ath9k_init.c revision a734c64bff58bda2fa48c2795453e092167b0ff7
/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Modified for iPXE by Scott K Logan <logans@cottsay.net> July 2011
* Original from Linux kernel 3.0.1
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <ipxe/malloc.h>
#include <ipxe/pci_io.h>
#include <ipxe/pci.h>
#include "ath9k.h"
int is_ath9k_unloaded;
/* We use the hw_value as an index into our private channel structure */
#define CHAN2G(_freq, _idx) { \
.band = NET80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.maxpower = 20, \
}
#define CHAN5G(_freq, _idx) { \
.band = NET80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.maxpower = 20, \
}
/* Some 2 GHz radios are actually tunable on 2312-2732
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static const struct net80211_channel ath9k_2ghz_chantable[] = {
CHAN2G(2412, 0), /* Channel 1 */
CHAN2G(2417, 1), /* Channel 2 */
CHAN2G(2422, 2), /* Channel 3 */
CHAN2G(2427, 3), /* Channel 4 */
CHAN2G(2432, 4), /* Channel 5 */
CHAN2G(2437, 5), /* Channel 6 */
CHAN2G(2442, 6), /* Channel 7 */
CHAN2G(2447, 7), /* Channel 8 */
CHAN2G(2452, 8), /* Channel 9 */
CHAN2G(2457, 9), /* Channel 10 */
CHAN2G(2462, 10), /* Channel 11 */
CHAN2G(2467, 11), /* Channel 12 */
CHAN2G(2472, 12), /* Channel 13 */
CHAN2G(2484, 13), /* Channel 14 */
};
/* Some 5 GHz radios are actually tunable on XXXX-YYYY
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static const struct net80211_channel ath9k_5ghz_chantable[] = {
/* _We_ call this UNII 1 */
CHAN5G(5180, 14), /* Channel 36 */
CHAN5G(5200, 15), /* Channel 40 */
CHAN5G(5220, 16), /* Channel 44 */
CHAN5G(5240, 17), /* Channel 48 */
/* _We_ call this UNII 2 */
CHAN5G(5260, 18), /* Channel 52 */
CHAN5G(5280, 19), /* Channel 56 */
CHAN5G(5300, 20), /* Channel 60 */
CHAN5G(5320, 21), /* Channel 64 */
/* _We_ call this "Middle band" */
CHAN5G(5500, 22), /* Channel 100 */
CHAN5G(5520, 23), /* Channel 104 */
CHAN5G(5540, 24), /* Channel 108 */
CHAN5G(5560, 25), /* Channel 112 */
CHAN5G(5580, 26), /* Channel 116 */
CHAN5G(5600, 27), /* Channel 120 */
CHAN5G(5620, 28), /* Channel 124 */
CHAN5G(5640, 29), /* Channel 128 */
CHAN5G(5660, 30), /* Channel 132 */
CHAN5G(5680, 31), /* Channel 136 */
CHAN5G(5700, 32), /* Channel 140 */
/* _We_ call this UNII 3 */
CHAN5G(5745, 33), /* Channel 149 */
CHAN5G(5765, 34), /* Channel 153 */
CHAN5G(5785, 35), /* Channel 157 */
CHAN5G(5805, 36), /* Channel 161 */
CHAN5G(5825, 37), /* Channel 165 */
};
/* Atheros hardware rate code addition for short premble */
#define SHPCHECK(__hw_rate, __flags) \
((__flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
#define RATE(_bitrate, _hw_rate, _flags) { \
.bitrate = (_bitrate), \
.flags = (_flags), \
.hw_value = (_hw_rate), \
.hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
}
static struct ath9k_legacy_rate ath9k_legacy_rates[] = {
RATE(10, 0x1b, 0),
RATE(20, 0x1a, IEEE80211_TX_RC_USE_SHORT_PREAMBLE),
RATE(55, 0x19, IEEE80211_TX_RC_USE_SHORT_PREAMBLE),
RATE(110, 0x18, IEEE80211_TX_RC_USE_SHORT_PREAMBLE),
RATE(60, 0x0b, 0),
RATE(90, 0x0f, 0),
RATE(120, 0x0a, 0),
RATE(180, 0x0e, 0),
RATE(240, 0x09, 0),
RATE(360, 0x0d, 0),
RATE(480, 0x08, 0),
RATE(540, 0x0c, 0),
};
static void ath9k_deinit_softc(struct ath_softc *sc);
/*
* Read and write, they both share the same lock. We do this to serialize
* reads and writes on Atheros 802.11n PCI devices only. This is required
* as the FIFO on these devices can only accept sanely 2 requests.
*/
static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
writel(val, sc->mem + reg_offset);
}
static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
u32 val;
val = readl(sc->mem + reg_offset);
return val;
}
static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
u32 val;
val = readl(sc->mem + reg_offset);
val &= ~clr;
val |= set;
writel(val, sc->mem + reg_offset);
return val;
}
/**************************/
/* Initialization */
/**************************/
/*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head, const char *name,
int nbuf, int ndesc, int is_tx)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF9F) ? 1 : 0)
u8 *ds;
struct ath_buf *bf;
int i, bsize, error, desc_len;
DBG2("ath9k: %s DMA: %d buffers %d desc/buf\n",
name, nbuf, ndesc);
INIT_LIST_HEAD(head);
if (is_tx)
desc_len = sc->sc_ah->caps.tx_desc_len;
else
desc_len = sizeof(struct ath_desc);
/* ath_desc must be a multiple of DWORDs */
if ((desc_len % 4) != 0) {
DBG("ath9k: ath_desc not DWORD aligned\n");
error = -ENOMEM;
goto fail;
}
dd->dd_desc_len = desc_len * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary.
* However, iPXE only utilizes 16 buffers, which
* will never make up more than half of one page,
* so we will only ever skip 1 descriptor, if that.
*/
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
u32 ndesc_skipped = 1;
u32 dma_len;
dma_len = ndesc_skipped * desc_len;
dd->dd_desc_len += dma_len;
}
/* allocate descriptors */
dd->dd_desc = malloc_dma(dd->dd_desc_len, 16);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
dd->dd_desc_paddr = virt_to_bus(dd->dd_desc);
ds = (u8 *) dd->dd_desc;
DBG2("ath9k: %s DMA map: %p (%d) -> %llx (%d)\n",
name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = zalloc(bsize);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
dd->dd_bufptr = bf;
for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->caps.hw_caps &
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
ds += (desc_len * ndesc);
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
free_dma(dd->dd_desc, dd->dd_desc_len);
fail:
memset(dd, 0, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef DS2PHYS
}
void ath9k_init_crypto(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
unsigned int i = 0;
/* Get the hardware key cache size. */
common->keymax = AR_KEYTABLE_SIZE;
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < common->keymax; i++)
ath_hw_keyreset(common, (u16) i);
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (sc->sc_ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA)
common->crypt_caps |= ATH_CRYPT_CAP_MIC_COMBINED;
}
static int ath9k_init_queues(struct ath_softc *sc)
{
int i = 0;
for (i = 0; i < WME_NUM_AC; i++) {
sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
sc->tx.txq_map[i]->mac80211_qnum = i;
}
return 0;
}
static int ath9k_init_channels_rates(struct ath_softc *sc)
{
unsigned int i;
memcpy(&sc->rates, ath9k_legacy_rates, sizeof(ath9k_legacy_rates));
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
memcpy(&sc->hwinfo->channels[sc->hwinfo->nr_channels], ath9k_2ghz_chantable, sizeof(ath9k_2ghz_chantable));
sc->hwinfo->nr_channels += ARRAY_SIZE(ath9k_2ghz_chantable);
for (i = 0; i < ARRAY_SIZE(ath9k_legacy_rates); i++)
sc->hwinfo->rates[NET80211_BAND_2GHZ][i] = ath9k_legacy_rates[i].bitrate;
sc->hwinfo->nr_rates[NET80211_BAND_2GHZ] = ARRAY_SIZE(ath9k_legacy_rates);
}
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
memcpy(&sc->hwinfo->channels[sc->hwinfo->nr_channels], ath9k_5ghz_chantable, sizeof(ath9k_5ghz_chantable));
sc->hwinfo->nr_channels += ARRAY_SIZE(ath9k_5ghz_chantable);
for (i = 4; i < ARRAY_SIZE(ath9k_legacy_rates); i++)
sc->hwinfo->rates[NET80211_BAND_5GHZ][i - 4] = ath9k_legacy_rates[i].bitrate;
sc->hwinfo->nr_rates[NET80211_BAND_5GHZ] = ARRAY_SIZE(ath9k_legacy_rates) - 4;
}
return 0;
}
static void ath9k_init_misc(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
common->ani.timer = 0;
sc->config.txpowlimit = ATH_TXPOWER_MAX;
common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
ath9k_hw_set_diversity(sc->sc_ah, 1);
sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
}
static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct ath_hw *ah = NULL;
struct ath_common *common;
int ret = 0, i;
int csz = 0;
ah = zalloc(sizeof(struct ath_hw));
if (!ah)
return -ENOMEM;
ah->dev = sc->dev;
ah->hw_version.devid = devid;
ah->hw_version.subsysid = subsysid;
ah->reg_ops.read = ath9k_ioread32;
ah->reg_ops.write = ath9k_iowrite32;
ah->reg_ops.rmw = ath9k_reg_rmw;
sc->sc_ah = ah;
sc->hwinfo = zalloc(sizeof(*sc->hwinfo));
if (!sc->hwinfo) {
DBG("ath9k: cannot allocate 802.11 hardware info structure\n");
return -ENOMEM;
}
ah->ah_flags |= AH_USE_EEPROM;
sc->sc_ah->led_pin = -1;
common = ath9k_hw_common(ah);
common->ops = &ah->reg_ops;
common->bus_ops = bus_ops;
common->ah = ah;
common->dev = sc->dev;
common->priv = sc;
sc->intr_tq = ath9k_tasklet;
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
ath_read_cachesize(common, &csz);
common->cachelsz = csz << 2; /* convert to bytes */
/* Initializes the hardware for all supported chipsets */
ret = ath9k_hw_init(ah);
if (ret)
goto err_hw;
memcpy(sc->hwinfo->hwaddr, common->macaddr, ETH_ALEN);
ret = ath9k_init_queues(sc);
if (ret)
goto err_queues;
ret = ath9k_init_channels_rates(sc);
if (ret)
goto err_btcoex;
ath9k_init_crypto(sc);
ath9k_init_misc(sc);
return 0;
err_btcoex:
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
err_queues:
ath9k_hw_deinit(ah);
err_hw:
free(sc->hwinfo);
sc->hwinfo = NULL;
free(ah);
sc->sc_ah = NULL;
return ret;
}
static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
{
struct net80211_channel *chan;
struct ath_hw *ah = sc->sc_ah;
struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
int i;
for (i = 0; i < sc->hwinfo->nr_channels; i++) {
chan = &sc->hwinfo->channels[i];
if(chan->band != band)
continue;
ah->curchan = &ah->channels[chan->hw_value];
ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, 1);
chan->maxpower = reg->max_power_level / 2;
}
}
static void ath9k_init_txpower_limits(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ath9k_channel *curchan = ah->curchan;
if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
ath9k_init_band_txpower(sc, NET80211_BAND_2GHZ);
if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
ath9k_init_band_txpower(sc, NET80211_BAND_5GHZ);
ah->curchan = curchan;
}
void ath9k_set_hw_capab(struct ath_softc *sc, struct net80211_device *dev __unused)
{
sc->hwinfo->flags = NET80211_HW_RX_HAS_FCS;
sc->hwinfo->signal_type = NET80211_SIGNAL_DB;
sc->hwinfo->signal_max = 40; /* 35dB should give perfect 54Mbps */
sc->hwinfo->channel_change_time = 5000;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
{
sc->hwinfo->bands |= NET80211_BAND_BIT_2GHZ;
sc->hwinfo->modes |= NET80211_MODE_B | NET80211_MODE_G;
}
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
{
sc->hwinfo->bands |= NET80211_BAND_BIT_5GHZ;
sc->hwinfo->modes |= NET80211_MODE_A;
}
}
int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct net80211_device *dev = sc->dev;
/*struct ath_common *common;
struct ath_hw *ah;*/
int error = 0;
/*struct ath_regulatory *reg;*/
/* Bring up device */
error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
if (error != 0)
goto error_init;
/*ah = sc->sc_ah;
common = ath9k_hw_common(ah);*/
ath9k_set_hw_capab(sc, dev);
/* TODO Cottsay: reg */
/* Initialize regulatory */
/*error = ath_regd_init(&common->regulatory, sc->dev->wiphy,
ath9k_reg_notifier);
if (error)
goto error_regd;
reg = &common->regulatory;*/
/* Setup TX DMA */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto error_tx;
/* Setup RX DMA */
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto error_rx;
ath9k_init_txpower_limits(sc);
/* Register with mac80211 */
error = net80211_register(dev, &ath9k_ops, sc->hwinfo);
if (error)
goto error_register;
/* TODO Cottsay: reg */
/* Handle world regulatory */
/*if (!ath_is_world_regd(reg)) {
error = regulatory_hint(hw->wiphy, reg->alpha2);
if (error)
goto error_world;
}*/
sc->hw_pll_work = ath_hw_pll_work;
sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
/* TODO Cottsay: rfkill */
/*ath_start_rfkill_poll(sc);*/
return 0;
//error_world:
// net80211_unregister(dev);
error_register:
ath_rx_cleanup(sc);
error_rx:
ath_tx_cleanup(sc);
error_tx:
ath9k_deinit_softc(sc);
error_init:
return error;
}
/*****************************/
/* De-Initialization */
/*****************************/
static void ath9k_deinit_softc(struct ath_softc *sc)
{
int i = 0;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_hw_deinit(sc->sc_ah);
free(sc->hwinfo);
sc->hwinfo = NULL;
free(sc->sc_ah);
sc->sc_ah = NULL;
}
void ath9k_deinit_device(struct ath_softc *sc)
{
struct net80211_device *dev = sc->dev;
net80211_unregister(dev);
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
ath9k_deinit_softc(sc);
}
void ath_descdma_cleanup(struct ath_softc *sc __unused,
struct ath_descdma *dd,
struct list_head *head)
{
free_dma(dd->dd_desc, dd->dd_desc_len);
INIT_LIST_HEAD(head);
free(dd->dd_bufptr);
memset(dd, 0, sizeof(*dd));
}