandle, pData->aCts[i].uAsyncIOState);
SSMR3PutBool(pSSMHandle, pData->aCts[i].fChainedTransfer);
SSMR3PutBool(pSSMHandle, pData->aCts[i].fReset);
SSMR3PutBool(pSSMHandle, pData->aCts[i].fRedo);
SSMR3PutBool(pSSMHandle, pData->aCts[i].fRedoIdle);
SSMR3PutBool(pSSMHandle, pData->aCts[i].fRedoDMALastDesc);
SSMR3PutMem(pSSMHandle, &pData->aCts[i].BmDma, sizeof(pData->aCts[i].BmDma));
SSMR3PutGCPhys(pSSMHandle, pData->aCts[i].pFirstDMADesc);
SSMR3PutGCPhys(pSSMHandle, pData->aCts[i].pLastDMADesc);
SSMR3PutGCPhys(pSSMHandle, pData->aCts[i].pRedoDMABuffer);
SSMR3PutU32(pSSMHandle, pData->aCts[i].cbRedoDMABuffer);
for (uint32_t j = 0; j < RT_ELEMENTS(pData->aCts[i].aIfs); j++)
{
SSMR3PutBool(pSSMHandle, pData->aCts[i].aIfs[j].fLBA48);
SSMR3PutBool(pSSMHandle, pData->aCts[i].aIfs[j].fATAPI);
SSMR3PutBool(pSSMHandle, pData->aCts[i].aIfs[j].fIrqPending);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].cMultSectors);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cCHSCylinders);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cCHSHeads);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cCHSSectors);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cSectorsPerIRQ);
SSMR3PutU64(pSSMHandle, pData->aCts[i].aIfs[j].cTotalSectors);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegFeature);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegFeatureHOB);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegError);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegNSector);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegNSectorHOB);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegSector);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegSectorHOB);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegLCyl);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegLCylHOB);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegHCyl);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegHCylHOB);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegSelect);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegStatus);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegCommand);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATARegDevCtl);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATATransferMode);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uTxDir);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].iBeginTransfer);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].iSourceSink);
SSMR3PutBool(pSSMHandle, pData->aCts[i].aIfs[j].fDMA);
SSMR3PutBool(pSSMHandle, pData->aCts[i].aIfs[j].fATAPITransfer);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cbTotalTransfer);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cbElementaryTransfer);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].iIOBufferCur);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].iIOBufferEnd);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].iIOBufferPIODataStart);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].iIOBufferPIODataEnd);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].iATAPILBA);
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cbATAPISector);
SSMR3PutMem(pSSMHandle, &pData->aCts[i].aIfs[j].aATAPICmd, sizeof(pData->aCts[i].aIfs[j].aATAPICmd));
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATAPISenseKey);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].uATAPIASC);
SSMR3PutU8(pSSMHandle, pData->aCts[i].aIfs[j].cNotifiedMediaChange);
SSMR3PutMem(pSSMHandle, &pData->aCts[i].aIfs[j].Led, sizeof(pData->aCts[i].aIfs[j].Led));
SSMR3PutU32(pSSMHandle, pData->aCts[i].aIfs[j].cbIOBuffer);
if (pData->aCts[i].aIfs[j].cbIOBuffer)
SSMR3PutMem(pSSMHandle, pData->aCts[i].aIfs[j].CTXSUFF(pbIOBuffer), pData->aCts[i].aIfs[j].cbIOBuffer);
else
Assert(pData->aCts[i].aIfs[j].CTXSUFF(pbIOBuffer) == NULL);
}
}
return SSMR3PutU32(pSSMHandle, ~0); /* sanity/terminator */
}
/**
* Loads a saved ATA device state.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSMHandle The handle to the saved state.
* @param u32Version The data unit version number.
*/
static DECLCALLBACK(int) ataLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t u32Version)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
int rc;
uint32_t u32;
if (u32Version != ATA_SAVED_STATE_VERSION)
{
AssertMsgFailed(("u32Version=%d\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Restore valid parts of the PCIATAState structure
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
/* integrity check */
if (!ataAsyncIOIsIdle(&pData->aCts[i], false))
{
AssertMsgFailed(("Async I/O for controller %d is active\n", i));
rc = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
return rc;
}
SSMR3GetU8(pSSMHandle, &pData->aCts[i].iSelectedIf);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].iAIOIf);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].uAsyncIOState);
SSMR3GetBool(pSSMHandle, &pData->aCts[i].fChainedTransfer);
SSMR3GetBool(pSSMHandle, (bool *)&pData->aCts[i].fReset);
SSMR3GetBool(pSSMHandle, (bool *)&pData->aCts[i].fRedo);
SSMR3GetBool(pSSMHandle, (bool *)&pData->aCts[i].fRedoIdle);
SSMR3GetBool(pSSMHandle, (bool *)&pData->aCts[i].fRedoDMALastDesc);
SSMR3GetMem(pSSMHandle, &pData->aCts[i].BmDma, sizeof(pData->aCts[i].BmDma));
SSMR3GetGCPhys(pSSMHandle, &pData->aCts[i].pFirstDMADesc);
SSMR3GetGCPhys(pSSMHandle, &pData->aCts[i].pLastDMADesc);
SSMR3GetGCPhys(pSSMHandle, &pData->aCts[i].pRedoDMABuffer);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].cbRedoDMABuffer);
for (uint32_t j = 0; j < RT_ELEMENTS(pData->aCts[i].aIfs); j++)
{
SSMR3GetBool(pSSMHandle, &pData->aCts[i].aIfs[j].fLBA48);
SSMR3GetBool(pSSMHandle, &pData->aCts[i].aIfs[j].fATAPI);
SSMR3GetBool(pSSMHandle, &pData->aCts[i].aIfs[j].fIrqPending);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].cMultSectors);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cCHSCylinders);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cCHSHeads);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cCHSSectors);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cSectorsPerIRQ);
SSMR3GetU64(pSSMHandle, &pData->aCts[i].aIfs[j].cTotalSectors);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegFeature);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegFeatureHOB);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegError);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegNSector);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegNSectorHOB);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegSector);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegSectorHOB);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegLCyl);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegLCylHOB);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegHCyl);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegHCylHOB);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegSelect);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegStatus);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegCommand);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATARegDevCtl);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATATransferMode);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uTxDir);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].iBeginTransfer);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].iSourceSink);
SSMR3GetBool(pSSMHandle, &pData->aCts[i].aIfs[j].fDMA);
SSMR3GetBool(pSSMHandle, &pData->aCts[i].aIfs[j].fATAPITransfer);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cbTotalTransfer);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cbElementaryTransfer);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].iIOBufferCur);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].iIOBufferEnd);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].iIOBufferPIODataStart);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].iIOBufferPIODataEnd);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].iATAPILBA);
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cbATAPISector);
SSMR3GetMem(pSSMHandle, &pData->aCts[i].aIfs[j].aATAPICmd, sizeof(pData->aCts[i].aIfs[j].aATAPICmd));
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATAPISenseKey);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].uATAPIASC);
SSMR3GetU8(pSSMHandle, &pData->aCts[i].aIfs[j].cNotifiedMediaChange);
SSMR3GetMem(pSSMHandle, &pData->aCts[i].aIfs[j].Led, sizeof(pData->aCts[i].aIfs[j].Led));
SSMR3GetU32(pSSMHandle, &pData->aCts[i].aIfs[j].cbIOBuffer);
if (pData->aCts[i].aIfs[j].cbIOBuffer)
SSMR3GetMem(pSSMHandle, pData->aCts[i].aIfs[j].CTXSUFF(pbIOBuffer), pData->aCts[i].aIfs[j].cbIOBuffer);
else
Assert(pData->aCts[i].aIfs[j].CTXSUFF(pbIOBuffer) == NULL);
}
}
rc = SSMR3GetU32(pSSMHandle, &u32);
if (VBOX_FAILURE(rc))
return rc;
if (u32 != ~0U)
{
AssertMsgFailed(("u32=%#x expected ~0\n", u32));
rc = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
return rc;
}
return VINF_SUCCESS;
}
/**
* Construct a device instance for a VM.
*
* @returns VBox status.
* @param pDevIns The device instance data.
* If the registration structure is needed, pDevIns->pDevReg points to it.
* @param iInstance Instance number. Use this to figure out which registers and such to use.
* The device number is also found in pDevIns->iInstance, but since it's
* likely to be freqently used PDM passes it as parameter.
* @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration
* of the device instance. It's also found in pDevIns->pCfgHandle, but like
* iInstance it's expected to be used a bit in this function.
*/
static DECLCALLBACK(int) ataConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle)
{
PCIATAState *pData = PDMINS2DATA(pDevIns, PCIATAState *);
PPDMIBASE pBase;
int rc;
bool fGCEnabled;
bool fR0Enabled;
uint32_t DelayIRQMillies;
Assert(iInstance == 0);
/*
* Validate and read configuration.
*/
if (!CFGMR3AreValuesValid(pCfgHandle, "GCEnabled\0IRQDelay\0R0Enabled\0"))
return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
N_("PIIX3 configuration error: unknown option specified."));
rc = CFGMR3QueryBool(pCfgHandle, "GCEnabled", &fGCEnabled);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
fGCEnabled = true;
else if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read GCEnabled as boolean."));
Log(("%s: fGCEnabled=%d\n", __FUNCTION__, fGCEnabled));
rc = CFGMR3QueryBool(pCfgHandle, "R0Enabled", &fR0Enabled);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
fR0Enabled = true;
else if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read R0Enabled as boolean."));
Log(("%s: fR0Enabled=%d\n", __FUNCTION__, fR0Enabled));
rc = CFGMR3QueryU32(pCfgHandle, "IRQDelay", &DelayIRQMillies);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
DelayIRQMillies = 0;
else if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 configuration error: failed to read IRQDelay as integer."));
Log(("%s: DelayIRQMillies=%d\n", __FUNCTION__, DelayIRQMillies));
Assert(DelayIRQMillies < 50);
/*
* Initialize data (most of it anyway).
*/
/* Status LUN. */
pData->IBase.pfnQueryInterface = ataStatus_QueryInterface;
pData->ILeds.pfnQueryStatusLed = ataStatus_QueryStatusLed;
/* pci */
pData->dev.config[0x00] = 0x86; /* Vendor: Intel */
pData->dev.config[0x01] = 0x80;
pData->dev.config[0x02] = 0x10; /* Device: PIIX3 IDE */
pData->dev.config[0x03] = 0x70;
pData->dev.config[0x04] = PCI_COMMAND_IOACCESS | PCI_COMMAND_MEMACCESS | PCI_COMMAND_BUSMASTER;
pData->dev.config[0x09] = 0x8a; /* programming interface = PCI_IDE bus master is supported */
pData->dev.config[0x0a] = 0x01; /* class_sub = PCI_IDE */
pData->dev.config[0x0b] = 0x01; /* class_base = PCI_mass_storage */
pData->dev.config[0x0e] = 0x00; /* header_type */
pData->pDevIns = pDevIns;
pData->fGCEnabled = fGCEnabled;
pData->fR0Enabled = fR0Enabled;
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
pData->aCts[i].pDevInsHC = pDevIns;
pData->aCts[i].pDevInsGC = PDMDEVINS_2_GCPTR(pDevIns);
pData->aCts[i].DelayIRQMillies = (uint32_t)DelayIRQMillies;
for (uint32_t j = 0; j < RT_ELEMENTS(pData->aCts[i].aIfs); j++)
{
pData->aCts[i].aIfs[j].iLUN = i * RT_ELEMENTS(pData->aCts) + j;
pData->aCts[i].aIfs[j].pDevInsHC = pDevIns;
pData->aCts[i].aIfs[j].pDevInsGC = PDMDEVINS_2_GCPTR(pDevIns);
pData->aCts[i].aIfs[j].pControllerHC = &pData->aCts[i];
pData->aCts[i].aIfs[j].pControllerGC = MMHyperHC2GC(PDMDevHlpGetVM(pDevIns), &pData->aCts[i]);
pData->aCts[i].aIfs[j].IBase.pfnQueryInterface = ataQueryInterface;
pData->aCts[i].aIfs[j].IMountNotify.pfnMountNotify = ataMountNotify;
pData->aCts[i].aIfs[j].IMountNotify.pfnUnmountNotify = ataUnmountNotify;
pData->aCts[i].aIfs[j].Led.u32Magic = PDMLED_MAGIC;
}
}
Assert(RT_ELEMENTS(pData->aCts) == 2);
pData->aCts[0].irq = 14;
pData->aCts[0].IOPortBase1 = 0x1f0;
pData->aCts[0].IOPortBase2 = 0x3f6;
pData->aCts[1].irq = 15;
pData->aCts[1].IOPortBase1 = 0x170;
pData->aCts[1].IOPortBase2 = 0x376;
/*
* Register the PCI device.
* N.B. There's a hack in the PIIX3 PCI bridge device to assign this
* device the slot next to itself.
*/
rc = PDMDevHlpPCIRegister(pDevIns, &pData->dev);
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 cannot register PCI device."));
AssertMsg(pData->dev.devfn == 9 || iInstance != 0, ("pData->dev.devfn=%d\n", pData->dev.devfn));
rc = PDMDevHlpPCIIORegionRegister(pDevIns, 4, 0x10, PCI_ADDRESS_SPACE_IO, ataBMDMAIORangeMap);
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("PIIX3 cannot register PCI I/O region for BMDMA."));
/*
* Register the I/O ports.
* The ports are all hardcoded and enforced by the PIIX3 host bridge controller.
*/
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
rc = PDMDevHlpIOPortRegister(pDevIns, pData->aCts[i].IOPortBase1, 8, (RTHCPTR)i,
ataIOPortWrite1, ataIOPortRead1, ataIOPortWriteStr1, ataIOPortReadStr1, "ATA I/O Base 1");
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register I/O handlers."));
if (fGCEnabled)
{
rc = PDMDevHlpIOPortRegisterGC(pDevIns, pData->aCts[i].IOPortBase1, 8, (RTGCPTR)i,
"ataIOPortWrite1", "ataIOPortRead1", "ataIOPortWriteStr1", "ataIOPortReadStr1", "ATA I/O Base 1");
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register I/O handlers (GC)."));
}
if (fR0Enabled)
{
#if 1
rc = PDMDevHlpIOPortRegisterR0(pDevIns, pData->aCts[i].IOPortBase1, 8, (RTR0PTR)i,
"ataIOPortWrite1", "ataIOPortRead1", NULL, NULL, "ATA I/O Base 1");
#else
rc = PDMDevHlpIOPortRegisterR0(pDevIns, pData->aCts[i].IOPortBase1, 8, (RTR0PTR)i,
"ataIOPortWrite1", "ataIOPortRead1", "ataIOPortWriteStr1", "ataIOPortReadStr1", "ATA I/O Base 1");
#endif
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, "PIIX3 cannot register I/O handlers (R0).");
}
rc = PDMDevHlpIOPortRegister(pDevIns, pData->aCts[i].IOPortBase2, 1, (RTHCPTR)i,
ataIOPortWrite2, ataIOPortRead2, NULL, NULL, "ATA I/O Base 2");
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register base2 I/O handlers."));
if (fGCEnabled)
{
rc = PDMDevHlpIOPortRegisterGC(pDevIns, pData->aCts[i].IOPortBase2, 1, (RTGCPTR)i,
"ataIOPortWrite2", "ataIOPortRead2", NULL, NULL, "ATA I/O Base 2");
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register base2 I/O handlers (GC)."));
}
if (fR0Enabled)
{
rc = PDMDevHlpIOPortRegisterR0(pDevIns, pData->aCts[i].IOPortBase2, 1, (RTR0PTR)i,
"ataIOPortWrite2", "ataIOPortRead2", NULL, NULL, "ATA I/O Base 2");
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register base2 I/O handlers (R0)."));
}
for (uint32_t j = 0; j < RT_ELEMENTS(pData->aCts[i].aIfs); j++)
{
ATADevState *pIf = &pData->aCts[i].aIfs[j];
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATADMA, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATA DMA transfers.", "/Devices/ATA%d/Unit%d/DMA", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATAPIO, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATA PIO transfers.", "/Devices/ATA%d/Unit%d/PIO", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATAPIDMA, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATAPI DMA transfers.", "/Devices/ATA%d/Unit%d/AtapiDMA", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatATAPIPIO, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of ATAPI PIO transfers.", "/Devices/ATA%d/Unit%d/AtapiPIO", i, j);
#ifdef VBOX_WITH_STATISTICS /** @todo release too. */
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatReads, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of the read operations.", "/Devices/ATA%d/Unit%d/Reads", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatBytesRead, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data read.", "/Devices/ATA%d/Unit%d/ReadBytes", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatWrites, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of the write operations.","/Devices/ATA%d/Unit%d/Writes", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatBytesWritten, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data written.", "/Devices/ATA%d/Unit%d/WrittenBytes", i, j);
PDMDevHlpSTAMRegisterF(pDevIns, &pIf->StatFlushes, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of the flush operations.","/Devices/ATA%d/Unit%d/Flushes", i, j);
#endif
}
#ifdef VBOX_WITH_STATISTICS /** @todo release too. */
PDMDevHlpSTAMRegisterF(pDevIns, &pData->aCts[i].StatAsyncOps, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "The number of async operations.", "/Devices/ATA%d/Async/Operations", i);
/** @todo STAMUNIT_MICROSECS */
PDMDevHlpSTAMRegisterF(pDevIns, &pData->aCts[i].StatAsyncMinWait, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Minimum wait in microseconds.", "/Devices/ATA%d/Async/MinWait", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pData->aCts[i].StatAsyncMaxWait, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Maximum wait in microseconds.", "/Devices/ATA%d/Async/MaxWait", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pData->aCts[i].StatAsyncTimeUS, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Total time spent in microseconds.","/Devices/ATA%d/Async/TotalTimeUS", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pData->aCts[i].StatAsyncTime, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of async operations.", "/Devices/ATA%d/Async/Time", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pData->aCts[i].StatLockWait, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling of locks.", "/Devices/ATA%d/Async/LockWait", i);
#endif /* VBOX_WITH_STATISTICS */
/* Initialize per-controller critical section */
char szName[24];
RTStrPrintf(szName, sizeof(szName), "ATA%d", i);
rc = PDMDevHlpCritSectInit(pDevIns, &pData->aCts[i].lock, szName);
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot initialize critical section."));
}
/*
* Attach status driver (optional).
*/
rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pData->IBase, &pBase, "Status Port");
if (VBOX_SUCCESS(rc))
pData->pLedsConnector = (PDMILEDCONNECTORS *)pBase->pfnQueryInterface(pBase, PDMINTERFACE_LED_CONNECTORS);
else if (rc != VERR_PDM_NO_ATTACHED_DRIVER)
{
AssertMsgFailed(("Failed to attach to status driver. rc=%Vrc\n", rc));
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot attach to status driver."));
}
/*
* Attach the units.
*/
uint32_t cbTotalBuffer = 0;
for (uint32_t i = 0; i < RT_ELEMENTS(pData->aCts); i++)
{
PATACONTROLLER pCtl = &pData->aCts[i];
/*
* Start the worker thread.
*/
pCtl->uAsyncIOState = ATA_AIO_NEW;
rc = RTSemEventCreate(&pCtl->AsyncIOSem);
AssertRC(rc);
rc = RTSemEventCreate(&pCtl->SuspendIOSem);
AssertRC(rc);
rc = RTSemMutexCreate(&pCtl->AsyncIORequestMutex);
AssertRC(rc);
ataAsyncIOClearRequests(pCtl);
rc = RTThreadCreate(&pCtl->AsyncIOThread, ataAsyncIOLoop, (void *)pCtl, 128*1024, RTTHREADTYPE_IO, 0, "ATA");
AssertRC(rc);
Assert(pCtl->AsyncIOThread != NIL_RTTHREAD && pCtl->AsyncIOSem != NIL_RTSEMEVENT && pCtl->SuspendIOSem != NIL_RTSEMEVENT && pCtl->AsyncIORequestMutex != NIL_RTSEMMUTEX);
Log(("%s: controller %d AIO thread id %#x; sem %p susp_sem %p mutex %p\n", __FUNCTION__, i, pCtl->AsyncIOThread, pCtl->AsyncIOSem, pCtl->SuspendIOSem, pCtl->AsyncIORequestMutex));
for (uint32_t j = 0; j < RT_ELEMENTS(pCtl->aIfs); j++)
{
static const char *s_apszDescs[RT_ELEMENTS(pData->aCts)][RT_ELEMENTS(pCtl->aIfs)] =
{
{ "Primary Master", "Primary Slave" },
{ "Secondary Master", "Secondary Slave" }
};
/*
* Try attach the block device and get the interfaces,
* required as well as optional.
*/
ATADevState *pIf = &pCtl->aIfs[j];
rc = PDMDevHlpDriverAttach(pDevIns, pIf->iLUN, &pIf->IBase, &pIf->pDrvBase, s_apszDescs[i][j]);
if (VBOX_SUCCESS(rc))
rc = ataConfigLun(pDevIns, pIf);
else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
{
pIf->pDrvBase = NULL;
pIf->pDrvBlock = NULL;
pIf->cbIOBuffer = 0;
pIf->pbIOBufferHC = NULL;
pIf->pbIOBufferGC = NIL_RTGCPHYS;
LogRel(("PIIX3 ATA: LUN#%d: no unit\n", pIf->iLUN));
}
else
{
AssertMsgFailed(("Failed to attach LUN#%d. rc=%Vrc\n", pIf->iLUN, rc));
switch (rc)
{
case VERR_ACCESS_DENIED:
/* Error already catched by DrvHostBase */
return rc;
default:
return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_(
"PIIX3 cannot attach drive to the %s"), s_apszDescs[i][j]);
}
}
cbTotalBuffer += pIf->cbIOBuffer;
}
}
rc = PDMDevHlpSSMRegister(pDevIns, pDevIns->pDevReg->szDeviceName, iInstance,
ATA_SAVED_STATE_VERSION, sizeof(*pData) + cbTotalBuffer,
ataSaveLoadPrep, ataSaveExec, NULL,
ataSaveLoadPrep, ataLoadExec, NULL);
if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc, N_("PIIX3 cannot register save state handlers."));
/*
* Initialize the device state.
*/
ataReset(pDevIns);
return VINF_SUCCESS;
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DevicePIIX3IDE =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szDeviceName */
"piix3ide",
/* szGCMod */
"VBoxDDGC.gc",
/* szR0Mod */
"VBoxDDR0.r0",
/* pszDescription */
"Intel PIIX3 ATA controller.\n"
" LUN #0 is primary master.\n"
" LUN #1 is primary slave.\n"
" LUN #2 is secondary master.\n"
" LUN #3 is secondary slave.\n"
" LUN #999 is the LED/Status connector.",
/* fFlags */
PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_STORAGE,
/* cMaxInstances */
1,
/* cbInstance */
sizeof(PCIATAState),
/* pfnConstruct */
ataConstruct,
/* pfnDestruct */
ataDestruct,
/* pfnRelocate */
ataRelocate,
/* pfnIOCtl */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
ataReset,
/* pfnSuspend */
ataSuspend,
/* pfnResume */
ataResume,
/* pfnAttach */
ataAttach,
/* pfnDetach */
ataDetach,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
ataPowerOff
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */