DevAPIC.cpp revision 24ca3d27f14cf8a03b8448f6d0898110e915d46a
/* $Id$ */
/** @file
* Advanced Programmable Interrupt Controller (APIC) Device.
*
* @remarks This code does not use pThis, it uses pDev and pApic due to the
* non-standard arrangements of the APICs wrt PDM.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
* --------------------------------------------------------------------
*
* This code is based on:
*
* apic.c revision 1.5 @@OSETODO
*
* APIC support
*
* Copyright (c) 2004-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DEV_APIC
#include <VBox/vmm/pdmdev.h>
#include <VBox/log.h>
#include <VBox/vmm/stam.h>
#include <VBox/vmm/vmcpuset.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <VBox/msi.h>
#include "VBoxDD2.h"
#include "DevApic.h"
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#define MSR_IA32_APICBASE 0x1b
#define MSR_IA32_APICBASE_BSP (1<<8)
#define MSR_IA32_APICBASE_ENABLE (1<<11)
#define MSR_IA32_APICBASE_X2ENABLE (1<<10)
#define MSR_IA32_APICBASE_BASE (0xfffff<<12)
#ifdef _MSC_VER
# pragma warning(disable:4244)
#endif
/** The current saved state version.*/
#define APIC_SAVED_STATE_VERSION 3
/** The saved state version used by VirtualBox v3 and earlier.
* This does not include the config. */
#define APIC_SAVED_STATE_VERSION_VBOX_30 2
/** Some ancient version... */
#define APIC_SAVED_STATE_VERSION_ANCIENT 1
/* version 0x14: Pentium 4, Xeon; LVT count depends on that */
#define APIC_HW_VERSION 0x14
/** @def APIC_LOCK
* Acquires the PDM lock. */
#define APIC_LOCK(a_pDev, rcBusy) \
do { \
int rc2 = PDMCritSectEnter((a_pDev)->CTX_SUFF(pCritSect), (rcBusy)); \
if (rc2 != VINF_SUCCESS) \
return rc2; \
} while (0)
/** @def APIC_LOCK_VOID
* Acquires the PDM lock and does not expect failure (i.e. ring-3 only!). */
#define APIC_LOCK_VOID(a_pDev, rcBusy) \
do { \
int rc2 = PDMCritSectEnter((a_pDev)->CTX_SUFF(pCritSect), (rcBusy)); \
AssertLogRelRCReturnVoid(rc2); \
} while (0)
/** @def APIC_UNLOCK
* Releases the PDM lock. */
#define APIC_UNLOCK(a_pDev) \
PDMCritSectLeave((a_pDev)->CTX_SUFF(pCritSect))
/** @def APIC_AND_TM_LOCK
* Acquires the virtual sync clock lock as well as the PDM lock. */
#define APIC_AND_TM_LOCK(a_pDev, a_pApic, rcBusy) \
do { \
int rc2 = TMTimerLock((a_pApic)->CTX_SUFF(pTimer), (rcBusy)); \
if (rc2 != VINF_SUCCESS) \
return rc2; \
rc2 = PDMCritSectEnter((a_pDev)->CTX_SUFF(pCritSect), (rcBusy)); \
if (rc2 != VINF_SUCCESS) \
{ \
TMTimerUnlock((a_pApic)->CTX_SUFF(pTimer)); \
return rc2; \
} \
} while (0)
/** @def APIC_AND_TM_UNLOCK
* Releases the PDM lock as well as the TM virtual sync clock lock. */
#define APIC_AND_TM_UNLOCK(a_pDev, a_pApic) \
do { \
TMTimerUnlock((a_pApic)->CTX_SUFF(pTimer)); \
PDMCritSectLeave((a_pDev)->CTX_SUFF(pCritSect)); \
} while (0)
/**
* Begins an APIC enumeration block.
*
* Code placed between this and the APIC_FOREACH_END macro will be executed for
* each APIC instance present in the system.
*
* @param a_pDev The APIC device.
*/
#define APIC_FOREACH_BEGIN(a_pDev) \
do { \
VMCPUID const cApics = (a_pDev)->cCpus; \
APICState *pCurApic = (a_pDev)->CTX_SUFF(paLapics); \
for (VMCPUID iCurApic = 0; iCurApic < cApics; iCurApic++, pCurApic++) \
{ \
do { } while (0)
/**
* Begins an APIC enumeration block, given a destination set.
*
* Code placed between this and the APIC_FOREACH_END macro will be executed for
* each APIC instance present in @a a_pDstSet.
*
* @param a_pDev The APIC device.
* @param a_pDstSet The destination set.
*/
#define APIC_FOREACH_IN_SET_BEGIN(a_pDev, a_pDstSet) \
APIC_FOREACH_BEGIN(a_pDev); \
if (!VMCPUSET_IS_PRESENT((a_pDstSet), iCurApic)) \
continue; \
do { } while (0)
/** Counterpart to APIC_FOREACH_IN_SET_BEGIN and APIC_FOREACH_BEGIN. */
#define APIC_FOREACH_END() \
} \
} while (0)
#define DEBUG_APIC
#define ESR_ILLEGAL_ADDRESS (1 << 7)
#define APIC_SV_ENABLE (1 << 8)
#define APIC_MAX_PATCH_ATTEMPTS 100
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
typedef uint32_t PhysApicId;
typedef uint32_t LogApicId;
typedef struct APIC256BITREG
{
/** The bitmap data. */
uint32_t au32Bitmap[8 /*256/32*/];
} APIC256BITREG;
typedef APIC256BITREG *PAPIC256BITREG;
typedef APIC256BITREG const *PCAPIC256BITREG;
/**
* Tests if a bit in the 256-bit APIC register is set.
*
* @returns true if set, false if clear.
*
* @param pReg The register.
* @param iBit The bit to test for.
*/
DECLINLINE(bool) Apic256BitReg_IsBitSet(PCAPIC256BITREG pReg, unsigned iBit)
{
Assert(iBit < 256);
return ASMBitTest(&pReg->au32Bitmap[0], iBit);
}
/**
* Sets a bit in the 256-bit APIC register is set.
*
* @param pReg The register.
* @param iBit The bit to set.
*/
DECLINLINE(void) Apic256BitReg_SetBit(PAPIC256BITREG pReg, unsigned iBit)
{
Assert(iBit < 256);
return ASMBitSet(&pReg->au32Bitmap[0], iBit);
}
/**
* Clears a bit in the 256-bit APIC register is set.
*
* @param pReg The register.
* @param iBit The bit to clear.
*/
DECLINLINE(void) Apic256BitReg_ClearBit(PAPIC256BITREG pReg, unsigned iBit)
{
Assert(iBit < 256);
return ASMBitClear(&pReg->au32Bitmap[0], iBit);
}
/**
* Clears all bits in the 256-bit APIC register set.
*
* @param pReg The register.
*/
DECLINLINE(void) Apic256BitReg_Empty(PAPIC256BITREG pReg)
{
memset(&pReg->au32Bitmap[0], 0, sizeof(pReg->au32Bitmap));
}
/**
* Finds the last bit set in the register, i.e. the highest priority interrupt.
*
* @returns The index of the found bit, @a iRetAllClear if none was found.
*
* @param pReg The register.
* @param iRetAllClear What to return if all bits are clear.
*/
static int Apic256BitReg_FindLastSetBit(PCAPIC256BITREG pReg, int iRetAllClear)
{
uint32_t i = RT_ELEMENTS(pReg->au32Bitmap);
while (i-- > 0)
{
uint32_t u = pReg->au32Bitmap[i];
if (u)
{
u = ASMBitLastSetU32(u);
u--;
u |= i << 5;
return (int)u;
}
}
return iRetAllClear;
}
/**
* The state of one APIC.
*
* @remarks This is generally pointed to by a parameter or variable named pApic.
*/
typedef struct APICState
{
/** In service register (ISR). */
APIC256BITREG isr;
/** Trigger mode register (TMR). */
APIC256BITREG tmr;
/** Interrupt request register (IIR). */
APIC256BITREG irr;
uint32_t lvt[APIC_LVT_NB];
uint32_t apicbase;
/* Task priority register (interrupt level) */
uint32_t tpr;
/* Logical APIC id - user programmable */
LogApicId id;
/* Physical APIC id - not visible to user, constant */
PhysApicId phys_id;
/** @todo: is it logical or physical? Not really used anyway now. */
PhysApicId arb_id;
uint32_t spurious_vec;
uint8_t log_dest;
uint8_t dest_mode;
uint32_t esr; /* error register */
uint32_t icr[2];
uint32_t divide_conf;
int count_shift;
uint32_t initial_count;
uint32_t Alignment0;
/** The time stamp of the initial_count load, i.e. when it was started. */
uint64_t initial_count_load_time;
/** The time stamp of the next timer callback. */
uint64_t next_time;
/** The APIC timer - R3 Ptr. */
PTMTIMERR3 pTimerR3;
/** The APIC timer - R0 Ptr. */
PTMTIMERR0 pTimerR0;
/** The APIC timer - RC Ptr. */
PTMTIMERRC pTimerRC;
/** Whether the timer is armed or not */
bool fTimerArmed;
/** Alignment */
bool afAlignment[3];
/** The initial_count value used for the current frequency hint. */
uint32_t uHintedInitialCount;
/** The count_shift value used for the current frequency hint. */
uint32_t uHintedCountShift;
/** Timer description timer. */
R3PTRTYPE(char *) pszDesc;
/** The IRQ tags and source IDs for each (tracing purposes). */
uint32_t auTags[256];
# ifdef VBOX_WITH_STATISTICS
# if HC_ARCH_BITS == 32
uint32_t u32Alignment0;
# endif
STAMCOUNTER StatTimerSetInitialCount;
STAMCOUNTER StatTimerSetInitialCountArm;
STAMCOUNTER StatTimerSetInitialCountDisarm;
STAMCOUNTER StatTimerSetLvt;
STAMCOUNTER StatTimerSetLvtClearPeriodic;
STAMCOUNTER StatTimerSetLvtPostponed;
STAMCOUNTER StatTimerSetLvtArmed;
STAMCOUNTER StatTimerSetLvtArm;
STAMCOUNTER StatTimerSetLvtArmRetries;
STAMCOUNTER StatTimerSetLvtNoRelevantChange;
# endif
} APICState;
AssertCompileMemberAlignment(APICState, initial_count_load_time, 8);
# ifdef VBOX_WITH_STATISTICS
AssertCompileMemberAlignment(APICState, StatTimerSetInitialCount, 8);
# endif
/**
* The wrapper device for the all the APICs.
*
* @remarks This is generally pointed to by a parameter or variable named pDev.
*/
typedef struct
{
/** The device instance - R3 Ptr. */
PPDMDEVINSR3 pDevInsR3;
/** The APIC helpers - R3 Ptr. */
PCPDMAPICHLPR3 pApicHlpR3;
/** LAPICs states - R3 Ptr */
R3PTRTYPE(APICState *) paLapicsR3;
/** The critical section - R3 Ptr. */
R3PTRTYPE(PPDMCRITSECT) pCritSectR3;
/** The device instance - R0 Ptr. */
PPDMDEVINSR0 pDevInsR0;
/** The APIC helpers - R0 Ptr. */
PCPDMAPICHLPR0 pApicHlpR0;
/** LAPICs states - R0 Ptr */
R0PTRTYPE(APICState *) paLapicsR0;
/** The critical section - R3 Ptr. */
R0PTRTYPE(PPDMCRITSECT) pCritSectR0;
/** The device instance - RC Ptr. */
PPDMDEVINSRC pDevInsRC;
/** The APIC helpers - RC Ptr. */
PCPDMAPICHLPRC pApicHlpRC;
/** LAPICs states - RC Ptr */
RCPTRTYPE(APICState *) paLapicsRC;
/** The critical section - R3 Ptr. */
RCPTRTYPE(PPDMCRITSECT) pCritSectRC;
/** APIC specification version in this virtual hardware configuration. */
PDMAPICVERSION enmVersion;
/** Number of attempts made to optimize TPR accesses. */
uint32_t cTPRPatchAttempts;
/** Number of CPUs on the system (same as LAPIC count). */
uint32_t cCpus;
/** Whether we've got an IO APIC or not. */
bool fIoApic;
/** Alignment padding. */
bool afPadding[3];
# ifdef VBOX_WITH_STATISTICS
STAMCOUNTER StatMMIOReadGC;
STAMCOUNTER StatMMIOReadHC;
STAMCOUNTER StatMMIOWriteGC;
STAMCOUNTER StatMMIOWriteHC;
STAMCOUNTER StatClearedActiveIrq;
# endif
} APICDeviceInfo;
# ifdef VBOX_WITH_STATISTICS
AssertCompileMemberAlignment(APICDeviceInfo, StatMMIOReadGC, 8);
# endif
#ifndef VBOX_DEVICE_STRUCT_TESTCASE
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static void apic_update_tpr(APICDeviceInfo *pDev, APICState *pApic, uint32_t val);
static void apic_eoi(APICDeviceInfo *pDev, APICState *pApic); /* */
static PVMCPUSET apic_get_delivery_bitmask(APICDeviceInfo *pDev, uint8_t dest, uint8_t dest_mode, PVMCPUSET pDstSet);
static int apic_deliver(APICDeviceInfo *pDev, APICState *pApic,
uint8_t dest, uint8_t dest_mode,
uint8_t delivery_mode, uint8_t vector_num,
uint8_t polarity, uint8_t trigger_mode);
static int apic_get_arb_pri(APICState const *pApic);
static int apic_get_ppr(APICState const *pApic);
static uint32_t apic_get_current_count(APICDeviceInfo const *pDev, APICState const *pApic);
static void apicTimerSetInitialCount(APICDeviceInfo *pDev, APICState *pApic, uint32_t initial_count);
static void apicTimerSetLvt(APICDeviceInfo *pDev, APICState *pApic, uint32_t fNew);
static void apicSendInitIpi(APICDeviceInfo *pDev, APICState *pApic);
static void apicR3InitIpi(APICDeviceInfo *pDev, APICState *pApic);
static void apic_set_irq(APICDeviceInfo *pDev, APICState *pApic, int vector_num, int trigger_mode, uint32_t uTagSrc);
static bool apic_update_irq(APICDeviceInfo *pDev, APICState *pApic);
DECLINLINE(APICState *) apicGetStateById(APICDeviceInfo *pDev, VMCPUID id)
{
AssertFatalMsg(id < pDev->cCpus, ("CPU id %d out of range\n", id));
return &pDev->CTX_SUFF(paLapics)[id];
}
/**
* Get the APIC state for the calling EMT.
*/
DECLINLINE(APICState *) apicGetStateByCurEmt(APICDeviceInfo *pDev)
{
/* LAPIC's array is indexed by CPU id */
VMCPUID id = pDev->CTX_SUFF(pApicHlp)->pfnGetCpuId(pDev->CTX_SUFF(pDevIns));
return apicGetStateById(pDev, id);
}
DECLINLINE(VMCPUID) getCpuFromLapic(APICDeviceInfo *pDev, APICState *pApic)
{
/* for now we assume LAPIC physical id == CPU id */
return (VMCPUID)pApic->phys_id;
}
DECLINLINE(void) apicCpuSetInterrupt(APICDeviceInfo *pDev, APICState *pApic, PDMAPICIRQ enmType = PDMAPICIRQ_HARDWARE)
{
LogFlow(("apic: setting interrupt flag for cpu %d\n", getCpuFromLapic(pDev, pApic)));
pDev->CTX_SUFF(pApicHlp)->pfnSetInterruptFF(pDev->CTX_SUFF(pDevIns), enmType,
getCpuFromLapic(pDev, pApic));
}
DECLINLINE(void) apicCpuClearInterrupt(APICDeviceInfo *pDev, APICState *pApic, PDMAPICIRQ enmType = PDMAPICIRQ_HARDWARE)
{
LogFlow(("apic: clear interrupt flag\n"));
pDev->CTX_SUFF(pApicHlp)->pfnClearInterruptFF(pDev->CTX_SUFF(pDevIns), enmType,
getCpuFromLapic(pDev, pApic));
}
# ifdef IN_RING3
DECLINLINE(void) apicR3CpuSendSipi(APICDeviceInfo *pDev, APICState *pApic, int vector)
{
Log2(("apic: send SIPI vector=%d\n", vector));
pDev->pApicHlpR3->pfnSendSipi(pDev->pDevInsR3,
getCpuFromLapic(pDev, pApic),
vector);
}
DECLINLINE(void) apicR3CpuSendInitIpi(APICDeviceInfo *pDev, APICState *pApic)
{
Log2(("apic: send init IPI\n"));
pDev->pApicHlpR3->pfnSendInitIpi(pDev->pDevInsR3,
getCpuFromLapic(pDev, pApic));
}
# endif /* IN_RING3 */
DECLINLINE(uint32_t) getApicEnableBits(APICDeviceInfo *pDev)
{
switch (pDev->enmVersion)
{
case PDMAPICVERSION_NONE:
return 0;
case PDMAPICVERSION_APIC:
return MSR_IA32_APICBASE_ENABLE;
case PDMAPICVERSION_X2APIC:
return MSR_IA32_APICBASE_ENABLE | MSR_IA32_APICBASE_X2ENABLE ;
default:
AssertMsgFailed(("Unsupported APIC version %d\n", pDev->enmVersion));
return 0;
}
}
DECLINLINE(PDMAPICVERSION) getApicMode(APICState *apic)
{
switch (((apic->apicbase) >> 10) & 0x3)
{
case 0:
return PDMAPICVERSION_NONE;
case 1:
default:
/* Invalid */
return PDMAPICVERSION_NONE;
case 2:
return PDMAPICVERSION_APIC;
case 3:
return PDMAPICVERSION_X2APIC;
}
}
static int apic_bus_deliver(APICDeviceInfo *pDev,
PCVMCPUSET pDstSet, uint8_t delivery_mode,
uint8_t vector_num, uint8_t polarity,
uint8_t trigger_mode, uint32_t uTagSrc)
{
LogFlow(("apic_bus_deliver mask=%R[vmcpuset] mode=%x vector=%x polarity=%x trigger_mode=%x uTagSrc=%#x\n",
pDstSet, delivery_mode, vector_num, polarity, trigger_mode, uTagSrc));
switch (delivery_mode)
{
case APIC_DM_LOWPRI:
{
VMCPUID idDstCpu = VMCPUSET_FIND_FIRST_PRESENT(pDstSet);
if (idDstCpu != NIL_VMCPUID)
{
APICState *pApic = apicGetStateById(pDev, idDstCpu);
apic_set_irq(pDev, pApic, vector_num, trigger_mode, uTagSrc);
}
return VINF_SUCCESS;
}
case APIC_DM_FIXED:
/** @todo XXX: arbitration */
break;
case APIC_DM_SMI:
APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet);
apicCpuSetInterrupt(pDev, pCurApic, PDMAPICIRQ_SMI);
APIC_FOREACH_END();
return VINF_SUCCESS;
case APIC_DM_NMI:
APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet);
apicCpuSetInterrupt(pDev, pCurApic, PDMAPICIRQ_NMI);
APIC_FOREACH_END();
return VINF_SUCCESS;
case APIC_DM_INIT:
/* normal INIT IPI sent to processors */
#ifdef IN_RING3
APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet);
apicSendInitIpi(pDev, pCurApic);
APIC_FOREACH_END();
return VINF_SUCCESS;
#else
/* We shall send init IPI only in R3. */
return VINF_IOM_R3_MMIO_READ_WRITE;
#endif /* IN_RING3 */
case APIC_DM_EXTINT:
/* handled in I/O APIC code */
break;
default:
return VINF_SUCCESS;
}
APIC_FOREACH_IN_SET_BEGIN(pDev, pDstSet);
apic_set_irq(pDev, pCurApic, vector_num, trigger_mode, uTagSrc);
APIC_FOREACH_END();
return VINF_SUCCESS;
}
PDMBOTHCBDECL(void) apicSetBase(PPDMDEVINS pDevIns, VMCPUID idCpu, uint64_t val)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
APICState *pApic = apicGetStateById(pDev, idCpu);
Log(("apicSetBase: %016RX64\n", val));
/** @todo: do we need to lock here ? */
/* APIC_LOCK_VOID(pDev, VERR_INTERNAL_ERROR); */
/** @todo If this change is valid immediately, then we should change the MMIO registration! */
/* We cannot change if this CPU is BSP or not by writing to MSR - it's hardwired */
PDMAPICVERSION oldMode = getApicMode(pApic);
pApic->apicbase = (val & 0xfffff000) /* base */
| (val & getApicEnableBits(pDev)) /* mode */
| (pApic->apicbase & MSR_IA32_APICBASE_BSP) /* keep BSP bit */;
PDMAPICVERSION newMode = getApicMode(pApic);
if (oldMode != newMode)
{
switch (newMode)
{
case PDMAPICVERSION_NONE:
{
pApic->spurious_vec &= ~APIC_SV_ENABLE;
/* Clear any pending APIC interrupt action flag. */
apicCpuClearInterrupt(pDev, pApic);
/** @todo: why do we do that? */
pDev->CTX_SUFF(pApicHlp)->pfnChangeFeature(pDevIns, PDMAPICVERSION_NONE);
break;
}
case PDMAPICVERSION_APIC:
/** @todo: map MMIO ranges, if needed */
break;
case PDMAPICVERSION_X2APIC:
/** @todo: unmap MMIO ranges of this APIC, according to the spec */
break;
default:
break;
}
}
/* APIC_UNLOCK(pDev); */
}
PDMBOTHCBDECL(uint64_t) apicGetBase(PPDMDEVINS pDevIns, VMCPUID idCpu)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
APICState *pApic = apicGetStateById(pDev, idCpu);
LogFlow(("apicGetBase: %016llx\n", (uint64_t)pApic->apicbase));
return pApic->apicbase;
}
PDMBOTHCBDECL(void) apicSetTPR(PPDMDEVINS pDevIns, VMCPUID idCpu, uint8_t val)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
APICState *pApic = apicGetStateById(pDev, idCpu);
LogFlow(("apicSetTPR: val=%#x (trp %#x -> %#x)\n", val, pApic->tpr, val));
apic_update_tpr(pDev, pApic, val);
}
PDMBOTHCBDECL(uint8_t) apicGetTPR(PPDMDEVINS pDevIns, VMCPUID idCpu)
{
/* We don't perform any locking here as that would cause a lot of contention for VT-x/AMD-V. */
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
APICState *pApic = apicGetStateById(pDev, idCpu);
Log2(("apicGetTPR: returns %#x\n", pApic->tpr));
return pApic->tpr;
}
/**
* apicWriteRegister helper for dealing with invalid register access.
*
* @returns Strict VBox status code.
* @param pDev The PDM device instance.
* @param pApic The APIC being written to.
* @param iReg The APIC register index.
* @param u64Value The value being written.
* @param rcBusy The busy return code to employ. See
* PDMCritSectEnter for a description.
* @param fMsr Set if called via MSR, clear if MMIO.
*/
static int apicWriteRegisterInvalid(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t u64Value,
int rcBusy, bool fMsr)
{
Log(("apicWriteRegisterInvalid/%u: iReg=%#x fMsr=%RTbool u64Value=%#llx\n", pApic->phys_id, iReg, fMsr, u64Value));
int rc = PDMDevHlpDBGFStop(pDev->CTX_SUFF(pDevIns), RT_SRC_POS,
"iReg=%#x fMsr=%RTbool u64Value=%#llx id=%u\n", iReg, fMsr, u64Value, pApic->phys_id);
APIC_LOCK(pDev, rcBusy);
pApic->esr |= ESR_ILLEGAL_ADDRESS;
APIC_UNLOCK(pDev);
return rc;
}
/**
* Writes to an APIC register via MMIO or MSR.
*
* @returns Strict VBox status code.
* @param pDev The PDM device instance.
* @param pApic The APIC being written to.
* @param iReg The APIC register index.
* @param u64Value The value being written.
* @param rcBusy The busy return code to employ. See
* PDMCritSectEnter for a description.
* @param fMsr Set if called via MSR, clear if MMIO.
*/
static int apicWriteRegister(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t u64Value,
int rcBusy, bool fMsr)
{
Assert(!PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
int rc = VINF_SUCCESS;
switch (iReg)
{
case 0x02:
APIC_LOCK(pDev, rcBusy);
pApic->id = (u64Value >> 24); /** @todo r=bird: Is the range supposed to be 40 bits??? */
APIC_UNLOCK(pDev);
break;
case 0x03:
/* read only, ignore write. */
break;
case 0x08:
APIC_LOCK(pDev, rcBusy);
apic_update_tpr(pDev, pApic, u64Value);
APIC_UNLOCK(pDev);
break;
case 0x09: case 0x0a:
Log(("apicWriteRegister: write to read-only register %d ignored\n", iReg));
break;
case 0x0b: /* EOI */
APIC_LOCK(pDev, rcBusy);
apic_eoi(pDev, pApic);
APIC_UNLOCK(pDev);
break;
case 0x0d:
APIC_LOCK(pDev, rcBusy);
pApic->log_dest = (u64Value >> 24) & 0xff;
APIC_UNLOCK(pDev);
break;
case 0x0e:
APIC_LOCK(pDev, rcBusy);
pApic->dest_mode = u64Value >> 28; /** @todo r=bird: range? This used to be 32-bit before morphed into an MSR handler. */
APIC_UNLOCK(pDev);
break;
case 0x0f:
APIC_LOCK(pDev, rcBusy);
pApic->spurious_vec = u64Value & 0x1ff;
apic_update_irq(pDev, pApic);
APIC_UNLOCK(pDev);
break;
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28:
Log(("apicWriteRegister: write to read-only register %d ignored\n", iReg));
break;
case 0x30:
APIC_LOCK(pDev, rcBusy);
pApic->icr[0] = (uint32_t)u64Value;
if (fMsr) /* Here one of the differences with regular APIC: ICR is single 64-bit register */
pApic->icr[1] = (uint32_t)(u64Value >> 32);
rc = apic_deliver(pDev, pApic, (pApic->icr[1] >> 24) & 0xff, (pApic->icr[0] >> 11) & 1,
(pApic->icr[0] >> 8) & 7, (pApic->icr[0] & 0xff),
(pApic->icr[0] >> 14) & 1, (pApic->icr[0] >> 15) & 1);
APIC_UNLOCK(pDev);
break;
case 0x31:
if (!fMsr)
{
APIC_LOCK(pDev, rcBusy);
pApic->icr[1] = (uint64_t)u64Value;
APIC_UNLOCK(pDev);
}
else
rc = apicWriteRegisterInvalid(pDev, pApic, iReg, u64Value, rcBusy, fMsr);
break;
case 0x32 + APIC_LVT_TIMER:
AssertCompile(APIC_LVT_TIMER == 0);
APIC_AND_TM_LOCK(pDev, pApic, rcBusy);
apicTimerSetLvt(pDev, pApic, u64Value);
APIC_AND_TM_UNLOCK(pDev, pApic);
break;
case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
APIC_LOCK(pDev, rcBusy);
pApic->lvt[iReg - 0x32] = u64Value;
APIC_UNLOCK(pDev);
break;
case 0x38:
APIC_AND_TM_LOCK(pDev, pApic, rcBusy);
apicTimerSetInitialCount(pDev, pApic, u64Value);
APIC_AND_TM_UNLOCK(pDev, pApic);
break;
case 0x39:
Log(("apicWriteRegister: write to read-only register %d ignored\n", iReg));
break;
case 0x3e:
{
APIC_LOCK(pDev, rcBusy);
pApic->divide_conf = u64Value & 0xb;
int v = (pApic->divide_conf & 3) | ((pApic->divide_conf >> 1) & 4);
pApic->count_shift = (v + 1) & 7;
APIC_UNLOCK(pDev);
break;
}
case 0x3f:
if (fMsr)
{
/* Self IPI, see x2APIC book 2.4.5 */
APIC_LOCK(pDev, rcBusy);
int vector = u64Value & 0xff;
VMCPUSET SelfSet;
VMCPUSET_EMPTY(&SelfSet);
VMCPUSET_ADD(&SelfSet, pApic->id);
rc = apic_bus_deliver(pDev,
&SelfSet,
0 /* Delivery mode - fixed */,
vector,
0 /* Polarity - conform to the bus */,
0 /* Trigger mode - edge */,
pDev->CTX_SUFF(pApicHlp)->pfnCalcIrqTag(pDev->CTX_SUFF(pDevIns), PDM_IRQ_LEVEL_HIGH));
APIC_UNLOCK(pDev);
break;
}
/* else: fall thru */
default:
rc = apicWriteRegisterInvalid(pDev, pApic, iReg, u64Value, rcBusy, fMsr);
break;
}
return rc;
}
/**
* apicReadRegister helper for dealing with invalid register access.
*
* @returns Strict VBox status code.
* @param pDev The PDM device instance.
* @param pApic The APIC being read to.
* @param iReg The APIC register index.
* @param pu64Value Where to store the value we've read.
* @param rcBusy The busy return code to employ. See
* PDMCritSectEnter for a description.
* @param fMsr Set if called via MSR, clear if MMIO.
*/
static int apicReadRegisterInvalid(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t *pu64Value,
int rcBusy, bool fMsr)
{
Log(("apicReadRegisterInvalid/%u: iReg=%#x fMsr=%RTbool\n", pApic->phys_id, iReg, fMsr));
int rc = PDMDevHlpDBGFStop(pDev->CTX_SUFF(pDevIns), RT_SRC_POS,
"iReg=%#x fMsr=%RTbool id=%u\n", iReg, fMsr, pApic->phys_id);
APIC_LOCK(pDev, rcBusy);
pApic->esr |= ESR_ILLEGAL_ADDRESS;
APIC_UNLOCK(pDev);
*pu64Value = 0;
return rc;
}
/**
* Read from an APIC register via MMIO or MSR.
*
* @returns Strict VBox status code.
* @param pDev The PDM device instance.
* @param pApic The APIC being read to.
* @param iReg The APIC register index.
* @param pu64Value Where to store the value we've read.
* @param rcBusy The busy return code to employ. See
* PDMCritSectEnter for a description.
* @param fMsr Set if called via MSR, clear if MMIO.
*/
static int apicReadRegister(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg, uint64_t *pu64Value,
int rcBusy, bool fMsr)
{
Assert(!PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
int rc = VINF_SUCCESS;
switch (iReg)
{
case 0x02: /* id */
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->id << 24;
APIC_UNLOCK(pDev);
break;
case 0x03: /* version */
APIC_LOCK(pDev, rcBusy);
*pu64Value = APIC_HW_VERSION
| ((APIC_LVT_NB - 1) << 16) /* Max LVT index */
#if 0
| (0 << 24) /* Support for EOI broadcast suppression */
#endif
;
APIC_UNLOCK(pDev);
break;
case 0x08:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->tpr;
APIC_UNLOCK(pDev);
break;
case 0x09:
*pu64Value = apic_get_arb_pri(pApic);
break;
case 0x0a:
/* ppr */
APIC_LOCK(pDev, rcBusy);
*pu64Value = apic_get_ppr(pApic);
APIC_UNLOCK(pDev);
break;
case 0x0b:
Log(("apicReadRegister: %x -> write only returning 0\n", iReg));
*pu64Value = 0;
break;
case 0x0d:
APIC_LOCK(pDev, rcBusy);
*pu64Value = (uint64_t)pApic->log_dest << 24;
APIC_UNLOCK(pDev);
break;
case 0x0e:
/* Bottom 28 bits are always 1 */
APIC_LOCK(pDev, rcBusy);
*pu64Value = ((uint64_t)pApic->dest_mode << 28) | UINT32_C(0xfffffff);
APIC_UNLOCK(pDev);
break;
case 0x0f:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->spurious_vec;
APIC_UNLOCK(pDev);
break;
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->isr.au32Bitmap[iReg & 7];
APIC_UNLOCK(pDev);
break;
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->tmr.au32Bitmap[iReg & 7];
APIC_UNLOCK(pDev);
break;
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->irr.au32Bitmap[iReg & 7];
APIC_UNLOCK(pDev);
break;
case 0x28:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->esr;
APIC_UNLOCK(pDev);
break;
case 0x30:
/* Here one of the differences with regular APIC: ICR is single 64-bit register */
APIC_LOCK(pDev, rcBusy);
if (fMsr)
*pu64Value = RT_MAKE_U64(pApic->icr[0], pApic->icr[1]);
else
*pu64Value = pApic->icr[0];
APIC_UNLOCK(pDev);
break;
case 0x31:
if (fMsr)
rc = apicReadRegisterInvalid(pDev, pApic, iReg, pu64Value, rcBusy, fMsr);
else
{
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->icr[1];
APIC_UNLOCK(pDev);
}
break;
case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->lvt[iReg - 0x32];
APIC_UNLOCK(pDev);
break;
case 0x38:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->initial_count;
APIC_UNLOCK(pDev);
break;
case 0x39:
APIC_AND_TM_LOCK(pDev, pApic, rcBusy);
*pu64Value = apic_get_current_count(pDev, pApic);
APIC_AND_TM_UNLOCK(pDev, pApic);
break;
case 0x3e:
APIC_LOCK(pDev, rcBusy);
*pu64Value = pApic->divide_conf;
APIC_UNLOCK(pDev);
break;
case 0x3f:
if (fMsr)
{
/* Self IPI register is write only */
Log(("apicReadMSR: read from write-only register %d ignored\n", iReg));
*pu64Value = 0;
}
else
rc = apicReadRegisterInvalid(pDev, pApic, iReg, pu64Value, rcBusy, fMsr);
break;
case 0x2f: /** @todo Correctable machine check exception vector, implement me! */
default:
/**
* @todo: according to spec when APIC writes to ESR it msut raise error interrupt,
* i.e. LVT[5]
*/
rc = apicReadRegisterInvalid(pDev, pApic, iReg, pu64Value, rcBusy, fMsr);
break;
}
return rc;
}
/**
* @interface_method_impl{PDMAPICREG,pfnWriteMSRR3}
*/
PDMBOTHCBDECL(int) apicWriteMSR(PPDMDEVINS pDevIns, VMCPUID idCpu, uint32_t u32Reg, uint64_t u64Value)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
if (pDev->enmVersion < PDMAPICVERSION_X2APIC)
return VERR_EM_INTERPRETER; /** @todo tell the caller to raise hell (\#GP(0)). */
APICState *pApic = apicGetStateById(pDev, idCpu);
uint32_t iReg = (u32Reg - MSR_IA32_X2APIC_START) & 0xff;
return apicWriteRegister(pDev, pApic, iReg, u64Value, VINF_SUCCESS /*rcBusy*/, true /*fMsr*/);
}
/**
* @interface_method_impl{PDMAPICREG,pfnReadMSRR3}
*/
PDMBOTHCBDECL(int) apicReadMSR(PPDMDEVINS pDevIns, VMCPUID idCpu, uint32_t u32Reg, uint64_t *pu64Value)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
if (pDev->enmVersion < PDMAPICVERSION_X2APIC)
return VERR_EM_INTERPRETER;
APICState *pApic = apicGetStateById(pDev, idCpu);
uint32_t iReg = (u32Reg - MSR_IA32_X2APIC_START) & 0xff;
return apicReadRegister(pDev, pApic, iReg, pu64Value, VINF_SUCCESS /*rcBusy*/, true /*fMsr*/);
}
/**
* More or less private interface between IOAPIC, only PDM is responsible
* for connecting the two devices.
*/
PDMBOTHCBDECL(int) apicBusDeliverCallback(PPDMDEVINS pDevIns, uint8_t u8Dest, uint8_t u8DestMode,
uint8_t u8DeliveryMode, uint8_t iVector, uint8_t u8Polarity,
uint8_t u8TriggerMode, uint32_t uTagSrc)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
LogFlow(("apicBusDeliverCallback: pDevIns=%p u8Dest=%#x u8DestMode=%#x u8DeliveryMode=%#x iVector=%#x u8Polarity=%#x u8TriggerMode=%#x uTagSrc=%#x\n",
pDevIns, u8Dest, u8DestMode, u8DeliveryMode, iVector, u8Polarity, u8TriggerMode, uTagSrc));
VMCPUSET DstSet;
return apic_bus_deliver(pDev, apic_get_delivery_bitmask(pDev, u8Dest, u8DestMode, &DstSet),
u8DeliveryMode, iVector, u8Polarity, u8TriggerMode, uTagSrc);
}
/**
* Local interrupt delivery, for devices attached to the CPU's LINT0/LINT1 pin.
* Normally used for 8259A PIC and NMI.
*/
PDMBOTHCBDECL(int) apicLocalInterrupt(PPDMDEVINS pDevIns, uint8_t u8Pin, uint8_t u8Level)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
APICState *pApic = apicGetStateById(pDev, 0);
Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
LogFlow(("apicLocalInterrupt: pDevIns=%p u8Pin=%x u8Level=%x\n", pDevIns, u8Pin, u8Level));
/* If LAPIC is disabled, go straight to the CPU. */
if (!(pApic->spurious_vec & APIC_SV_ENABLE))
{
LogFlow(("apicLocalInterrupt: LAPIC disabled, delivering directly to CPU core.\n"));
if (u8Level)
apicCpuSetInterrupt(pDev, pApic, PDMAPICIRQ_EXTINT);
else
apicCpuClearInterrupt(pDev, pApic, PDMAPICIRQ_EXTINT);
return VINF_SUCCESS;
}
/* If LAPIC is enabled, interrupts are subject to LVT programming. */
/* There are only two local interrupt pins. */
AssertMsgReturn(u8Pin <= 1, ("Invalid LAPIC pin %d\n", u8Pin), VERR_INVALID_PARAMETER);
/* NB: We currently only deliver local interrupts to the first CPU. In theory they
* should be delivered to all CPUs and it is the guest's responsibility to ensure
* no more than one CPU has the interrupt unmasked.
*/
uint32_t u32Lvec;
u32Lvec = pApic->lvt[APIC_LVT_LINT0 + u8Pin]; /* Fetch corresponding LVT entry. */
/* Drop int if entry is masked. May not be correct for level-triggered interrupts. */
if (!(u32Lvec & APIC_LVT_MASKED))
{ uint8_t u8Delivery;
PDMAPICIRQ enmType;
u8Delivery = (u32Lvec >> 8) & 7;
switch (u8Delivery)
{
case APIC_DM_EXTINT:
Assert(u8Pin == 0); /* PIC should be wired to LINT0. */
enmType = PDMAPICIRQ_EXTINT;
/* ExtINT can be both set and cleared, NMI/SMI/INIT can only be set. */
LogFlow(("apicLocalInterrupt: %s ExtINT interrupt\n", u8Level ? "setting" : "clearing"));
if (u8Level)
apicCpuSetInterrupt(pDev, pApic, enmType);
else
apicCpuClearInterrupt(pDev, pApic, enmType);
return VINF_SUCCESS;
case APIC_DM_NMI:
/* External NMI should be wired to LINT1, but Linux sometimes programs
* LVT0 to NMI delivery mode as well.
*/
enmType = PDMAPICIRQ_NMI;
/* Currently delivering NMIs through here causes problems with NMI watchdogs
* on certain Linux kernels, e.g. 64-bit CentOS 5.3. Disable NMIs for now.
*/
return VINF_SUCCESS;
case APIC_DM_SMI:
enmType = PDMAPICIRQ_SMI;
break;
case APIC_DM_FIXED:
{
/** @todo implement APIC_DM_FIXED! */
static unsigned s_c = 0;
if (s_c++ < 5)
LogRel(("delivery type APIC_DM_FIXED not implemented. u8Pin=%d u8Level=%d\n", u8Pin, u8Level));
return VINF_SUCCESS;
}
case APIC_DM_INIT:
/** @todo implement APIC_DM_INIT? */
default:
{
static unsigned s_c = 0;
if (s_c++ < 100)
AssertLogRelMsgFailed(("delivery type %d not implemented. u8Pin=%d u8Level=%d\n", u8Delivery, u8Pin, u8Level));
return VERR_INTERNAL_ERROR_4;
}
}
LogFlow(("apicLocalInterrupt: setting local interrupt type %d\n", enmType));
apicCpuSetInterrupt(pDev, pApic, enmType);
}
return VINF_SUCCESS;
}
static int apic_get_ppr(APICState const *pApic)
{
int ppr;
int tpr = (pApic->tpr >> 4);
int isrv = Apic256BitReg_FindLastSetBit(&pApic->isr, 0);
isrv >>= 4;
if (tpr >= isrv)
ppr = pApic->tpr;
else
ppr = isrv << 4;
return ppr;
}
static int apic_get_ppr_zero_tpr(APICState *pApic)
{
return Apic256BitReg_FindLastSetBit(&pApic->isr, 0);
}
static int apic_get_arb_pri(APICState const *pApic)
{
/** @todo XXX: arbitration */
return 0;
}
/* signal the CPU if an irq is pending */
static bool apic_update_irq(APICDeviceInfo *pDev, APICState *pApic)
{
if (!(pApic->spurious_vec & APIC_SV_ENABLE))
{
/* Clear any pending APIC interrupt action flag. */
apicCpuClearInterrupt(pDev, pApic);
return false;
}
int irrv = Apic256BitReg_FindLastSetBit(&pApic->irr, -1);
if (irrv < 0)
return false;
int ppr = apic_get_ppr(pApic);
if (ppr && (irrv & 0xf0) <= (ppr & 0xf0))
return false;
apicCpuSetInterrupt(pDev, pApic);
return true;
}
/* Check if the APIC has a pending interrupt/if a TPR change would active one. */
PDMBOTHCBDECL(bool) apicHasPendingIrq(PPDMDEVINS pDevIns, VMCPUID idCpu)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
if (!pDev)
return false;
/* We don't perform any locking here as that would cause a lot of contention for VT-x/AMD-V. */
APICState *pApic = apicGetStateById(pDev, idCpu);
/*
* All our callbacks now come from single IOAPIC, thus locking
* seems to be excessive now
*/
/** @todo check excessive locking whatever... */
int irrv = Apic256BitReg_FindLastSetBit(&pApic->irr, -1);
if (irrv < 0)
return false;
int ppr = apic_get_ppr_zero_tpr(pApic);
if (ppr && (irrv & 0xf0) <= (ppr & 0xf0))
return false;
return true;
}
static void apic_update_tpr(APICDeviceInfo *pDev, APICState *pApic, uint32_t val)
{
bool fIrqIsActive = false;
bool fIrqWasActive = false;
fIrqWasActive = apic_update_irq(pDev, pApic);
pApic->tpr = val;
fIrqIsActive = apic_update_irq(pDev, pApic);
/* If an interrupt is pending and now masked, then clear the FF flag. */
if (fIrqWasActive && !fIrqIsActive)
{
Log(("apic_update_tpr: deactivate interrupt that was masked by the TPR update (%x)\n", val));
STAM_COUNTER_INC(&pDev->StatClearedActiveIrq);
apicCpuClearInterrupt(pDev, pApic);
}
}
static void apic_set_irq(APICDeviceInfo *pDev, APICState *pApic, int vector_num, int trigger_mode, uint32_t uTagSrc)
{
LogFlow(("CPU%d: apic_set_irq vector=%x trigger_mode=%x uTagSrc=%#x\n", pApic->phys_id, vector_num, trigger_mode, uTagSrc));
Apic256BitReg_SetBit(&pApic->irr, vector_num);
if (trigger_mode)
Apic256BitReg_SetBit(&pApic->tmr, vector_num);
else
Apic256BitReg_ClearBit(&pApic->tmr, vector_num);
if (!pApic->auTags[vector_num])
pApic->auTags[vector_num] = uTagSrc;
else
pApic->auTags[vector_num] |= RT_BIT_32(31);
apic_update_irq(pDev, pApic);
}
static void apic_eoi(APICDeviceInfo *pDev, APICState *pApic)
{
int isrv = Apic256BitReg_FindLastSetBit(&pApic->isr, -1);
if (isrv < 0)
return;
Apic256BitReg_ClearBit(&pApic->isr, isrv);
LogFlow(("CPU%d: apic_eoi isrv=%x\n", pApic->phys_id, isrv));
/** @todo XXX: send the EOI packet to the APIC bus to allow the I/O APIC to
* set the remote IRR bit for level triggered interrupts. */
apic_update_irq(pDev, pApic);
}
static PVMCPUSET apic_get_delivery_bitmask(APICDeviceInfo *pDev, uint8_t dest, uint8_t dest_mode, PVMCPUSET pDstSet)
{
VMCPUSET_EMPTY(pDstSet);
if (dest_mode == 0)
{
if (dest == 0xff) /* The broadcast ID. */
VMCPUSET_FILL(pDstSet);
else
VMCPUSET_ADD(pDstSet, dest);
}
else
{
/** @todo XXX: cluster mode */
APIC_FOREACH_BEGIN(pDev);
if (pCurApic->dest_mode == APIC_DESTMODE_FLAT)
{
if (dest & pCurApic->log_dest)
VMCPUSET_ADD(pDstSet, iCurApic);
}
else if (pCurApic->dest_mode == APIC_DESTMODE_CLUSTER)
{
if ( (dest & 0xf0) == (pCurApic->log_dest & 0xf0)
&& (dest & pCurApic->log_dest & 0x0f))
VMCPUSET_ADD(pDstSet, iCurApic);
}
APIC_FOREACH_END();
}
return pDstSet;
}
#ifdef IN_RING3
static void apicR3InitIpi(APICDeviceInfo *pDev, APICState *pApic)
{
int i;
for(i = 0; i < APIC_LVT_NB; i++)
pApic->lvt[i] = 1 << 16; /* mask LVT */
pApic->tpr = 0;
pApic->spurious_vec = 0xff;
pApic->log_dest = 0;
pApic->dest_mode = 0xff; /** @todo 0xff???? */
Apic256BitReg_Empty(&pApic->isr);
Apic256BitReg_Empty(&pApic->tmr);
Apic256BitReg_Empty(&pApic->irr);
pApic->esr = 0;
memset(pApic->icr, 0, sizeof(pApic->icr));
pApic->divide_conf = 0;
pApic->count_shift = 1;
pApic->initial_count = 0;
pApic->initial_count_load_time = 0;
pApic->next_time = 0;
}
static void apicSendInitIpi(APICDeviceInfo *pDev, APICState *pApic)
{
apicR3InitIpi(pDev, pApic);
apicR3CpuSendInitIpi(pDev, pApic);
}
/* send a SIPI message to the CPU to start it */
static void apicR3Startup(APICDeviceInfo *pDev, APICState *pApic, int vector_num)
{
Log(("[SMP] apicR3Startup: %d on CPUs %d\n", vector_num, pApic->phys_id));
apicR3CpuSendSipi(pDev, pApic, vector_num);
}
#endif /* IN_RING3 */
static int apic_deliver(APICDeviceInfo *pDev, APICState *pApic,
uint8_t dest, uint8_t dest_mode,
uint8_t delivery_mode, uint8_t vector_num,
uint8_t polarity, uint8_t trigger_mode)
{
int dest_shorthand = (pApic->icr[0] >> 18) & 3;
LogFlow(("apic_deliver dest=%x dest_mode=%x dest_shorthand=%x delivery_mode=%x vector_num=%x polarity=%x trigger_mode=%x uTagSrc=%#x\n", dest, dest_mode, dest_shorthand, delivery_mode, vector_num, polarity, trigger_mode));
VMCPUSET DstSet;
switch (dest_shorthand)
{
case 0:
apic_get_delivery_bitmask(pDev, dest, dest_mode, &DstSet);
break;
case 1:
VMCPUSET_EMPTY(&DstSet);
VMCPUSET_ADD(&DstSet, pApic->id);
break;
case 2:
VMCPUSET_FILL(&DstSet);
break;
case 3:
VMCPUSET_FILL(&DstSet);
VMCPUSET_DEL(&DstSet, pApic->id);
break;
}
switch (delivery_mode)
{
case APIC_DM_INIT:
{
uint32_t const trig_mode = (pApic->icr[0] >> 15) & 1;
uint32_t const level = (pApic->icr[0] >> 14) & 1;
if (level == 0 && trig_mode == 1)
{
APIC_FOREACH_IN_SET_BEGIN(pDev, &DstSet);
pCurApic->arb_id = pCurApic->id;
APIC_FOREACH_END();
Log(("CPU%d: APIC_DM_INIT arbitration id(s) set\n", pApic->phys_id));
return VINF_SUCCESS;
}
break;
}
case APIC_DM_SIPI:
# ifdef IN_RING3
APIC_FOREACH_IN_SET_BEGIN(pDev, &DstSet);
apicR3Startup(pDev, pCurApic, vector_num);
APIC_FOREACH_END();
return VINF_SUCCESS;
# else
/* We shall send SIPI only in R3, R0 calls should be
rescheduled to R3 */
return VINF_IOM_R3_MMIO_WRITE;
# endif
}
return apic_bus_deliver(pDev, &DstSet, delivery_mode, vector_num,
polarity, trigger_mode,
pDev->CTX_SUFF(pApicHlp)->pfnCalcIrqTag(pDev->CTX_SUFF(pDevIns), PDM_IRQ_LEVEL_HIGH));
}
PDMBOTHCBDECL(int) apicGetInterrupt(PPDMDEVINS pDevIns, VMCPUID idCpu, uint32_t *puTagSrc)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
/* if the APIC is not installed or enabled, we let the 8259 handle the IRQs */
if (!pDev)
{
Log(("apic_get_interrupt: returns -1 (!pDev)\n"));
return -1;
}
Assert(PDMCritSectIsOwner(pDev->CTX_SUFF(pCritSect)));
APICState *pApic = apicGetStateById(pDev, idCpu);
if (!(pApic->spurious_vec & APIC_SV_ENABLE))
{
Log(("CPU%d: apic_get_interrupt: returns -1 (APIC_SV_ENABLE)\n", pApic->phys_id));
return -1;
}
/** @todo XXX: spurious IRQ handling */
int intno = Apic256BitReg_FindLastSetBit(&pApic->irr, -1);
if (intno < 0)
{
Log(("CPU%d: apic_get_interrupt: returns -1 (irr)\n", pApic->phys_id));
return -1;
}
if (pApic->tpr && (uint32_t)intno <= pApic->tpr)
{
*puTagSrc = 0;
Log(("apic_get_interrupt: returns %d (sp)\n", pApic->spurious_vec & 0xff));
return pApic->spurious_vec & 0xff;
}
Apic256BitReg_ClearBit(&pApic->irr, intno);
Apic256BitReg_SetBit(&pApic->isr, intno);
*puTagSrc = pApic->auTags[intno];
pApic->auTags[intno] = 0;
apic_update_irq(pDev, pApic);
LogFlow(("CPU%d: apic_get_interrupt: returns %d / %#x\n", pApic->phys_id, intno, *puTagSrc));
return intno;
}
/**
* @remarks Caller (apicReadRegister) takes both the TM and APIC locks before
* calling this function.
*/
static uint32_t apic_get_current_count(APICDeviceInfo const *pDev, APICState const *pApic)
{
int64_t d = (TMTimerGet(pApic->CTX_SUFF(pTimer)) - pApic->initial_count_load_time)
>> pApic->count_shift;
uint32_t val;
if (pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC)
/* periodic */
val = pApic->initial_count - (d % ((uint64_t)pApic->initial_count + 1));
else if (d >= pApic->initial_count)
val = 0;
else
val = pApic->initial_count - d;
return val;
}
/**
* Does the frequency hinting and logging.
*
* @param pApic The device state.
*/
DECLINLINE(void) apicDoFrequencyHinting(APICState *pApic)
{
if ( pApic->uHintedInitialCount != pApic->initial_count
|| pApic->uHintedCountShift != (uint32_t)pApic->count_shift)
{
pApic->uHintedInitialCount = pApic->initial_count;
pApic->uHintedCountShift = pApic->count_shift;
uint32_t uHz;
if (pApic->initial_count > 0)
{
Assert((unsigned)pApic->count_shift < 30);
uint64_t cTickPerPeriod = ((uint64_t)pApic->initial_count + 1) << pApic->count_shift;
uHz = TMTimerGetFreq(pApic->CTX_SUFF(pTimer)) / cTickPerPeriod;
}
else
uHz = 0;
TMTimerSetFrequencyHint(pApic->CTX_SUFF(pTimer), uHz);
Log(("apic: %u Hz\n", uHz));
}
}
/**
* Implementation of the 0380h access: Timer reset + new initial count.
*
* @param pDev The device state.
* @param pApic The APIC sub-device state.
* @param u32NewInitialCount The new initial count for the timer.
*/
static void apicTimerSetInitialCount(APICDeviceInfo *pDev, APICState *pApic, uint32_t u32NewInitialCount)
{
STAM_COUNTER_INC(&pApic->StatTimerSetInitialCount);
pApic->initial_count = u32NewInitialCount;
/*
* Don't (re-)arm the timer if the it's masked or if it's
* a zero length one-shot timer.
*/
if ( !(pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED)
&& u32NewInitialCount > 0)
{
/*
* Calculate the relative next time and perform a combined timer get/set
* operation. This avoids racing the clock between get and set.
*/
uint64_t cTicksNext = u32NewInitialCount;
cTicksNext += 1;
cTicksNext <<= pApic->count_shift;
TMTimerSetRelative(pApic->CTX_SUFF(pTimer), cTicksNext, &pApic->initial_count_load_time);
pApic->next_time = pApic->initial_count_load_time + cTicksNext;
pApic->fTimerArmed = true;
apicDoFrequencyHinting(pApic);
STAM_COUNTER_INC(&pApic->StatTimerSetInitialCountArm);
Log(("apicTimerSetInitialCount: cTicksNext=%'llu (%#llx) ic=%#x sh=%#x nxt=%#llx\n",
cTicksNext, cTicksNext, u32NewInitialCount, pApic->count_shift, pApic->next_time));
}
else
{
/* Stop it if necessary and record the load time for unmasking. */
if (pApic->fTimerArmed)
{
STAM_COUNTER_INC(&pApic->StatTimerSetInitialCountDisarm);
TMTimerStop(pApic->CTX_SUFF(pTimer));
pApic->fTimerArmed = false;
pApic->uHintedCountShift = pApic->uHintedInitialCount = 0;
}
pApic->initial_count_load_time = TMTimerGet(pApic->CTX_SUFF(pTimer));
Log(("apicTimerSetInitialCount: ic=%#x sh=%#x iclt=%#llx\n", u32NewInitialCount, pApic->count_shift, pApic->initial_count_load_time));
}
}
/**
* Implementation of the 0320h access: change the LVT flags.
*
* @param pDev The device state.
* @param pApic The APIC sub-device state to operate on.
* @param fNew The new flags.
*/
static void apicTimerSetLvt(APICDeviceInfo *pDev, APICState *pApic, uint32_t fNew)
{
STAM_COUNTER_INC(&pApic->StatTimerSetLvt);
/*
* Make the flag change, saving the old ones so we can avoid
* unnecessary work.
*/
uint32_t const fOld = pApic->lvt[APIC_LVT_TIMER];
pApic->lvt[APIC_LVT_TIMER] = fNew;
/* Only the masked and peridic bits are relevant (see apic_timer_update). */
if ( (fOld & (APIC_LVT_MASKED | APIC_LVT_TIMER_PERIODIC))
!= (fNew & (APIC_LVT_MASKED | APIC_LVT_TIMER_PERIODIC)))
{
/*
* If changed to one-shot from periodic, stop the timer if we're not
* in the first period.
*/
/** @todo check how clearing the periodic flag really should behave when not
* in period 1. The current code just mirrors the behavior of the
* original implementation. */
if ( (fOld & APIC_LVT_TIMER_PERIODIC)
&& !(fNew & APIC_LVT_TIMER_PERIODIC))
{
STAM_COUNTER_INC(&pApic->StatTimerSetLvtClearPeriodic);
uint64_t cTicks = (pApic->next_time - pApic->initial_count_load_time) >> pApic->count_shift;
if (cTicks >= pApic->initial_count)
{
/* not first period, stop it. */
TMTimerStop(pApic->CTX_SUFF(pTimer));
pApic->fTimerArmed = false;
pApic->uHintedCountShift = pApic->uHintedInitialCount = 0;
}
/* else: first period, let it fire normally. */
}
/*
* We postpone stopping the timer when it's masked, this way we can
* avoid some timer work when the guest temporarily masks the timer.
* (apicR3TimerCallback will stop it if still masked.)
*/
if (fNew & APIC_LVT_MASKED)
STAM_COUNTER_INC(&pApic->StatTimerSetLvtPostponed);
else if (pApic->fTimerArmed)
STAM_COUNTER_INC(&pApic->StatTimerSetLvtArmed);
/*
* If unmasked, not armed and with a valid initial count value (according
* to our interpretation of the spec), we will have to rearm the timer so
* it will fire at the end of the current period.
*
* N.B. This is code is currently RACING the virtual sync clock!
*/
else if ( (fOld & APIC_LVT_MASKED)
&& pApic->initial_count > 0)
{
STAM_COUNTER_INC(&pApic->StatTimerSetLvtArm);
for (unsigned cTries = 0; ; cTries++)
{
uint64_t NextTS;
uint64_t cTicks = (TMTimerGet(pApic->CTX_SUFF(pTimer)) - pApic->initial_count_load_time) >> pApic->count_shift;
if (fNew & APIC_LVT_TIMER_PERIODIC)
NextTS = ((cTicks / ((uint64_t)pApic->initial_count + 1)) + 1) * ((uint64_t)pApic->initial_count + 1);
else
{
if (cTicks >= pApic->initial_count)
break;
NextTS = (uint64_t)pApic->initial_count + 1;
}
NextTS <<= pApic->count_shift;
NextTS += pApic->initial_count_load_time;
/* Try avoid the assertion in TM.cpp... this isn't perfect! */
if ( NextTS > TMTimerGet(pApic->CTX_SUFF(pTimer))
|| cTries > 10)
{
TMTimerSet(pApic->CTX_SUFF(pTimer), NextTS);
pApic->next_time = NextTS;
pApic->fTimerArmed = true;
apicDoFrequencyHinting(pApic);
Log(("apicTimerSetLvt: ic=%#x sh=%#x nxt=%#llx\n", pApic->initial_count, pApic->count_shift, pApic->next_time));
break;
}
STAM_COUNTER_INC(&pApic->StatTimerSetLvtArmRetries);
}
}
}
else
STAM_COUNTER_INC(&pApic->StatTimerSetLvtNoRelevantChange);
}
# ifdef IN_RING3
/**
* Timer callback function.
*
* @param pDevIns The device state.
* @param pTimer The timer handle.
* @param pvUser User argument pointing to the APIC instance.
*/
static DECLCALLBACK(void) apicR3TimerCallback(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
APICState *pApic = (APICState *)pvUser;
Assert(pApic->pTimerR3 == pTimer);
Assert(pApic->fTimerArmed);
Assert(PDMCritSectIsOwner(pDev->pCritSectR3));
Assert(TMTimerIsLockOwner(pTimer));
if (!(pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED)) {
LogFlow(("apic_timer: trigger irq\n"));
apic_set_irq(pDev, pApic, pApic->lvt[APIC_LVT_TIMER] & 0xff, APIC_TRIGGER_EDGE,
pDev->CTX_SUFF(pApicHlp)->pfnCalcIrqTag(pDevIns, PDM_IRQ_LEVEL_HIGH));
if ( (pApic->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC)
&& pApic->initial_count > 0) {
/* new interval. */
pApic->next_time += (((uint64_t)pApic->initial_count + 1) << pApic->count_shift);
TMTimerSet(pApic->CTX_SUFF(pTimer), pApic->next_time);
pApic->fTimerArmed = true;
apicDoFrequencyHinting(pApic);
Log2(("apicR3TimerCallback: ic=%#x sh=%#x nxt=%#llx\n", pApic->initial_count, pApic->count_shift, pApic->next_time));
} else {
/* single shot or disabled. */
pApic->fTimerArmed = false;
pApic->uHintedCountShift = pApic->uHintedInitialCount = 0;
}
} else {
/* masked, do not rearm. */
pApic->fTimerArmed = false;
pApic->uHintedCountShift = pApic->uHintedInitialCount = 0;
}
}
static void apic_save(SSMHANDLE* f, void *opaque)
{
APICState *pApic = (APICState*)opaque;
int i;
SSMR3PutU32(f, pApic->apicbase);
SSMR3PutU32(f, pApic->id);
SSMR3PutU32(f, pApic->phys_id);
SSMR3PutU32(f, pApic->arb_id);
SSMR3PutU32(f, pApic->tpr);
SSMR3PutU32(f, pApic->spurious_vec);
SSMR3PutU8(f, pApic->log_dest);
SSMR3PutU8(f, pApic->dest_mode);
for (i = 0; i < 8; i++) {
SSMR3PutU32(f, pApic->isr.au32Bitmap[i]);
SSMR3PutU32(f, pApic->tmr.au32Bitmap[i]);
SSMR3PutU32(f, pApic->irr.au32Bitmap[i]);
}
for (i = 0; i < APIC_LVT_NB; i++) {
SSMR3PutU32(f, pApic->lvt[i]);
}
SSMR3PutU32(f, pApic->esr);
SSMR3PutU32(f, pApic->icr[0]);
SSMR3PutU32(f, pApic->icr[1]);
SSMR3PutU32(f, pApic->divide_conf);
SSMR3PutU32(f, pApic->count_shift);
SSMR3PutU32(f, pApic->initial_count);
SSMR3PutU64(f, pApic->initial_count_load_time);
SSMR3PutU64(f, pApic->next_time);
TMR3TimerSave(pApic->CTX_SUFF(pTimer), f);
}
static int apic_load(SSMHANDLE *f, void *opaque, int version_id)
{
APICState *pApic = (APICState*)opaque;
int i;
/** @todo XXX: what if the base changes? (registered memory regions) */
SSMR3GetU32(f, &pApic->apicbase);
switch (version_id)
{
case APIC_SAVED_STATE_VERSION_ANCIENT:
{
uint8_t val = 0;
SSMR3GetU8(f, &val);
pApic->id = val;
/* UP only in old saved states */
pApic->phys_id = 0;
SSMR3GetU8(f, &val);
pApic->arb_id = val;
break;
}
case APIC_SAVED_STATE_VERSION:
case APIC_SAVED_STATE_VERSION_VBOX_30:
SSMR3GetU32(f, &pApic->id);
SSMR3GetU32(f, &pApic->phys_id);
SSMR3GetU32(f, &pApic->arb_id);
break;
default:
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
SSMR3GetU32(f, &pApic->tpr);
SSMR3GetU32(f, &pApic->spurious_vec);
SSMR3GetU8(f, &pApic->log_dest);
SSMR3GetU8(f, &pApic->dest_mode);
for (i = 0; i < 8; i++) {
SSMR3GetU32(f, &pApic->isr.au32Bitmap[i]);
SSMR3GetU32(f, &pApic->tmr.au32Bitmap[i]);
SSMR3GetU32(f, &pApic->irr.au32Bitmap[i]);
}
for (i = 0; i < APIC_LVT_NB; i++) {
SSMR3GetU32(f, &pApic->lvt[i]);
}
SSMR3GetU32(f, &pApic->esr);
SSMR3GetU32(f, &pApic->icr[0]);
SSMR3GetU32(f, &pApic->icr[1]);
SSMR3GetU32(f, &pApic->divide_conf);
SSMR3GetU32(f, (uint32_t *)&pApic->count_shift);
SSMR3GetU32(f, (uint32_t *)&pApic->initial_count);
SSMR3GetU64(f, (uint64_t *)&pApic->initial_count_load_time);
SSMR3GetU64(f, (uint64_t *)&pApic->next_time);
int rc = TMR3TimerLoad(pApic->CTX_SUFF(pTimer), f);
AssertRCReturn(rc, rc);
pApic->uHintedCountShift = pApic->uHintedInitialCount = 0;
pApic->fTimerArmed = TMTimerIsActive(pApic->CTX_SUFF(pTimer));
if (pApic->fTimerArmed)
apicDoFrequencyHinting(pApic);
return VINF_SUCCESS; /** @todo darn mess! */
}
#endif /* IN_RING3 */
/* LAPIC */
PDMBOTHCBDECL(int) apicMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
APICState *pApic = apicGetStateByCurEmt(pDev);
Log(("CPU%d: apicMMIORead at %RGp\n", pApic->phys_id, GCPhysAddr));
Assert(cb == 4);
/** @todo add LAPIC range validity checks (different LAPICs can
* theoretically have different physical addresses, see @bugref{3092}) */
STAM_COUNTER_INC(&CTXSUFF(pDev->StatMMIORead));
#if 0 /* Note! experimental */
#ifndef IN_RING3
uint32_t index = (GCPhysAddr >> 4) & 0xff;
if ( index == 0x08 /* TPR */
&& ++pApic->cTPRPatchAttempts < APIC_MAX_PATCH_ATTEMPTS)
{
# ifdef IN_RC
pDevIns->pDevHlpGC->pfnPATMSetMMIOPatchInfo(pDevIns, GCPhysAddr, &pApic->tpr);
# else
RTGCPTR pDevInsGC = PDMINS2DATA_GCPTR(pDevIns);
pDevIns->pHlpR0->pfnPATMSetMMIOPatchInfo(pDevIns, GCPhysAddr, pDevIns + RT_OFFSETOF(APICState, tpr));
# endif
return VINF_PATM_HC_MMIO_PATCH_READ;
}
#endif
#endif /* experimental */
/* Note! apicReadRegister does its own locking. */
uint64_t u64Value = 0;
int rc = apicReadRegister(pDev, pApic, (GCPhysAddr >> 4) & 0xff, &u64Value, VINF_IOM_R3_MMIO_READ, false /*fMsr*/);
*(uint32_t *)pv = (uint32_t)u64Value;
return rc;
}
PDMBOTHCBDECL(int) apicMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
APICState *pApic = apicGetStateByCurEmt(pDev);
Log(("CPU%d: apicMMIOWrite at %RGp\n", pApic->phys_id, GCPhysAddr));
Assert(cb == 4);
/** @todo: add LAPIC range validity checks (multiple LAPICs can theoretically have
* different physical addresses, see @bugref{3092}) */
STAM_COUNTER_INC(&CTXSUFF(pDev->StatMMIOWrite));
/* Note! It does its own locking. */
return apicWriteRegister(pDev, pApic, (GCPhysAddr >> 4) & 0xff, *(uint32_t const *)pv,
VINF_IOM_R3_MMIO_WRITE, false /*fMsr*/);
}
#ifdef IN_RING3
/**
* Wrapper around apicReadRegister.
*
* @returns 64-bit register value.
* @param pDev The PDM device instance.
* @param pApic The Local APIC in question.
* @param iReg The APIC register index.
*/
static uint64_t apicR3InfoReadReg(APICDeviceInfo *pDev, APICState *pApic, uint32_t iReg)
{
uint64_t u64Value;
int rc = apicReadRegister(pDev, pApic, iReg, &u64Value, VINF_SUCCESS, true /*fMsr*/);
AssertRCReturn(rc, UINT64_MAX);
return u64Value;
}
/**
* Print a 8-DWORD Local APIC bit map (256 bits).
*
* @param pDev The PDM device instance.
* @param pApic The Local APIC in question.
* @param pHlp The output helper.
* @param iStartReg The register to start at.
*/
static void apicR3DumpVec(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp, uint32_t iStartReg)
{
for (uint32_t i = 0; i < 8; i++)
pHlp->pfnPrintf(pHlp, "%08x", apicR3InfoReadReg(pDev, pApic, iStartReg + i));
pHlp->pfnPrintf(pHlp, "\n");
}
/**
* Print basic Local APIC state.
*
* @param pDev The PDM device instance.
* @param pApic The Local APIC in question.
* @param pHlp The output helper.
*/
static void apicR3InfoBasic(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp)
{
uint64_t u64;
pHlp->pfnPrintf(pHlp, "Local APIC at %08llx:\n", pApic->apicbase);
u64 = apicR3InfoReadReg(pDev, pApic, 0x2);
pHlp->pfnPrintf(pHlp, " LAPIC ID : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " APIC ID = %02llx\n", (u64 >> 24) & 0xff);
u64 = apicR3InfoReadReg(pDev, pApic, 0x3);
pHlp->pfnPrintf(pHlp, " APIC VER : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " version = %02x\n", (int)RT_BYTE1(u64));
pHlp->pfnPrintf(pHlp, " lvts = %d\n", (int)RT_BYTE3(u64) + 1);
u64 = apicR3InfoReadReg(pDev, pApic, 0x8);
pHlp->pfnPrintf(pHlp, " TPR : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " task pri = %lld/%lld\n", (u64 >> 4) & 0xf, u64 & 0xf);
u64 = apicR3InfoReadReg(pDev, pApic, 0xA);
pHlp->pfnPrintf(pHlp, " PPR : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " cpu pri = %lld/%lld\n", (u64 >> 4) & 0xf, u64 & 0xf);
u64 = apicR3InfoReadReg(pDev, pApic, 0xD);
pHlp->pfnPrintf(pHlp, " LDR : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " log id = %02llx\n", (u64 >> 24) & 0xff);
pHlp->pfnPrintf(pHlp, " DFR : %08llx\n", apicR3InfoReadReg(pDev, pApic, 0xE));
u64 = apicR3InfoReadReg(pDev, pApic, 0xF);
pHlp->pfnPrintf(pHlp, " SVR : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " focus = %s\n", u64 & RT_BIT(9) ? "check off" : "check on");
pHlp->pfnPrintf(pHlp, " lapic = %s\n", u64 & RT_BIT(8) ? "ENABLED" : "DISABLED");
pHlp->pfnPrintf(pHlp, " vector = %02x\n", (unsigned)RT_BYTE1(u64));
pHlp->pfnPrintf(pHlp, " ISR : ");
apicR3DumpVec(pDev, pApic, pHlp, 0x10);
int iMax = Apic256BitReg_FindLastSetBit(&pApic->isr, -1);
pHlp->pfnPrintf(pHlp, " highest = %02x\n", iMax == -1 ? 0 : iMax);
pHlp->pfnPrintf(pHlp, " IRR : ");
apicR3DumpVec(pDev, pApic, pHlp, 0x20);
iMax = Apic256BitReg_FindLastSetBit(&pApic->irr, -1);
pHlp->pfnPrintf(pHlp, " highest = %02X\n", iMax == -1 ? 0 : iMax);
}
/**
* Print the more interesting Local APIC LVT entries.
*
* @param pDev The PDM device instance.
* @param pApic The Local APIC in question.
* @param pHlp The output helper.
*/
static void apicR3InfoLVT(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp)
{
static const char * const s_apszDeliveryModes[] =
{
"Fixed ", "Reserved", "SMI", "Reserved", "NMI", "INIT", "Reserved", "ExtINT"
};
uint64_t u64;
u64 = apicR3InfoReadReg(pDev, pApic, 0x32);
pHlp->pfnPrintf(pHlp, " LVT Timer : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " mode = %s\n", u64 & RT_BIT(17) ? "periodic" : "one-shot");
pHlp->pfnPrintf(pHlp, " mask = %llu\n", (u64 >> 16) & 1);
pHlp->pfnPrintf(pHlp, " status = %s\n", u64 & RT_BIT(12) ? "pending" : "idle");
pHlp->pfnPrintf(pHlp, " vector = %02llx\n", u64 & 0xff);
u64 = apicR3InfoReadReg(pDev, pApic, 0x35);
pHlp->pfnPrintf(pHlp, " LVT LINT0 : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " mask = %llu\n", (u64 >> 16) & 1);
pHlp->pfnPrintf(pHlp, " trigger = %s\n", u64 & RT_BIT(15) ? "level" : "edge");
pHlp->pfnPrintf(pHlp, " rem irr = %llu\n", (u64 >> 14) & 1);
pHlp->pfnPrintf(pHlp, " polarty = %llu\n", (u64 >> 13) & 1);
pHlp->pfnPrintf(pHlp, " status = %s\n", u64 & RT_BIT(12) ? "pending" : "idle");
pHlp->pfnPrintf(pHlp, " delivry = %s\n", s_apszDeliveryModes[(u64 >> 8) & 7]);
pHlp->pfnPrintf(pHlp, " vector = %02llx\n", u64 & 0xff);
u64 = apicR3InfoReadReg(pDev, pApic, 0x36);
pHlp->pfnPrintf(pHlp, " LVT LINT1 : %08llx\n", u64);
pHlp->pfnPrintf(pHlp, " mask = %llu\n", (u64 >> 16) & 1);
pHlp->pfnPrintf(pHlp, " trigger = %s\n", u64 & RT_BIT(15) ? "level" : "edge");
pHlp->pfnPrintf(pHlp, " rem irr = %lld\n", (u64 >> 14) & 1);
pHlp->pfnPrintf(pHlp, " polarty = %lld\n", (u64 >> 13) & 1);
pHlp->pfnPrintf(pHlp, " status = %s\n", u64 & RT_BIT(12) ? "pending" : "idle");
pHlp->pfnPrintf(pHlp, " delivry = %s\n", s_apszDeliveryModes[(u64 >> 8) & 7]);
pHlp->pfnPrintf(pHlp, " vector = %02llx\n", u64 & 0xff);
}
/**
* Print LAPIC timer state.
*
* @param pDev The PDM device instance.
* @param pApic The Local APIC in question.
* @param pHlp The output helper.
*/
static void apicR3InfoTimer(APICDeviceInfo *pDev, APICState *pApic, PCDBGFINFOHLP pHlp)
{
pHlp->pfnPrintf(pHlp, "Local APIC timer:\n");
pHlp->pfnPrintf(pHlp, " Initial count : %08llx\n", apicR3InfoReadReg(pDev, pApic, 0x38));
pHlp->pfnPrintf(pHlp, " Current count : %08llx\n", apicR3InfoReadReg(pDev, pApic, 0x39));
uint64_t u64 = apicR3InfoReadReg(pDev, pApic, 0x3e);
pHlp->pfnPrintf(pHlp, " Divide config : %08llx\n", u64);
unsigned uDivider = ((u64 >> 1) & 0x04) | (u64 & 0x03);
pHlp->pfnPrintf(pHlp, " divider = %u\n", uDivider == 7 ? 1 : 2 << uDivider);
}
/**
* @callback_method_impl{FNDBGFHANDLERDEV,
* Dumps the Local APIC state according to given argument.}
*/
static DECLCALLBACK(void) apicR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
APICState *pApic = apicGetStateByCurEmt(pDev);
if (pszArgs == NULL || !*pszArgs || !strcmp(pszArgs, "basic"))
apicR3InfoBasic(pDev, pApic, pHlp);
else if (!strcmp(pszArgs, "lvt"))
apicR3InfoLVT(pDev, pApic, pHlp);
else if (!strcmp(pszArgs, "timer"))
apicR3InfoTimer(pDev, pApic, pHlp);
else
pHlp->pfnPrintf(pHlp, "Invalid argument. Recognized arguments are 'basic', 'lvt', 'timer'.\n");
}
/**
* @copydoc FNSSMDEVLIVEEXEC
*/
static DECLCALLBACK(int) apicR3LiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
SSMR3PutU32( pSSM, pDev->cCpus);
SSMR3PutBool(pSSM, pDev->fIoApic);
SSMR3PutU32( pSSM, pDev->enmVersion);
AssertCompile(PDMAPICVERSION_APIC == 2);
return VINF_SSM_DONT_CALL_AGAIN;
}
/**
* @copydoc FNSSMDEVSAVEEXEC
*/
static DECLCALLBACK(int) apicR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
/* config */
apicR3LiveExec(pDevIns, pSSM, SSM_PASS_FINAL);
/* save all APICs data */ /** @todo: is it correct? */
APIC_FOREACH_BEGIN(pDev);
apic_save(pSSM, pCurApic);
APIC_FOREACH_END();
return VINF_SUCCESS;
}
/**
* @copydoc FNSSMDEVLOADEXEC
*/
static DECLCALLBACK(int) apicR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
if ( uVersion != APIC_SAVED_STATE_VERSION
&& uVersion != APIC_SAVED_STATE_VERSION_VBOX_30
&& uVersion != APIC_SAVED_STATE_VERSION_ANCIENT)
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
/* config */
if (uVersion > APIC_SAVED_STATE_VERSION_VBOX_30)
{
uint32_t cCpus;
int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
if (cCpus != pDev->cCpus)
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - cCpus: saved=%#x config=%#x"), cCpus, pDev->cCpus);
bool fIoApic;
rc = SSMR3GetBool(pSSM, &fIoApic); AssertRCReturn(rc, rc);
if (fIoApic != pDev->fIoApic)
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - fIoApic: saved=%RTbool config=%RTbool"), fIoApic, pDev->fIoApic);
uint32_t uApicVersion;
rc = SSMR3GetU32(pSSM, &uApicVersion); AssertRCReturn(rc, rc);
if (uApicVersion != (uint32_t)pDev->enmVersion)
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - uApicVersion: saved=%#x config=%#x"), uApicVersion, pDev->enmVersion);
}
if (uPass != SSM_PASS_FINAL)
return VINF_SUCCESS;
/* load all APICs data */ /** @todo: is it correct? */
APIC_LOCK(pDev, VERR_INTERNAL_ERROR_3);
int rc = VINF_SUCCESS;
APIC_FOREACH_BEGIN(pDev);
rc = apic_load(pSSM, pCurApic, uVersion);
if (RT_FAILURE(rc))
break;
APIC_FOREACH_END();
APIC_UNLOCK(pDev);
return rc;
}
/**
* @copydoc FNPDMDEVRESET
*/
static DECLCALLBACK(void) apicR3Reset(PPDMDEVINS pDevIns)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
TMTimerLock(pDev->paLapicsR3[0].pTimerR3, VERR_IGNORED);
APIC_LOCK_VOID(pDev, VERR_IGNORED);
/* Reset all APICs. */
for (VMCPUID i = 0; i < pDev->cCpus; i++)
{
APICState *pApic = &pDev->CTX_SUFF(paLapics)[i];
TMTimerStop(pApic->CTX_SUFF(pTimer));
/* Clear LAPIC state as if an INIT IPI was sent. */
apicR3InitIpi(pDev, pApic);
/* The IDs are not touched by apicR3InitIpi() and must be reset now. */
pApic->arb_id = pApic->id = i;
Assert(pApic->id == pApic->phys_id); /* The two should match again. */
/* Reset should re-enable the APIC, see comment in msi.h */
pApic->apicbase = VBOX_MSI_ADDR_BASE | MSR_IA32_APICBASE_ENABLE;
if (pApic->phys_id == 0)
pApic->apicbase |= MSR_IA32_APICBASE_BSP;
/* Clear any pending APIC interrupt action flag. */
apicCpuClearInterrupt(pDev, pApic);
}
/** @todo r=bird: Why is this done everytime, while the constructor first
* checks the CPUID? Who is right? */
pDev->pApicHlpR3->pfnChangeFeature(pDev->pDevInsR3, pDev->enmVersion);
APIC_UNLOCK(pDev);
TMTimerUnlock(pDev->paLapicsR3[0].pTimerR3);
}
/**
* @copydoc FNPDMDEVRELOCATE
*/
static DECLCALLBACK(void) apicR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
pDev->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
pDev->pApicHlpRC = pDev->pApicHlpR3->pfnGetRCHelpers(pDevIns);
pDev->paLapicsRC = MMHyperR3ToRC(PDMDevHlpGetVM(pDevIns), pDev->paLapicsR3);
pDev->pCritSectRC = pDev->pApicHlpR3->pfnGetRCCritSect(pDevIns);
for (uint32_t i = 0; i < pDev->cCpus; i++)
pDev->paLapicsR3[i].pTimerRC = TMTimerRCPtr(pDev->paLapicsR3[i].pTimerR3);
}
/**
* Initializes the state of one local APIC.
*
* @param pApic The Local APIC state to init.
* @param id The Local APIC ID.
*/
static void apicR3StateInit(APICState *pApic, uint8_t id)
{
memset(pApic, 0, sizeof(*pApic));
/* See comment in msi.h for LAPIC base info. */
pApic->apicbase = VBOX_MSI_ADDR_BASE | MSR_IA32_APICBASE_ENABLE;
if (id == 0) /* Mark first CPU as BSP. */
pApic->apicbase |= MSR_IA32_APICBASE_BSP;
for (int i = 0; i < APIC_LVT_NB; i++)
pApic->lvt[i] = RT_BIT_32(16); /* mask LVT */
pApic->spurious_vec = 0xff;
pApic->phys_id = id;
pApic->id = id;
}
/**
* @copydoc FNPDMDEVCONSTRUCT
*/
static DECLCALLBACK(int) apicR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
{
APICDeviceInfo *pDev = PDMINS_2_DATA(pDevIns, APICDeviceInfo *);
uint32_t i;
/*
* Only single device instance.
*/
Assert(iInstance == 0);
/*
* Validate configuration.
*/
PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "IOAPIC|RZEnabled|NumCPUs", "");
bool fIoApic;
int rc = CFGMR3QueryBoolDef(pCfg, "IOAPIC", &fIoApic, true);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"IOAPIC\""));
bool fRZEnabled;
rc = CFGMR3QueryBoolDef(pCfg, "RZEnabled", &fRZEnabled, true);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to query boolean value \"RZEnabled\""));
uint32_t cCpus;
rc = CFGMR3QueryU32Def(pCfg, "NumCPUs", &cCpus, 1);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to query integer value \"NumCPUs\""));
Log(("APIC: cCpus=%d fRZEnabled=%RTbool fIoApic=%RTbool\n", cCpus, fRZEnabled, fIoApic));
if (cCpus > 255)
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Invalid value for \"NumCPUs\""));
/*
* Init the data.
*/
pDev->pDevInsR3 = pDevIns;
pDev->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
pDev->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
pDev->cCpus = cCpus;
pDev->fIoApic = fIoApic;
/* Use PDMAPICVERSION_X2APIC to activate x2APIC mode */
pDev->enmVersion = PDMAPICVERSION_APIC;
/* Disable locking in this device. */
rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
AssertRCReturn(rc, rc);
PVM pVM = PDMDevHlpGetVM(pDevIns);
/*
* We are not freeing this memory, as it's automatically released when guest exits.
*/
rc = MMHyperAlloc(pVM, cCpus * sizeof(APICState), 1, MM_TAG_PDM_DEVICE_USER, (void **)&pDev->paLapicsR3);
if (RT_FAILURE(rc))
return VERR_NO_MEMORY;
pDev->paLapicsR0 = MMHyperR3ToR0(pVM, pDev->paLapicsR3);
pDev->paLapicsRC = MMHyperR3ToRC(pVM, pDev->paLapicsR3);
for (i = 0; i < cCpus; i++)
apicR3StateInit(&pDev->paLapicsR3[i], i);
/*
* Register the APIC.
*/
PDMAPICREG ApicReg;
ApicReg.u32Version = PDM_APICREG_VERSION;
ApicReg.pfnGetInterruptR3 = apicGetInterrupt;
ApicReg.pfnHasPendingIrqR3 = apicHasPendingIrq;
ApicReg.pfnSetBaseR3 = apicSetBase;
ApicReg.pfnGetBaseR3 = apicGetBase;
ApicReg.pfnSetTPRR3 = apicSetTPR;
ApicReg.pfnGetTPRR3 = apicGetTPR;
ApicReg.pfnWriteMSRR3 = apicWriteMSR;
ApicReg.pfnReadMSRR3 = apicReadMSR;
ApicReg.pfnBusDeliverR3 = apicBusDeliverCallback;
ApicReg.pfnLocalInterruptR3 = apicLocalInterrupt;
if (fRZEnabled)
{
ApicReg.pszGetInterruptRC = "apicGetInterrupt";
ApicReg.pszHasPendingIrqRC = "apicHasPendingIrq";
ApicReg.pszSetBaseRC = "apicSetBase";
ApicReg.pszGetBaseRC = "apicGetBase";
ApicReg.pszSetTPRRC = "apicSetTPR";
ApicReg.pszGetTPRRC = "apicGetTPR";
ApicReg.pszWriteMSRRC = "apicWriteMSR";
ApicReg.pszReadMSRRC = "apicReadMSR";
ApicReg.pszBusDeliverRC = "apicBusDeliverCallback";
ApicReg.pszLocalInterruptRC = "apicLocalInterrupt";
ApicReg.pszGetInterruptR0 = "apicGetInterrupt";
ApicReg.pszHasPendingIrqR0 = "apicHasPendingIrq";
ApicReg.pszSetBaseR0 = "apicSetBase";
ApicReg.pszGetBaseR0 = "apicGetBase";
ApicReg.pszSetTPRR0 = "apicSetTPR";
ApicReg.pszGetTPRR0 = "apicGetTPR";
ApicReg.pszWriteMSRR0 = "apicWriteMSR";
ApicReg.pszReadMSRR0 = "apicReadMSR";
ApicReg.pszBusDeliverR0 = "apicBusDeliverCallback";
ApicReg.pszLocalInterruptR0 = "apicLocalInterrupt";
}
else
{
ApicReg.pszGetInterruptRC = NULL;
ApicReg.pszHasPendingIrqRC = NULL;
ApicReg.pszSetBaseRC = NULL;
ApicReg.pszGetBaseRC = NULL;
ApicReg.pszSetTPRRC = NULL;
ApicReg.pszGetTPRRC = NULL;
ApicReg.pszWriteMSRRC = NULL;
ApicReg.pszReadMSRRC = NULL;
ApicReg.pszBusDeliverRC = NULL;
ApicReg.pszLocalInterruptRC = NULL;
ApicReg.pszGetInterruptR0 = NULL;
ApicReg.pszHasPendingIrqR0 = NULL;
ApicReg.pszSetBaseR0 = NULL;
ApicReg.pszGetBaseR0 = NULL;
ApicReg.pszSetTPRR0 = NULL;
ApicReg.pszGetTPRR0 = NULL;
ApicReg.pszWriteMSRR0 = NULL;
ApicReg.pszReadMSRR0 = NULL;
ApicReg.pszBusDeliverR0 = NULL;
ApicReg.pszLocalInterruptR0 = NULL;
}
rc = PDMDevHlpAPICRegister(pDevIns, &ApicReg, &pDev->pApicHlpR3);
AssertLogRelRCReturn(rc, rc);
pDev->pCritSectR3 = pDev->pApicHlpR3->pfnGetR3CritSect(pDevIns);
/*
* The CPUID feature bit.
*/
/** @todo r=bird: See remark in the apicR3Reset. */
uint32_t u32Eax, u32Ebx, u32Ecx, u32Edx;
PDMDevHlpGetCpuId(pDevIns, 0, &u32Eax, &u32Ebx, &u32Ecx, &u32Edx);
if (u32Eax >= 1)
{
if ( fIoApic /* If IOAPIC is enabled, enable Local APIC in any case */
|| ( u32Ebx == X86_CPUID_VENDOR_INTEL_EBX
&& u32Ecx == X86_CPUID_VENDOR_INTEL_ECX
&& u32Edx == X86_CPUID_VENDOR_INTEL_EDX /* GenuineIntel */)
|| ( u32Ebx == X86_CPUID_VENDOR_AMD_EBX
&& u32Ecx == X86_CPUID_VENDOR_AMD_ECX
&& u32Edx == X86_CPUID_VENDOR_AMD_EDX /* AuthenticAMD */))
{
LogRel(("Activating Local APIC\n"));
pDev->pApicHlpR3->pfnChangeFeature(pDevIns, pDev->enmVersion);
}
}
/*
* Register the MMIO range.
*/
/** @todo: shall reregister, if base changes. */
uint32_t ApicBase = pDev->paLapicsR3[0].apicbase & ~0xfff;
rc = PDMDevHlpMMIORegister(pDevIns, ApicBase, 0x1000, pDev,
IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_ONLY_DWORD,
apicMMIOWrite, apicMMIORead, "APIC Memory");
if (RT_FAILURE(rc))
return rc;
if (fRZEnabled)
{
pDev->pApicHlpRC = pDev->pApicHlpR3->pfnGetRCHelpers(pDevIns);
pDev->pCritSectRC = pDev->pApicHlpR3->pfnGetRCCritSect(pDevIns);
rc = PDMDevHlpMMIORegisterRC(pDevIns, ApicBase, 0x1000, NIL_RTRCPTR /*pvUser*/, "apicMMIOWrite", "apicMMIORead");
if (RT_FAILURE(rc))
return rc;
pDev->pApicHlpR0 = pDev->pApicHlpR3->pfnGetR0Helpers(pDevIns);
pDev->pCritSectR0 = pDev->pApicHlpR3->pfnGetR0CritSect(pDevIns);
rc = PDMDevHlpMMIORegisterR0(pDevIns, ApicBase, 0x1000, NIL_RTR0PTR /*pvUser*/, "apicMMIOWrite", "apicMMIORead");
if (RT_FAILURE(rc))
return rc;
}
/*
* Create the APIC timers.
*/
for (i = 0; i < cCpus; i++)
{
APICState *pApic = &pDev->paLapicsR3[i];
pApic->pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PDM_DEVICE_USER, "APIC Timer #%u", i);
rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, apicR3TimerCallback, pApic,
TMTIMER_FLAGS_NO_CRIT_SECT, pApic->pszDesc, &pApic->pTimerR3);
if (RT_FAILURE(rc))
return rc;
pApic->pTimerR0 = TMTimerR0Ptr(pApic->pTimerR3);
pApic->pTimerRC = TMTimerRCPtr(pApic->pTimerR3);
TMR3TimerSetCritSect(pApic->pTimerR3, pDev->pCritSectR3);
}
/*
* Saved state.
*/
rc = PDMDevHlpSSMRegister3(pDevIns, APIC_SAVED_STATE_VERSION, sizeof(*pDev),
apicR3LiveExec, apicR3SaveExec, apicR3LoadExec);
if (RT_FAILURE(rc))
return rc;
/*
* Register debugger info callback.
*/
PDMDevHlpDBGFInfoRegister(pDevIns, "apic", "Display Local APIC state for current CPU. "
"Recognizes 'basic', 'lvt', 'timer' as arguments, defaulting to 'basic'.", apicR3Info);
#ifdef VBOX_WITH_STATISTICS
/*
* Statistics.
*/
PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOReadGC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOReadGC", STAMUNIT_OCCURENCES, "Number of APIC MMIO reads in GC.");
PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOReadHC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOReadHC", STAMUNIT_OCCURENCES, "Number of APIC MMIO reads in HC.");
PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOWriteGC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOWriteGC", STAMUNIT_OCCURENCES, "Number of APIC MMIO writes in GC.");
PDMDevHlpSTAMRegister(pDevIns, &pDev->StatMMIOWriteHC, STAMTYPE_COUNTER, "/Devices/APIC/MMIOWriteHC", STAMUNIT_OCCURENCES, "Number of APIC MMIO writes in HC.");
PDMDevHlpSTAMRegister(pDevIns, &pDev->StatClearedActiveIrq,STAMTYPE_COUNTER, "/Devices/APIC/MaskedActiveIRQ", STAMUNIT_OCCURENCES, "Number of cleared irqs.");
for (i = 0; i < cCpus; i++)
{
APICState *pApic = &pDev->paLapicsR3[i];
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetInitialCount, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Calls to apicTimerSetInitialCount.", "/Devices/APIC/%u/TimerSetInitialCount", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetInitialCountArm, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSetRelative calls.", "/Devices/APIC/%u/TimerSetInitialCount/Arm", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetInitialCountDisarm, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerStop calls.", "/Devices/APIC/%u/TimerSetInitialCount/Disasm", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Calls to apicTimerSetLvt.", "/Devices/APIC/%u/TimerSetLvt", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtClearPeriodic, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Clearing APIC_LVT_TIMER_PERIODIC.", "/Devices/APIC/%u/TimerSetLvt/ClearPeriodic", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtPostponed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerStop postponed.", "/Devices/APIC/%u/TimerSetLvt/Postponed", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtArmed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSet avoided.", "/Devices/APIC/%u/TimerSetLvt/Armed", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtArm, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSet necessary.", "/Devices/APIC/%u/TimerSetLvt/Arm", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtArmRetries, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "TMTimerSet retries.", "/Devices/APIC/%u/TimerSetLvt/ArmRetries", i);
PDMDevHlpSTAMRegisterF(pDevIns, &pApic->StatTimerSetLvtNoRelevantChange,STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "No relevant flags changed.", "/Devices/APIC/%u/TimerSetLvt/NoRelevantChange", i);
}
#endif
return VINF_SUCCESS;
}
/**
* APIC device registration structure.
*/
const PDMDEVREG g_DeviceAPIC =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szName */
"apic",
/* szRCMod */
"VBoxDD2GC.gc",
/* szR0Mod */
"VBoxDD2R0.r0",
/* pszDescription */
"Advanced Programmable Interrupt Controller (APIC) Device",
/* fFlags */
PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_32_64 | PDM_DEVREG_FLAGS_PAE36 | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_PIC,
/* cMaxInstances */
1,
/* cbInstance */
sizeof(APICState),
/* pfnConstruct */
apicR3Construct,
/* pfnDestruct */
NULL,
/* pfnRelocate */
apicR3Relocate,
/* pfnMemSetup */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
apicR3Reset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
NULL,
/* pfnDetach */
NULL,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
NULL,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */