DevACPI.cpp revision d0bfe54e0e26689dd7137d651937865dbbcce23c
/* $Id$ */
/** @file
* DevACPI - Advanced Configuration and Power Interface (ACPI) Device.
*/
/*
* Copyright (C) 2006-2009 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DEV_ACPI
#include <VBox/pdmdev.h>
#include <VBox/pgm.h>
#include <VBox/log.h>
#include <VBox/param.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#ifdef IN_RING3
# include <iprt/alloc.h>
# include <iprt/string.h>
# include <iprt/uuid.h>
#endif /* IN_RING3 */
#include "../Builtins.h"
#ifdef LOG_ENABLED
# define DEBUG_ACPI
#endif
#if defined(IN_RING3) && !defined(VBOX_DEVICE_STRUCT_TESTCASE)
int acpiPrepareDsdt(PPDMDEVINS pDevIns, void* *ppPtr, size_t *puDsdtLen);
int acpiCleanupDsdt(PPDMDEVINS pDevIns, void* pPtr);
#endif /* !IN_RING3 */
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
#define DEBUG_HEX 0x3000
#define DEBUG_CHR 0x3001
#define PM_TMR_FREQ 3579545
/* Default base for PM PIIX4 device */
#define PM_PORT_BASE 0x4000
/* Port offsets in PM device */
enum
{
PM1a_EVT_OFFSET = 0x00,
PM1b_EVT_OFFSET = -1, /**< not supported */
PM1a_CTL_OFFSET = 0x04,
PM1b_CTL_OFFSET = -1, /**< not supported */
PM2_CTL_OFFSET = -1, /**< not supported */
PM_TMR_OFFSET = 0x08,
GPE0_OFFSET = 0x20,
GPE1_OFFSET = -1 /**< not supported */
};
#define BAT_INDEX 0x00004040
#define BAT_DATA 0x00004044
#define SYSI_INDEX 0x00004048
#define SYSI_DATA 0x0000404c
#define ACPI_RESET_BLK 0x00004050
/* PM1x status register bits */
#define TMR_STS RT_BIT(0)
#define RSR1_STS (RT_BIT(1) | RT_BIT(2) | RT_BIT(3))
#define BM_STS RT_BIT(4)
#define GBL_STS RT_BIT(5)
#define RSR2_STS (RT_BIT(6) | RT_BIT(7))
#define PWRBTN_STS RT_BIT(8)
#define SLPBTN_STS RT_BIT(9)
#define RTC_STS RT_BIT(10)
#define IGN_STS RT_BIT(11)
#define RSR3_STS (RT_BIT(12) | RT_BIT(13) | RT_BIT(14))
#define WAK_STS RT_BIT(15)
#define RSR_STS (RSR1_STS | RSR2_STS | RSR3_STS)
/* PM1x enable register bits */
#define TMR_EN RT_BIT(0)
#define RSR1_EN (RT_BIT(1) | RT_BIT(2) | RT_BIT(3) | RT_BIT(4))
#define GBL_EN RT_BIT(5)
#define RSR2_EN (RT_BIT(6) | RT_BIT(7))
#define PWRBTN_EN RT_BIT(8)
#define SLPBTN_EN RT_BIT(9)
#define RTC_EN RT_BIT(10)
#define RSR3_EN (RT_BIT(11) | RT_BIT(12) | RT_BIT(13) | RT_BIT(14) | RT_BIT(15))
#define RSR_EN (RSR1_EN | RSR2_EN | RSR3_EN)
#define IGN_EN 0
/* PM1x control register bits */
#define SCI_EN RT_BIT(0)
#define BM_RLD RT_BIT(1)
#define GBL_RLS RT_BIT(2)
#define RSR1_CNT (RT_BIT(3) | RT_BIT(4) | RT_BIT(5) | RT_BIT(6) | RT_BIT(7) | RT_BIT(8))
#define IGN_CNT RT_BIT(9)
#define SLP_TYPx_SHIFT 10
#define SLP_TYPx_MASK 7
#define SLP_EN RT_BIT(13)
#define RSR2_CNT (RT_BIT(14) | RT_BIT(15))
#define RSR_CNT (RSR1_CNT | RSR2_CNT)
#define GPE0_BATTERY_INFO_CHANGED RT_BIT(0)
enum
{
BAT_STATUS_STATE = 0x00, /**< BST battery state */
BAT_STATUS_PRESENT_RATE = 0x01, /**< BST battery present rate */
BAT_STATUS_REMAINING_CAPACITY = 0x02, /**< BST battery remaining capacity */
BAT_STATUS_PRESENT_VOLTAGE = 0x03, /**< BST battery present voltage */
BAT_INFO_UNITS = 0x04, /**< BIF power unit */
BAT_INFO_DESIGN_CAPACITY = 0x05, /**< BIF design capacity */
BAT_INFO_LAST_FULL_CHARGE_CAPACITY = 0x06, /**< BIF last full charge capacity */
BAT_INFO_TECHNOLOGY = 0x07, /**< BIF battery technology */
BAT_INFO_DESIGN_VOLTAGE = 0x08, /**< BIF design voltage */
BAT_INFO_DESIGN_CAPACITY_OF_WARNING = 0x09, /**< BIF design capacity of warning */
BAT_INFO_DESIGN_CAPACITY_OF_LOW = 0x0A, /**< BIF design capacity of low */
BAT_INFO_CAPACITY_GRANULARITY_1 = 0x0B, /**< BIF battery capacity granularity 1 */
BAT_INFO_CAPACITY_GRANULARITY_2 = 0x0C, /**< BIF battery capacity granularity 2 */
BAT_DEVICE_STATUS = 0x0D, /**< STA device status */
BAT_POWER_SOURCE = 0x0E, /**< PSR power source */
BAT_INDEX_LAST
};
enum
{
SYSTEM_INFO_INDEX_LOW_MEMORY_LENGTH = 0,
SYSTEM_INFO_INDEX_USE_IOAPIC = 1,
SYSTEM_INFO_INDEX_HPET_STATUS = 2,
SYSTEM_INFO_INDEX_SMC_STATUS = 3,
SYSTEM_INFO_INDEX_FDC_STATUS = 4,
SYSTEM_INFO_INDEX_CPU0_STATUS = 5,
SYSTEM_INFO_INDEX_CPU1_STATUS = 6,
SYSTEM_INFO_INDEX_CPU2_STATUS = 7,
SYSTEM_INFO_INDEX_CPU3_STATUS = 8,
SYSTEM_INFO_INDEX_HIGH_MEMORY_LENGTH= 9,
SYSTEM_INFO_INDEX_RTC_STATUS = 10,
SYSTEM_INFO_INDEX_CPU_LOCKED = 11,
SYSTEM_INFO_INDEX_CPU_LOCK_CHECK = 12,
SYSTEM_INFO_INDEX_END = 15,
SYSTEM_INFO_INDEX_INVALID = 0x80,
SYSTEM_INFO_INDEX_VALID = 0x200
};
#define AC_OFFLINE 0
#define AC_ONLINE 1
#define BAT_TECH_PRIMARY 1
#define BAT_TECH_SECONDARY 2
#define STA_DEVICE_PRESENT_MASK RT_BIT(0) /**< present */
#define STA_DEVICE_ENABLED_MASK RT_BIT(1) /**< enabled and decodes its resources */
#define STA_DEVICE_SHOW_IN_UI_MASK RT_BIT(2) /**< should be shown in UI */
#define STA_DEVICE_FUNCTIONING_PROPERLY_MASK RT_BIT(3) /**< functioning properly */
#define STA_BATTERY_PRESENT_MASK RT_BIT(4) /**< the battery is present */
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The ACPI device state.
*/
typedef struct ACPIState
{
PCIDevice dev;
uint16_t pm1a_en;
uint16_t pm1a_sts;
uint16_t pm1a_ctl;
/** Number of logical CPUs in guest */
uint16_t cCpus;
int64_t pm_timer_initial;
PTMTIMERR3 tsR3;
PTMTIMERR0 tsR0;
PTMTIMERRC tsRC;
uint32_t gpe0_en;
uint32_t gpe0_sts;
unsigned int uBatteryIndex;
uint32_t au8BatteryInfo[13];
unsigned int uSystemInfoIndex;
uint64_t u64RamSize;
/** The number of bytes above 4GB. */
uint64_t cbRamHigh;
/** The number of bytes below 4GB. */
uint32_t cbRamLow;
/** Current ACPI S* state. We support S0 and S5 */
uint32_t uSleepState;
uint8_t au8RSDPPage[0x1000];
/** This is a workaround for incorrect index field handling by Intels ACPICA.
* The system info _INI method writes to offset 0x200. We either observe a
* write request to index 0x80 (in that case we don't change the index) or a
* write request to offset 0x200 (in that case we divide the index value by
* 4. Note that the _STA method is sometimes called prior to the _INI method
* (ACPI spec 6.3.7, _STA). See the special case for BAT_DEVICE_STATUS in
* acpiBatIndexWrite() for handling this. */
uint8_t u8IndexShift;
/** provide an I/O-APIC */
uint8_t u8UseIOApic;
/** provide a floppy controller */
bool fUseFdc;
/** If High Precision Event Timer device should be supported */
bool fUseHpet;
/** If System Management Controller device should be supported */
bool fUseSmc;
/** the guest handled the last power button event */
bool fPowerButtonHandled;
/** If ACPI CPU device should be shown */
bool fShowCpu;
/** If Real Time Clock ACPI object to be shown */
bool fShowRtc;
/** I/O port address of PM device. */
RTIOPORT uPmIoPortBase;
/** Flag whether the GC part of the device is enabled. */
bool fGCEnabled;
/** Flag whether the R0 part of the device is enabled. */
bool fR0Enabled;
/** Array of flags of attached CPUs */
VMCPUSET CpuSetAttached;
/** Which CPU to check for the locked status. */
uint32_t idCpuLockCheck;
/** Mask of locked CPUs (used by the guest) */
VMCPUSET CpuSetLocked;
/** Flag whether CPU hot plugging is enabled */
bool fCpuHotPlug;
/** Aligning IBase. */
bool afAlignment[4];
/** ACPI port base interface. */
PDMIBASE IBase;
/** ACPI port interface. */
PDMIACPIPORT IACPIPort;
/** Pointer to the device instance. */
PPDMDEVINSR3 pDevIns;
/** Pointer to the driver base interface */
R3PTRTYPE(PPDMIBASE) pDrvBase;
/** Pointer to the driver connector interface */
R3PTRTYPE(PPDMIACPICONNECTOR) pDrv;
/* Pointer to default PCI config read function */
R3PTRTYPE(PFNPCICONFIGREAD) pfnAcpiPciConfigRead;
/* Pointer to default PCI config write function */
R3PTRTYPE(PFNPCICONFIGWRITE) pfnAcpiPciConfigWrite;
} ACPIState;
#pragma pack(1)
/** Generic Address Structure (see ACPIspec 3.0, 5.2.3.1) */
struct ACPIGENADDR
{
uint8_t u8AddressSpaceId; /**< 0=sys, 1=IO, 2=PCICfg, 3=emb, 4=SMBus */
uint8_t u8RegisterBitWidth; /**< size in bits of the given register */
uint8_t u8RegisterBitOffset; /**< bit offset of register */
uint8_t u8AccessSize; /**< 1=byte, 2=word, 3=dword, 4=qword */
uint64_t u64Address; /**< 64-bit address of register */
};
AssertCompileSize(ACPIGENADDR, 12);
/** Root System Description Pointer */
struct ACPITBLRSDP
{
uint8_t au8Signature[8]; /**< 'RSD PTR ' */
uint8_t u8Checksum; /**< checksum for the first 20 bytes */
uint8_t au8OemId[6]; /**< OEM-supplied identifier */
uint8_t u8Revision; /**< revision number, currently 2 */
#define ACPI_REVISION 2 /**< ACPI 3.0 */
uint32_t u32RSDT; /**< phys addr of RSDT */
uint32_t u32Length; /**< bytes of this table */
uint64_t u64XSDT; /**< 64-bit phys addr of XSDT */
uint8_t u8ExtChecksum; /**< checksum of entire table */
uint8_t u8Reserved[3]; /**< reserved */
};
AssertCompileSize(ACPITBLRSDP, 36);
/** System Description Table Header */
struct ACPITBLHEADER
{
uint8_t au8Signature[4]; /**< table identifier */
uint32_t u32Length; /**< length of the table including header */
uint8_t u8Revision; /**< revision number */
uint8_t u8Checksum; /**< all fields inclusive this add to zero */
uint8_t au8OemId[6]; /**< OEM-supplied string */
uint8_t au8OemTabId[8]; /**< to identify the particular data table */
uint32_t u32OemRevision; /**< OEM-supplied revision number */
uint8_t au8CreatorId[4]; /**< ID for the ASL compiler */
uint32_t u32CreatorRev; /**< revision for the ASL compiler */
};
AssertCompileSize(ACPITBLHEADER, 36);
/** Root System Description Table */
struct ACPITBLRSDT
{
ACPITBLHEADER header;
uint32_t u32Entry[1]; /**< array of phys. addresses to other tables */
};
AssertCompileSize(ACPITBLRSDT, 40);
/** Extended System Description Table */
struct ACPITBLXSDT
{
ACPITBLHEADER header;
uint64_t u64Entry[1]; /**< array of phys. addresses to other tables */
};
AssertCompileSize(ACPITBLXSDT, 44);
/** Fixed ACPI Description Table */
struct ACPITBLFADT
{
ACPITBLHEADER header;
uint32_t u32FACS; /**< phys. address of FACS */
uint32_t u32DSDT; /**< phys. address of DSDT */
uint8_t u8IntModel; /**< was eleminated in ACPI 2.0 */
#define INT_MODEL_DUAL_PIC 1 /**< for ACPI 2+ */
#define INT_MODEL_MULTIPLE_APIC 2
uint8_t u8PreferredPMProfile; /**< preferred power management profile */
uint16_t u16SCIInt; /**< system vector the SCI is wired in 8259 mode */
#define SCI_INT 9
uint32_t u32SMICmd; /**< system port address of SMI command port */
#define SMI_CMD 0x0000442e
uint8_t u8AcpiEnable; /**< SMICmd val to disable ownship of ACPIregs */
#define ACPI_ENABLE 0xa1
uint8_t u8AcpiDisable; /**< SMICmd val to re-enable ownship of ACPIregs */
#define ACPI_DISABLE 0xa0
uint8_t u8S4BIOSReq; /**< SMICmd val to enter S4BIOS state */
uint8_t u8PStateCnt; /**< SMICmd val to assume processor performance
state control responsibility */
uint32_t u32PM1aEVTBLK; /**< port addr of PM1a event regs block */
uint32_t u32PM1bEVTBLK; /**< port addr of PM1b event regs block */
uint32_t u32PM1aCTLBLK; /**< port addr of PM1a control regs block */
uint32_t u32PM1bCTLBLK; /**< port addr of PM1b control regs block */
uint32_t u32PM2CTLBLK; /**< port addr of PM2 control regs block */
uint32_t u32PMTMRBLK; /**< port addr of PMTMR regs block */
uint32_t u32GPE0BLK; /**< port addr of gen-purp event 0 regs block */
uint32_t u32GPE1BLK; /**< port addr of gen-purp event 1 regs block */
uint8_t u8PM1EVTLEN; /**< bytes decoded by PM1a_EVT_BLK. >= 4 */
uint8_t u8PM1CTLLEN; /**< bytes decoded by PM1b_CNT_BLK. >= 2 */
uint8_t u8PM2CTLLEN; /**< bytes decoded by PM2_CNT_BLK. >= 1 or 0 */
uint8_t u8PMTMLEN; /**< bytes decoded by PM_TMR_BLK. ==4 */
uint8_t u8GPE0BLKLEN; /**< bytes decoded by GPE0_BLK. %2==0 */
#define GPE0_BLK_LEN 2
uint8_t u8GPE1BLKLEN; /**< bytes decoded by GPE1_BLK. %2==0 */
#define GPE1_BLK_LEN 0
uint8_t u8GPE1BASE; /**< offset of GPE1 based events */
#define GPE1_BASE 0
uint8_t u8CSTCNT; /**< SMICmd val to indicate OS supp for C states */
uint16_t u16PLVL2LAT; /**< us to enter/exit C2. >100 => unsupported */
#define P_LVL2_LAT 101 /**< C2 state not supported */
uint16_t u16PLVL3LAT; /**< us to enter/exit C3. >1000 => unsupported */
#define P_LVL3_LAT 1001 /**< C3 state not supported */
uint16_t u16FlushSize; /**< # of flush strides to read to flush dirty
lines from any processors memory caches */
#define FLUSH_SIZE 0 /**< Ignored if WBVIND set in FADT_FLAGS */
uint16_t u16FlushStride; /**< cache line width */
#define FLUSH_STRIDE 0 /**< Ignored if WBVIND set in FADT_FLAGS */
uint8_t u8DutyOffset;
uint8_t u8DutyWidth;
uint8_t u8DayAlarm; /**< RTC CMOS RAM index of day-of-month alarm */
uint8_t u8MonAlarm; /**< RTC CMOS RAM index of month-of-year alarm */
uint8_t u8Century; /**< RTC CMOS RAM index of century */
uint16_t u16IAPCBOOTARCH; /**< IA-PC boot architecture flags */
#define IAPC_BOOT_ARCH_LEGACY_DEV RT_BIT(0) /**< legacy devices present such as LPT
(COM too?) */
#define IAPC_BOOT_ARCH_8042 RT_BIT(1) /**< legacy keyboard device present */
#define IAPC_BOOT_ARCH_NO_VGA RT_BIT(2) /**< VGA not present */
uint8_t u8Must0_0; /**< must be 0 */
uint32_t u32Flags; /**< fixed feature flags */
#define FADT_FL_WBINVD RT_BIT(0) /**< emulation of WBINVD available */
#define FADT_FL_WBINVD_FLUSH RT_BIT(1)
#define FADT_FL_PROC_C1 RT_BIT(2) /**< 1=C1 supported on all processors */
#define FADT_FL_P_LVL2_UP RT_BIT(3) /**< 1=C2 works on SMP and UNI systems */
#define FADT_FL_PWR_BUTTON RT_BIT(4) /**< 1=power button handled as ctrl method dev */
#define FADT_FL_SLP_BUTTON RT_BIT(5) /**< 1=sleep button handled as ctrl method dev */
#define FADT_FL_FIX_RTC RT_BIT(6) /**< 0=RTC wake status in fixed register */
#define FADT_FL_RTC_S4 RT_BIT(7) /**< 1=RTC can wake system from S4 */
#define FADT_FL_TMR_VAL_EXT RT_BIT(8) /**< 1=TMR_VAL implemented as 32 bit */
#define FADT_FL_DCK_CAP RT_BIT(9) /**< 0=system cannot support docking */
#define FADT_FL_RESET_REG_SUP RT_BIT(10) /**< 1=system supports system resets */
#define FADT_FL_SEALED_CASE RT_BIT(11) /**< 1=case is sealed */
#define FADT_FL_HEADLESS RT_BIT(12) /**< 1=system cannot detect moni/keyb/mouse */
#define FADT_FL_CPU_SW_SLP RT_BIT(13)
#define FADT_FL_PCI_EXT_WAK RT_BIT(14) /**< 1=system supports PCIEXP_WAKE_STS */
#define FADT_FL_USE_PLATFORM_CLOCK RT_BIT(15) /**< 1=system has ACPI PM timer */
#define FADT_FL_S4_RTC_STS_VALID RT_BIT(16) /**< 1=RTC_STS flag is valid when waking from S4 */
#define FADT_FL_REMOVE_POWER_ON_CAPABLE RT_BIT(17) /**< 1=platform can remote power on */
#define FADT_FL_FORCE_APIC_CLUSTER_MODEL RT_BIT(18)
#define FADT_FL_FORCE_APIC_PHYS_DEST_MODE RT_BIT(19)
/** Start of the ACPI 2.0 extension. */
ACPIGENADDR ResetReg; /**< ext addr of reset register */
uint8_t u8ResetVal; /**< ResetReg value to reset the system */
#define ACPI_RESET_REG_VAL 0x10
uint8_t au8Must0_1[3]; /**< must be 0 */
uint64_t u64XFACS; /**< 64-bit phys address of FACS */
uint64_t u64XDSDT; /**< 64-bit phys address of DSDT */
ACPIGENADDR X_PM1aEVTBLK; /**< ext addr of PM1a event regs block */
ACPIGENADDR X_PM1bEVTBLK; /**< ext addr of PM1b event regs block */
ACPIGENADDR X_PM1aCTLBLK; /**< ext addr of PM1a control regs block */
ACPIGENADDR X_PM1bCTLBLK; /**< ext addr of PM1b control regs block */
ACPIGENADDR X_PM2CTLBLK; /**< ext addr of PM2 control regs block */
ACPIGENADDR X_PMTMRBLK; /**< ext addr of PMTMR control regs block */
ACPIGENADDR X_GPE0BLK; /**< ext addr of GPE1 regs block */
ACPIGENADDR X_GPE1BLK; /**< ext addr of GPE1 regs block */
};
AssertCompileSize(ACPITBLFADT, 244);
#define ACPITBLFADT_VERSION1_SIZE RT_OFFSETOF(ACPITBLFADT, ResetReg)
/** Firmware ACPI Control Structure */
struct ACPITBLFACS
{
uint8_t au8Signature[4]; /**< 'FACS' */
uint32_t u32Length; /**< bytes of entire FACS structure >= 64 */
uint32_t u32HWSignature; /**< systems HW signature at last boot */
uint32_t u32FWVector; /**< address of waking vector */
uint32_t u32GlobalLock; /**< global lock to sync HW/SW */
uint32_t u32Flags; /**< FACS flags */
uint64_t u64X_FWVector; /**< 64-bit waking vector */
uint8_t u8Version; /**< version of this table */
uint8_t au8Reserved[31]; /**< zero */
};
AssertCompileSize(ACPITBLFACS, 64);
/** Processor Local APIC Structure */
struct ACPITBLLAPIC
{
uint8_t u8Type; /**< 0 = LAPIC */
uint8_t u8Length; /**< 8 */
uint8_t u8ProcId; /**< processor ID */
uint8_t u8ApicId; /**< local APIC ID */
uint32_t u32Flags; /**< Flags */
#define LAPIC_ENABLED 0x1
};
AssertCompileSize(ACPITBLLAPIC, 8);
/** I/O APIC Structure */
struct ACPITBLIOAPIC
{
uint8_t u8Type; /**< 1 == I/O APIC */
uint8_t u8Length; /**< 12 */
uint8_t u8IOApicId; /**< I/O APIC ID */
uint8_t u8Reserved; /**< 0 */
uint32_t u32Address; /**< phys address to access I/O APIC */
uint32_t u32GSIB; /**< global system interrupt number to start */
};
AssertCompileSize(ACPITBLIOAPIC, 12);
/** HPET Descriptor Structure */
struct ACPITBLHPET
{
ACPITBLHEADER aHeader;
uint32_t u32Id; /**< hardware ID of event timer block
[31:16] PCI vendor ID of first timer block
[15] legacy replacement IRQ routing capable
[14] reserved
[13] COUNT_SIZE_CAP counter size
[12:8] number of comparators in first timer block
[7:0] hardware rev ID */
ACPIGENADDR HpetAddr; /**< lower 32-bit base address */
uint8_t u32Number; /**< sequence number starting at 0 */
uint16_t u32MinTick; /**< minimum clock ticks which can be set without
lost interrupts while the counter is programmed
to operate in periodic mode. Unit: clock tick. */
uint8_t u8Attributes; /**< page protextion and OEM attribute. */
};
AssertCompileSize(ACPITBLHPET, 56);
# ifdef IN_RING3 /** @todo r=bird: Move this down to where it's used. */
# define PCAT_COMPAT 0x1 /**< system has also a dual-8259 setup */
/**
* Multiple APIC Description Table.
*
* This structure looks somewhat convoluted due layout of MADT table in MP case.
* There extpected to be multiple LAPIC records for each CPU, thus we cannot
* use regular C structure and proxy to raw memory instead.
*/
class AcpiTableMADT
{
/**
* All actual data stored in dynamically allocated memory pointed by this field.
*/
uint8_t *m_pbData;
/**
* Number of CPU entries in this MADT.
*/
uint32_t m_cCpus;
public:
/**
* Address of ACPI header
*/
inline ACPITBLHEADER *header_addr(void) const
{
return (ACPITBLHEADER *)m_pbData;
}
/**
* Address of local APIC for each CPU. Note that different CPUs address different LAPICs,
* although address is the same for all of them.
*/
inline uint32_t *u32LAPIC_addr(void) const
{
return (uint32_t *)(header_addr() + 1);
}
/**
* Address of APIC flags
*/
inline uint32_t *u32Flags_addr(void) const
{
return (uint32_t *)(u32LAPIC_addr() + 1);
}
/**
* Address of per-CPU LAPIC descriptions
*/
inline ACPITBLLAPIC *LApics_addr(void) const
{
return (ACPITBLLAPIC *)(u32Flags_addr() + 1);
}
/**
* Address of IO APIC description
*/
inline ACPITBLIOAPIC *IOApic_addr(void) const
{
return (ACPITBLIOAPIC *)(LApics_addr() + m_cCpus);
}
/**
* Size of MADT.
* Note that this function assumes IOApic to be the last field in structure.
*/
inline uint32_t size(void) const
{
return (uint8_t *)(IOApic_addr() + 1) - (uint8_t *)header_addr();
}
/**
* Raw data of MADT.
*/
inline const uint8_t *data(void) const
{
return m_pbData;
}
/**
* Size of MADT for given ACPI config, useful to compute layout.
*/
static uint32_t sizeFor(ACPIState *s)
{
return AcpiTableMADT(s->cCpus).size();
}
/*
* Constructor, only works in Ring 3, doesn't look like a big deal.
*/
AcpiTableMADT(uint32_t cCpus)
{
m_cCpus = cCpus;
m_pbData = NULL; /* size() uses this and gcc will complain if not initilized. */
uint32_t cb = size();
m_pbData = (uint8_t *)RTMemAllocZ(cb);
}
~AcpiTableMADT()
{
RTMemFree(m_pbData);
}
};
# endif /* IN_RING3 */
#pragma pack()
#ifndef VBOX_DEVICE_STRUCT_TESTCASE /* exclude the rest of the file */
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
RT_C_DECLS_BEGIN
PDMBOTHCBDECL(int) acpiPMTmrRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
#ifdef IN_RING3
PDMBOTHCBDECL(int) acpiPm1aEnRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
PDMBOTHCBDECL(int) acpiPM1aEnWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiPm1aStsRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
PDMBOTHCBDECL(int) acpiPM1aStsWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiPm1aCtlRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
PDMBOTHCBDECL(int) acpiPM1aCtlWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiSmiWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiBatIndexWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiBatDataRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
PDMBOTHCBDECL(int) acpiSysInfoDataRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
PDMBOTHCBDECL(int) acpiSysInfoDataWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiGpe0EnRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
PDMBOTHCBDECL(int) acpiGpe0EnWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiGpe0StsRead( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb);
PDMBOTHCBDECL(int) acpiGpe0StsWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiResetWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
# ifdef DEBUG_ACPI
PDMBOTHCBDECL(int) acpiDhexWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
PDMBOTHCBDECL(int) acpiDchrWrite( PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb);
# endif
#endif /* IN_RING3 */
RT_C_DECLS_END
#ifdef IN_RING3
static RTIOPORT acpiPmPort(ACPIState* pAcpi, int32_t offset)
{
Assert(pAcpi->uPmIoPortBase != 0);
if (offset == -1)
return 0;
return RTIOPORT(pAcpi->uPmIoPortBase + offset);
}
/* Simple acpiChecksum: all the bytes must add up to 0. */
static uint8_t acpiChecksum(const uint8_t * const data, size_t len)
{
uint8_t sum = 0;
for (size_t i = 0; i < len; ++i)
sum += data[i];
return -sum;
}
static void acpiPrepareHeader(ACPITBLHEADER *header, const char au8Signature[4],
uint32_t u32Length, uint8_t u8Revision)
{
memcpy(header->au8Signature, au8Signature, 4);
header->u32Length = RT_H2LE_U32(u32Length);
header->u8Revision = u8Revision;
memcpy(header->au8OemId, "VBOX ", 6);
memcpy(header->au8OemTabId, "VBOX", 4);
memcpy(header->au8OemTabId+4, au8Signature, 4);
header->u32OemRevision = RT_H2LE_U32(1);
memcpy(header->au8CreatorId, "ASL ", 4);
header->u32CreatorRev = RT_H2LE_U32(0x61);
}
static void acpiWriteGenericAddr(ACPIGENADDR *g, uint8_t u8AddressSpaceId,
uint8_t u8RegisterBitWidth, uint8_t u8RegisterBitOffset,
uint8_t u8AccessSize, uint64_t u64Address)
{
g->u8AddressSpaceId = u8AddressSpaceId;
g->u8RegisterBitWidth = u8RegisterBitWidth;
g->u8RegisterBitOffset = u8RegisterBitOffset;
g->u8AccessSize = u8AccessSize;
g->u64Address = RT_H2LE_U64(u64Address);
}
static void acpiPhyscpy(ACPIState *s, RTGCPHYS32 dst, const void * const src, size_t size)
{
PDMDevHlpPhysWrite(s->pDevIns, dst, src, size);
}
/** Differentiated System Description Table (DSDT) */
static void acpiSetupDSDT(ACPIState *s, RTGCPHYS32 addr,
void* pPtr, size_t uDsdtLen)
{
acpiPhyscpy(s, addr, pPtr, uDsdtLen);
}
/** Firmware ACPI Control Structure (FACS) */
static void acpiSetupFACS(ACPIState *s, RTGCPHYS32 addr)
{
ACPITBLFACS facs;
memset(&facs, 0, sizeof(facs));
memcpy(facs.au8Signature, "FACS", 4);
facs.u32Length = RT_H2LE_U32(sizeof(ACPITBLFACS));
facs.u32HWSignature = RT_H2LE_U32(0);
facs.u32FWVector = RT_H2LE_U32(0);
facs.u32GlobalLock = RT_H2LE_U32(0);
facs.u32Flags = RT_H2LE_U32(0);
facs.u64X_FWVector = RT_H2LE_U64(0);
facs.u8Version = 1;
acpiPhyscpy(s, addr, (const uint8_t *)&facs, sizeof(facs));
}
/** Fixed ACPI Description Table (FADT aka FACP) */
static void acpiSetupFADT(ACPIState *s, RTGCPHYS32 GCPhysAcpi1, RTGCPHYS32 GCPhysAcpi2, RTGCPHYS32 GCPhysFacs, RTGCPHYS GCPhysDsdt)
{
ACPITBLFADT fadt;
/* First the ACPI version 2+ version of the structure. */
memset(&fadt, 0, sizeof(fadt));
acpiPrepareHeader(&fadt.header, "FACP", sizeof(fadt), 4);
fadt.u32FACS = RT_H2LE_U32(GCPhysFacs);
fadt.u32DSDT = RT_H2LE_U32(GCPhysDsdt);
fadt.u8IntModel = 0; /* dropped from the ACPI 2.0 spec. */
fadt.u8PreferredPMProfile = 0; /* unspecified */
fadt.u16SCIInt = RT_H2LE_U16(SCI_INT);
fadt.u32SMICmd = RT_H2LE_U32(SMI_CMD);
fadt.u8AcpiEnable = ACPI_ENABLE;
fadt.u8AcpiDisable = ACPI_DISABLE;
fadt.u8S4BIOSReq = 0;
fadt.u8PStateCnt = 0;
fadt.u32PM1aEVTBLK = RT_H2LE_U32(acpiPmPort(s, PM1a_EVT_OFFSET));
fadt.u32PM1bEVTBLK = RT_H2LE_U32(acpiPmPort(s, PM1b_EVT_OFFSET));
fadt.u32PM1aCTLBLK = RT_H2LE_U32(acpiPmPort(s, PM1a_CTL_OFFSET));
fadt.u32PM1bCTLBLK = RT_H2LE_U32(acpiPmPort(s, PM1b_CTL_OFFSET));
fadt.u32PM2CTLBLK = RT_H2LE_U32(acpiPmPort(s, PM2_CTL_OFFSET));
fadt.u32PMTMRBLK = RT_H2LE_U32(acpiPmPort(s, PM_TMR_OFFSET));
fadt.u32GPE0BLK = RT_H2LE_U32(acpiPmPort(s, GPE0_OFFSET));
fadt.u32GPE1BLK = RT_H2LE_U32(acpiPmPort(s, GPE1_OFFSET));
fadt.u8PM1EVTLEN = 4;
fadt.u8PM1CTLLEN = 2;
fadt.u8PM2CTLLEN = 0;
fadt.u8PMTMLEN = 4;
fadt.u8GPE0BLKLEN = GPE0_BLK_LEN;
fadt.u8GPE1BLKLEN = GPE1_BLK_LEN;
fadt.u8GPE1BASE = GPE1_BASE;
fadt.u8CSTCNT = 0;
fadt.u16PLVL2LAT = RT_H2LE_U16(P_LVL2_LAT);
fadt.u16PLVL3LAT = RT_H2LE_U16(P_LVL3_LAT);
fadt.u16FlushSize = RT_H2LE_U16(FLUSH_SIZE);
fadt.u16FlushStride = RT_H2LE_U16(FLUSH_STRIDE);
fadt.u8DutyOffset = 0;
fadt.u8DutyWidth = 0;
fadt.u8DayAlarm = 0;
fadt.u8MonAlarm = 0;
fadt.u8Century = 0;
fadt.u16IAPCBOOTARCH = RT_H2LE_U16(IAPC_BOOT_ARCH_LEGACY_DEV | IAPC_BOOT_ARCH_8042);
/** @note WBINVD is required for ACPI versions newer than 1.0 */
fadt.u32Flags = RT_H2LE_U32( FADT_FL_WBINVD
| FADT_FL_FIX_RTC
| FADT_FL_TMR_VAL_EXT);
/* We have to force physical APIC mode or Linux can't use more than 8 CPUs */
if (s->fCpuHotPlug)
fadt.u32Flags |= RT_H2LE_U32(FADT_FL_FORCE_APIC_PHYS_DEST_MODE);
acpiWriteGenericAddr(&fadt.ResetReg, 1, 8, 0, 1, ACPI_RESET_BLK);
fadt.u8ResetVal = ACPI_RESET_REG_VAL;
fadt.u64XFACS = RT_H2LE_U64((uint64_t)GCPhysFacs);
fadt.u64XDSDT = RT_H2LE_U64((uint64_t)GCPhysDsdt);
acpiWriteGenericAddr(&fadt.X_PM1aEVTBLK, 1, 32, 0, 2, acpiPmPort(s, PM1a_EVT_OFFSET));
acpiWriteGenericAddr(&fadt.X_PM1bEVTBLK, 0, 0, 0, 0, acpiPmPort(s, PM1b_EVT_OFFSET));
acpiWriteGenericAddr(&fadt.X_PM1aCTLBLK, 1, 16, 0, 2, acpiPmPort(s, PM1a_CTL_OFFSET));
acpiWriteGenericAddr(&fadt.X_PM1bCTLBLK, 0, 0, 0, 0, acpiPmPort(s, PM1b_CTL_OFFSET));
acpiWriteGenericAddr(&fadt.X_PM2CTLBLK, 0, 0, 0, 0, acpiPmPort(s, PM2_CTL_OFFSET));
acpiWriteGenericAddr(&fadt.X_PMTMRBLK, 1, 32, 0, 3, acpiPmPort(s, PM_TMR_OFFSET));
acpiWriteGenericAddr(&fadt.X_GPE0BLK, 1, 16, 0, 1, acpiPmPort(s, GPE0_OFFSET));
acpiWriteGenericAddr(&fadt.X_GPE1BLK, 0, 0, 0, 0, acpiPmPort(s, GPE1_OFFSET));
fadt.header.u8Checksum = acpiChecksum((uint8_t *)&fadt, sizeof(fadt));
acpiPhyscpy(s, GCPhysAcpi2, &fadt, sizeof(fadt));
/* Now the ACPI 1.0 version. */
fadt.header.u32Length = ACPITBLFADT_VERSION1_SIZE;
fadt.u8IntModel = INT_MODEL_DUAL_PIC;
fadt.header.u8Checksum = 0; /* Must be zeroed before recalculating checksum! */
fadt.header.u8Checksum = acpiChecksum((uint8_t *)&fadt, ACPITBLFADT_VERSION1_SIZE);
acpiPhyscpy(s, GCPhysAcpi1, &fadt, ACPITBLFADT_VERSION1_SIZE);
}
/**
* Root System Description Table.
* The RSDT and XSDT tables are basically identical. The only difference is 32 vs 64 bits
* addresses for description headers. RSDT is for ACPI 1.0. XSDT for ACPI 2.0 and up.
*/
static int acpiSetupRSDT(ACPIState *s, RTGCPHYS32 addr, unsigned int nb_entries, uint32_t *addrs)
{
ACPITBLRSDT *rsdt;
const size_t size = sizeof(ACPITBLHEADER) + nb_entries * sizeof(rsdt->u32Entry[0]);
rsdt = (ACPITBLRSDT*)RTMemAllocZ(size);
if (!rsdt)
return PDMDEV_SET_ERROR(s->pDevIns, VERR_NO_TMP_MEMORY, N_("Cannot allocate RSDT"));
acpiPrepareHeader(&rsdt->header, "RSDT", (uint32_t)size, 1);
for (unsigned int i = 0; i < nb_entries; ++i)
{
rsdt->u32Entry[i] = RT_H2LE_U32(addrs[i]);
Log(("Setup RSDT: [%d] = %x\n", i, rsdt->u32Entry[i]));
}
rsdt->header.u8Checksum = acpiChecksum((uint8_t*)rsdt, size);
acpiPhyscpy(s, addr, rsdt, size);
RTMemFree(rsdt);
return VINF_SUCCESS;
}
/** Extended System Description Table. */
static int acpiSetupXSDT(ACPIState *s, RTGCPHYS32 addr, unsigned int nb_entries, uint32_t *addrs)
{
ACPITBLXSDT *xsdt;
const size_t size = sizeof(ACPITBLHEADER) + nb_entries * sizeof(xsdt->u64Entry[0]);
xsdt = (ACPITBLXSDT*)RTMemAllocZ(size);
if (!xsdt)
return VERR_NO_TMP_MEMORY;
acpiPrepareHeader(&xsdt->header, "XSDT", (uint32_t)size, 1 /* according to ACPI 3.0 specs */);
for (unsigned int i = 0; i < nb_entries; ++i)
{
xsdt->u64Entry[i] = RT_H2LE_U64((uint64_t)addrs[i]);
Log(("Setup XSDT: [%d] = %RX64\n", i, xsdt->u64Entry[i]));
}
xsdt->header.u8Checksum = acpiChecksum((uint8_t*)xsdt, size);
acpiPhyscpy(s, addr, xsdt, size);
RTMemFree(xsdt);
return VINF_SUCCESS;
}
/** Root System Description Pointer (RSDP) */
static void acpiSetupRSDP(ACPITBLRSDP *rsdp, RTGCPHYS32 GCPhysRsdt, RTGCPHYS GCPhysXsdt)
{
memset(rsdp, 0, sizeof(*rsdp));
/* ACPI 1.0 part (RSDT */
memcpy(rsdp->au8Signature, "RSD PTR ", 8);
memcpy(rsdp->au8OemId, "VBOX ", 6);
rsdp->u8Revision = ACPI_REVISION;
rsdp->u32RSDT = RT_H2LE_U32(GCPhysRsdt);
rsdp->u8Checksum = acpiChecksum((uint8_t*)rsdp, RT_OFFSETOF(ACPITBLRSDP, u32Length));
/* ACPI 2.0 part (XSDT) */
rsdp->u32Length = RT_H2LE_U32(sizeof(ACPITBLRSDP));
rsdp->u64XSDT = RT_H2LE_U64(GCPhysXsdt);
rsdp->u8ExtChecksum = acpiChecksum((uint8_t*)rsdp, sizeof(ACPITBLRSDP));
}
/**
* Multiple APIC Description Table.
*
* @note APIC without IO-APIC hangs Windows Vista therefore we setup both
*
* @todo All hardcoded, should set this up based on the actual VM config!!!!!
*/
static void acpiSetupMADT(ACPIState *s, RTGCPHYS32 addr)
{
uint16_t cpus = s->cCpus;
AcpiTableMADT madt(cpus);
acpiPrepareHeader(madt.header_addr(), "APIC", madt.size(), 2);
*madt.u32LAPIC_addr() = RT_H2LE_U32(0xfee00000);
*madt.u32Flags_addr() = RT_H2LE_U32(PCAT_COMPAT);
ACPITBLLAPIC* lapic = madt.LApics_addr();
for (uint16_t i = 0; i < cpus; i++)
{
lapic->u8Type = 0;
lapic->u8Length = sizeof(ACPITBLLAPIC);
lapic->u8ProcId = i;
lapic->u8ApicId = i;
lapic->u32Flags = VMCPUSET_IS_PRESENT(&s->CpuSetAttached, i) ? RT_H2LE_U32(LAPIC_ENABLED) : 0;
lapic++;
}
ACPITBLIOAPIC* ioapic = madt.IOApic_addr();
ioapic->u8Type = 1;
ioapic->u8Length = sizeof(ACPITBLIOAPIC);
/** @todo is this the right id? */
ioapic->u8IOApicId = cpus;
ioapic->u8Reserved = 0;
ioapic->u32Address = RT_H2LE_U32(0xfec00000);
ioapic->u32GSIB = RT_H2LE_U32(0);
madt.header_addr()->u8Checksum = acpiChecksum(madt.data(), madt.size());
acpiPhyscpy(s, addr, madt.data(), madt.size());
}
/** High Performance Event Timer (HPET) descriptor */
static void acpiSetupHPET(ACPIState *s, RTGCPHYS32 addr)
{
ACPITBLHPET hpet;
memset(&hpet, 0, sizeof(hpet));
acpiPrepareHeader(&hpet.aHeader, "HPET", sizeof(hpet), 1);
/* Keep base address consistent with appropriate DSDT entry (vbox.dsl) */
acpiWriteGenericAddr(&hpet.HpetAddr,
0 /* Memory address space */,
64 /* Register bit width */,
0 /* Bit offset */,
0, /* Register access size, is it correct? */
0xfed00000 /* Address */);
hpet.u32Id = 0x8086a201; /* must match what HPET ID returns, is it correct ? */
hpet.u32Number = 0;
hpet.u32MinTick = 4096;
hpet.u8Attributes = 0;
hpet.aHeader.u8Checksum = acpiChecksum((uint8_t *)&hpet, sizeof(hpet));
acpiPhyscpy(s, addr, (const uint8_t *)&hpet, sizeof(hpet));
}
/* SCI IRQ */
DECLINLINE(void) acpiSetIrq(ACPIState *s, int level)
{
if (s->pm1a_ctl & SCI_EN)
PDMDevHlpPCISetIrq(s->pDevIns, -1, level);
}
DECLINLINE(uint32_t) pm1a_pure_en(uint32_t en)
{
return en & ~(RSR_EN | IGN_EN);
}
DECLINLINE(uint32_t) pm1a_pure_sts(uint32_t sts)
{
return sts & ~(RSR_STS | IGN_STS);
}
DECLINLINE(int) pm1a_level(ACPIState *s)
{
return (pm1a_pure_en(s->pm1a_en) & pm1a_pure_sts(s->pm1a_sts)) != 0;
}
DECLINLINE(int) gpe0_level(ACPIState *s)
{
return (s->gpe0_en & s->gpe0_sts) != 0;
}
static void update_pm1a(ACPIState *s, uint32_t sts, uint32_t en)
{
int old_level, new_level;
if (gpe0_level(s))
return;
old_level = pm1a_level(s);
new_level = (pm1a_pure_en(en) & pm1a_pure_sts(sts)) != 0;
s->pm1a_en = en;
s->pm1a_sts = sts;
if (new_level != old_level)
acpiSetIrq(s, new_level);
}
static void update_gpe0(ACPIState *s, uint32_t sts, uint32_t en)
{
int old_level, new_level;
if (pm1a_level(s))
return;
old_level = (s->gpe0_en & s->gpe0_sts) != 0;
new_level = (en & sts) != 0;
s->gpe0_en = en;
s->gpe0_sts = sts;
if (new_level != old_level)
acpiSetIrq(s, new_level);
}
static int acpiPowerDown(ACPIState *s)
{
int rc = PDMDevHlpVMPowerOff(s->pDevIns);
if (RT_FAILURE(rc))
AssertMsgFailed(("Could not power down the VM. rc = %Rrc\n", rc));
return rc;
}
/** Converts a ACPI port interface pointer to an ACPI state pointer. */
#define IACPIPORT_2_ACPISTATE(pInterface) ( (ACPIState*)((uintptr_t)pInterface - RT_OFFSETOF(ACPIState, IACPIPort)) )
/**
* Send an ACPI power off event.
*
* @returns VBox status code
* @param pInterface Pointer to the interface structure containing the called function pointer.
*/
static DECLCALLBACK(int) acpiPowerButtonPress(PPDMIACPIPORT pInterface)
{
ACPIState *s = IACPIPORT_2_ACPISTATE(pInterface);
s->fPowerButtonHandled = false;
update_pm1a(s, s->pm1a_sts | PWRBTN_STS, s->pm1a_en);
return VINF_SUCCESS;
}
/**
* Check if the ACPI power button event was handled.
*
* @returns VBox status code
* @param pInterface Pointer to the interface structure containing the called function pointer.
* @param pfHandled Return true if the power button event was handled by the guest.
*/
static DECLCALLBACK(int) acpiGetPowerButtonHandled(PPDMIACPIPORT pInterface, bool *pfHandled)
{
ACPIState *s = IACPIPORT_2_ACPISTATE(pInterface);
*pfHandled = s->fPowerButtonHandled;
return VINF_SUCCESS;
}
/**
* Check if the Guest entered into G0 (working) or G1 (sleeping).
*
* @returns VBox status code
* @param pInterface Pointer to the interface structure containing the called function pointer.
* @param pfEntered Return true if the guest entered the ACPI mode.
*/
static DECLCALLBACK(int) acpiGetGuestEnteredACPIMode(PPDMIACPIPORT pInterface, bool *pfEntered)
{
ACPIState *s = IACPIPORT_2_ACPISTATE(pInterface);
*pfEntered = (s->pm1a_ctl & SCI_EN) != 0;
return VINF_SUCCESS;
}
static DECLCALLBACK(int) acpiGetCpuStatus(PPDMIACPIPORT pInterface, unsigned uCpu, bool *pfLocked)
{
ACPIState *s = IACPIPORT_2_ACPISTATE(pInterface);
*pfLocked = VMCPUSET_IS_PRESENT(&s->CpuSetLocked, uCpu);
return VINF_SUCCESS;
}
/**
* Send an ACPI sleep button event.
*
* @returns VBox status code
* @param pInterface Pointer to the interface structure containing the called function pointer.
*/
static DECLCALLBACK(int) acpiSleepButtonPress(PPDMIACPIPORT pInterface)
{
ACPIState *s = IACPIPORT_2_ACPISTATE(pInterface);
update_pm1a(s, s->pm1a_sts | SLPBTN_STS, s->pm1a_en);
return VINF_SUCCESS;
}
/* PM1a_EVT_BLK enable */
static uint32_t acpiPm1aEnReadw(ACPIState *s, uint32_t addr)
{
uint16_t val = s->pm1a_en;
Log(("acpi: acpiPm1aEnReadw -> %#x\n", val));
return val;
}
static void acpiPM1aEnWritew(ACPIState *s, uint32_t addr, uint32_t val)
{
Log(("acpi: acpiPM1aEnWritew <- %#x (%#x)\n", val, val & ~(RSR_EN | IGN_EN)));
val &= ~(RSR_EN | IGN_EN);
update_pm1a(s, s->pm1a_sts, val);
}
/* PM1a_EVT_BLK status */
static uint32_t acpiPm1aStsReadw(ACPIState *s, uint32_t addr)
{
uint16_t val = s->pm1a_sts;
Log(("acpi: acpiPm1aStsReadw -> %#x\n", val));
return val;
}
static void acpiPM1aStsWritew(ACPIState *s, uint32_t addr, uint32_t val)
{
Log(("acpi: acpiPM1aStsWritew <- %#x (%#x)\n", val, val & ~(RSR_STS | IGN_STS)));
if (val & PWRBTN_STS)
s->fPowerButtonHandled = true; /* Remember that the guest handled the last power button event */
val = s->pm1a_sts & ~(val & ~(RSR_STS | IGN_STS));
update_pm1a(s, val, s->pm1a_en);
}
/* PM1a_CTL_BLK */
static uint32_t acpiPm1aCtlReadw(ACPIState *s, uint32_t addr)
{
uint16_t val = s->pm1a_ctl;
Log(("acpi: acpiPm1aCtlReadw -> %#x\n", val));
return val;
}
static int acpiPM1aCtlWritew(ACPIState *s, uint32_t addr, uint32_t val)
{
uint32_t uSleepState;
Log(("acpi: acpiPM1aCtlWritew <- %#x (%#x)\n", val, val & ~(RSR_CNT | IGN_CNT)));
s->pm1a_ctl = val & ~(RSR_CNT | IGN_CNT);
uSleepState = (s->pm1a_ctl >> SLP_TYPx_SHIFT) & SLP_TYPx_MASK;
if (uSleepState != s->uSleepState)
{
s->uSleepState = uSleepState;
switch (uSleepState)
{
case 0x00: /* S0 */
break;
case 0x05: /* S5 */
LogRel(("Entering S5 (power down)\n"));
return acpiPowerDown(s);
default:
AssertMsgFailed(("Unknown sleep state %#x\n", uSleepState));
break;
}
}
return VINF_SUCCESS;
}
/* GPE0_BLK */
static uint32_t acpiGpe0EnReadb(ACPIState *s, uint32_t addr)
{
uint8_t val = s->gpe0_en;
Log(("acpi: acpiGpe0EnReadl -> %#x\n", val));
return val;
}
static void acpiGpe0EnWriteb(ACPIState *s, uint32_t addr, uint32_t val)
{
Log(("acpi: acpiGpe0EnWritel <- %#x\n", val));
update_gpe0(s, s->gpe0_sts, val);
}
static uint32_t acpiGpe0StsReadb(ACPIState *s, uint32_t addr)
{
uint8_t val = s->gpe0_sts;
Log(("acpi: acpiGpe0StsReadl -> %#x\n", val));
return val;
}
static void acpiGpe0StsWriteb(ACPIState *s, uint32_t addr, uint32_t val)
{
val = s->gpe0_sts & ~val;
update_gpe0(s, val, s->gpe0_en);
Log(("acpi: acpiGpe0StsWritel <- %#x\n", val));
}
static int acpiResetWriteU8(ACPIState *s, uint32_t addr, uint32_t val)
{
int rc = VINF_SUCCESS;
Log(("ACPI: acpiResetWriteU8: %x %x\n", addr, val));
if (val == ACPI_RESET_REG_VAL)
{
# ifndef IN_RING3
rc = VINF_IOM_HC_IOPORT_WRITE;
# else /* IN_RING3 */
rc = PDMDevHlpVMReset(s->pDevIns);
# endif /* !IN_RING3 */
}
return rc;
}
/* SMI */
static void acpiSmiWriteU8(ACPIState *s, uint32_t addr, uint32_t val)
{
Log(("acpi: acpiSmiWriteU8 %#x\n", val));
if (val == ACPI_ENABLE)
s->pm1a_ctl |= SCI_EN;
else if (val == ACPI_DISABLE)
s->pm1a_ctl &= ~SCI_EN;
else
Log(("acpi: acpiSmiWriteU8 %#x <- unknown value\n", val));
}
static uint32_t find_rsdp_space(void)
{
return 0xe0000;
}
static int acpiPMTimerReset(ACPIState *s)
{
uint64_t interval, freq;
freq = TMTimerGetFreq(s->CTX_SUFF(ts));
interval = ASMMultU64ByU32DivByU32(0xffffffff, freq, PM_TMR_FREQ);
Log(("interval = %RU64\n", interval));
TMTimerSet(s->CTX_SUFF(ts), TMTimerGet(s->CTX_SUFF(ts)) + interval);
return VINF_SUCCESS;
}
static DECLCALLBACK(void) acpiTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
{
ACPIState *s = (ACPIState *)pvUser;
Log(("acpi: pm timer sts %#x (%d), en %#x (%d)\n",
s->pm1a_sts, (s->pm1a_sts & TMR_STS) != 0,
s->pm1a_en, (s->pm1a_en & TMR_EN) != 0));
update_pm1a(s, s->pm1a_sts | TMR_STS, s->pm1a_en);
acpiPMTimerReset(s);
}
/**
* _BST method.
*/
static int acpiFetchBatteryStatus(ACPIState *s)
{
uint32_t *p = s->au8BatteryInfo;
bool fPresent; /* battery present? */
PDMACPIBATCAPACITY hostRemainingCapacity; /* 0..100 */
PDMACPIBATSTATE hostBatteryState; /* bitfield */
uint32_t hostPresentRate; /* 0..1000 */
int rc;
if (!s->pDrv)
return VINF_SUCCESS;
rc = s->pDrv->pfnQueryBatteryStatus(s->pDrv, &fPresent, &hostRemainingCapacity,
&hostBatteryState, &hostPresentRate);
AssertRC(rc);
/* default values */
p[BAT_STATUS_STATE] = hostBatteryState;
p[BAT_STATUS_PRESENT_RATE] = hostPresentRate == ~0U ? 0xFFFFFFFF
: hostPresentRate * 50; /* mW */
p[BAT_STATUS_REMAINING_CAPACITY] = 50000; /* mWh */
p[BAT_STATUS_PRESENT_VOLTAGE] = 10000; /* mV */
/* did we get a valid battery state? */
if (hostRemainingCapacity != PDM_ACPI_BAT_CAPACITY_UNKNOWN)
p[BAT_STATUS_REMAINING_CAPACITY] = hostRemainingCapacity * 500; /* mWh */
if (hostBatteryState == PDM_ACPI_BAT_STATE_CHARGED)
p[BAT_STATUS_PRESENT_RATE] = 0; /* mV */
return VINF_SUCCESS;
}
/**
* _BIF method.
*/
static int acpiFetchBatteryInfo(ACPIState *s)
{
uint32_t *p = s->au8BatteryInfo;
p[BAT_INFO_UNITS] = 0; /* mWh */
p[BAT_INFO_DESIGN_CAPACITY] = 50000; /* mWh */
p[BAT_INFO_LAST_FULL_CHARGE_CAPACITY] = 50000; /* mWh */
p[BAT_INFO_TECHNOLOGY] = BAT_TECH_PRIMARY;
p[BAT_INFO_DESIGN_VOLTAGE] = 10000; /* mV */
p[BAT_INFO_DESIGN_CAPACITY_OF_WARNING] = 100; /* mWh */
p[BAT_INFO_DESIGN_CAPACITY_OF_LOW] = 50; /* mWh */
p[BAT_INFO_CAPACITY_GRANULARITY_1] = 1; /* mWh */
p[BAT_INFO_CAPACITY_GRANULARITY_2] = 1; /* mWh */
return VINF_SUCCESS;
}
/**
* _STA method.
*/
static uint32_t acpiGetBatteryDeviceStatus(ACPIState *s)
{
bool fPresent; /* battery present? */
PDMACPIBATCAPACITY hostRemainingCapacity; /* 0..100 */
PDMACPIBATSTATE hostBatteryState; /* bitfield */
uint32_t hostPresentRate; /* 0..1000 */
int rc;
if (!s->pDrv)
return 0;
rc = s->pDrv->pfnQueryBatteryStatus(s->pDrv, &fPresent, &hostRemainingCapacity,
&hostBatteryState, &hostPresentRate);
AssertRC(rc);
return fPresent
? STA_DEVICE_PRESENT_MASK /* present */
| STA_DEVICE_ENABLED_MASK /* enabled and decodes its resources */
| STA_DEVICE_SHOW_IN_UI_MASK /* should be shown in UI */
| STA_DEVICE_FUNCTIONING_PROPERLY_MASK /* functioning properly */
| STA_BATTERY_PRESENT_MASK /* battery is present */
: 0; /* device not present */
}
static uint32_t acpiGetPowerSource(ACPIState *s)
{
PDMACPIPOWERSOURCE ps;
/* query the current power source from the host driver */
if (!s->pDrv)
return AC_ONLINE;
int rc = s->pDrv->pfnQueryPowerSource(s->pDrv, &ps);
AssertRC(rc);
return ps == PDM_ACPI_POWER_SOURCE_BATTERY ? AC_OFFLINE : AC_ONLINE;
}
PDMBOTHCBDECL(int) acpiBatIndexWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
ACPIState *s = (ACPIState *)pvUser;
switch (cb)
{
case 4:
u32 >>= s->u8IndexShift;
/* see comment at the declaration of u8IndexShift */
if (s->u8IndexShift == 0 && u32 == (BAT_DEVICE_STATUS << 2))
{
s->u8IndexShift = 2;
u32 >>= 2;
}
Assert(u32 < BAT_INDEX_LAST);
s->uBatteryIndex = u32;
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiBatDataRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
ACPIState *s = (ACPIState *)pvUser;
switch (cb)
{
case 4:
switch (s->uBatteryIndex)
{
case BAT_STATUS_STATE:
acpiFetchBatteryStatus(s);
case BAT_STATUS_PRESENT_RATE:
case BAT_STATUS_REMAINING_CAPACITY:
case BAT_STATUS_PRESENT_VOLTAGE:
*pu32 = s->au8BatteryInfo[s->uBatteryIndex];
break;
case BAT_INFO_UNITS:
acpiFetchBatteryInfo(s);
case BAT_INFO_DESIGN_CAPACITY:
case BAT_INFO_LAST_FULL_CHARGE_CAPACITY:
case BAT_INFO_TECHNOLOGY:
case BAT_INFO_DESIGN_VOLTAGE:
case BAT_INFO_DESIGN_CAPACITY_OF_WARNING:
case BAT_INFO_DESIGN_CAPACITY_OF_LOW:
case BAT_INFO_CAPACITY_GRANULARITY_1:
case BAT_INFO_CAPACITY_GRANULARITY_2:
*pu32 = s->au8BatteryInfo[s->uBatteryIndex];
break;
case BAT_DEVICE_STATUS:
*pu32 = acpiGetBatteryDeviceStatus(s);
break;
case BAT_POWER_SOURCE:
*pu32 = acpiGetPowerSource(s);
break;
default:
AssertMsgFailed(("Invalid battery index %d\n", s->uBatteryIndex));
break;
}
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiSysInfoIndexWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
ACPIState *s = (ACPIState *)pvUser;
Log(("system_index = %d, %d\n", u32, u32 >> 2));
switch (cb)
{
case 4:
if (u32 == SYSTEM_INFO_INDEX_VALID || u32 == SYSTEM_INFO_INDEX_INVALID)
s->uSystemInfoIndex = u32;
else
{
/* see comment at the declaration of u8IndexShift */
if (s->u8IndexShift == 0)
{
if (((u32 >> 2) < SYSTEM_INFO_INDEX_END) && ((u32 & 0x3)) == 0)
{
s->u8IndexShift = 2;
}
}
u32 >>= s->u8IndexShift;
Assert(u32 < SYSTEM_INFO_INDEX_END);
s->uSystemInfoIndex = u32;
}
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiSysInfoDataRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
ACPIState *s = (ACPIState *)pvUser;
switch (cb)
{
case 4:
switch (s->uSystemInfoIndex)
{
case SYSTEM_INFO_INDEX_LOW_MEMORY_LENGTH:
*pu32 = s->cbRamLow;
break;
case SYSTEM_INFO_INDEX_HIGH_MEMORY_LENGTH:
*pu32 = s->cbRamHigh >> 16; /* 64KB units */
Assert(((uint64_t)*pu32 << 16) == s->cbRamHigh);
break;
case SYSTEM_INFO_INDEX_USE_IOAPIC:
*pu32 = s->u8UseIOApic;
break;
case SYSTEM_INFO_INDEX_HPET_STATUS:
*pu32 = s->fUseHpet ? ( STA_DEVICE_PRESENT_MASK
| STA_DEVICE_ENABLED_MASK
| STA_DEVICE_SHOW_IN_UI_MASK
| STA_DEVICE_FUNCTIONING_PROPERLY_MASK)
: 0;
break;
case SYSTEM_INFO_INDEX_SMC_STATUS:
*pu32 = s->fUseSmc ? ( STA_DEVICE_PRESENT_MASK
| STA_DEVICE_ENABLED_MASK
/* no need to show this device in the UI */
| STA_DEVICE_FUNCTIONING_PROPERLY_MASK)
: 0;
break;
case SYSTEM_INFO_INDEX_FDC_STATUS:
*pu32 = s->fUseFdc ? ( STA_DEVICE_PRESENT_MASK
| STA_DEVICE_ENABLED_MASK
| STA_DEVICE_SHOW_IN_UI_MASK
| STA_DEVICE_FUNCTIONING_PROPERLY_MASK)
: 0;
break;
case SYSTEM_INFO_INDEX_CPU0_STATUS:
case SYSTEM_INFO_INDEX_CPU1_STATUS:
case SYSTEM_INFO_INDEX_CPU2_STATUS:
case SYSTEM_INFO_INDEX_CPU3_STATUS:
*pu32 = s->fShowCpu
&& s->uSystemInfoIndex - SYSTEM_INFO_INDEX_CPU0_STATUS < s->cCpus
&& VMCPUSET_IS_PRESENT(&s->CpuSetAttached, s->uSystemInfoIndex - SYSTEM_INFO_INDEX_CPU0_STATUS)
?
STA_DEVICE_PRESENT_MASK
| STA_DEVICE_ENABLED_MASK
| STA_DEVICE_SHOW_IN_UI_MASK
| STA_DEVICE_FUNCTIONING_PROPERLY_MASK
: 0;
case SYSTEM_INFO_INDEX_RTC_STATUS:
*pu32 = s->fShowRtc ? ( STA_DEVICE_PRESENT_MASK
| STA_DEVICE_ENABLED_MASK
| STA_DEVICE_SHOW_IN_UI_MASK
| STA_DEVICE_FUNCTIONING_PROPERLY_MASK)
: 0;
break;
case SYSTEM_INFO_INDEX_CPU_LOCKED:
{
if (s->idCpuLockCheck < VMM_MAX_CPU_COUNT)
{
*pu32 = VMCPUSET_IS_PRESENT(&s->CpuSetLocked, s->idCpuLockCheck);
s->idCpuLockCheck = UINT32_C(0xffffffff); /* Make the entry invalid */
}
else
{
AssertMsgFailed(("ACPI: CPU lock check protocol violation\n"));
/* Always return locked status just to be safe */
*pu32 = 1;
}
break;
}
/* Solaris 9 tries to read from this index */
case SYSTEM_INFO_INDEX_INVALID:
*pu32 = 0;
break;
default:
AssertMsgFailed(("Invalid system info index %d\n", s->uSystemInfoIndex));
break;
}
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
Log(("index %d val %d\n", s->uSystemInfoIndex, *pu32));
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiSysInfoDataWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
ACPIState *s = (ACPIState *)pvUser;
Log(("addr=%#x cb=%d u32=%#x si=%#x\n", Port, cb, u32, s->uSystemInfoIndex));
if (cb == 4)
{
switch (s->uSystemInfoIndex)
{
case SYSTEM_INFO_INDEX_INVALID:
AssertMsg(u32 == 0xbadc0de, ("u32=%u\n", u32));
s->u8IndexShift = 0;
break;
case SYSTEM_INFO_INDEX_VALID:
AssertMsg(u32 == 0xbadc0de, ("u32=%u\n", u32));
s->u8IndexShift = 2;
break;
case SYSTEM_INFO_INDEX_CPU_LOCK_CHECK:
if (u32 < s->cCpus)
s->idCpuLockCheck = u32;
else
LogRel(("ACPI: CPU %u does not exist\n", u32));
break;
case SYSTEM_INFO_INDEX_CPU_LOCKED:
if (u32 < s->cCpus)
VMCPUSET_DEL(&s->CpuSetLocked, u32); /* Unlock the CPU */
else
LogRel(("ACPI: CPU %u does not exist\n", u32));
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x system_index=%#x\n",
Port, cb, u32, s->uSystemInfoIndex));
break;
}
}
else
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
return VINF_SUCCESS;
}
/** @todo Don't call functions, but do the job in the read/write handlers
* here! */
/* IO Helpers */
PDMBOTHCBDECL(int) acpiPm1aEnRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
switch (cb)
{
case 2:
*pu32 = acpiPm1aEnReadw((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiPm1aStsRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
switch (cb)
{
case 2:
*pu32 = acpiPm1aStsReadw((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiPm1aCtlRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
switch (cb)
{
case 2:
*pu32 = acpiPm1aCtlReadw((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiPM1aEnWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 2:
acpiPM1aEnWritew((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiPM1aStsWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 2:
acpiPM1aStsWritew((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiPM1aCtlWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 2:
return acpiPM1aCtlWritew((ACPIState*)pvUser, Port, u32);
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
#endif /* IN_RING3 */
/**
* PMTMR readable from host/guest.
*/
PDMBOTHCBDECL(int) acpiPMTmrRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
if (cb == 4)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
int64_t now = TMTimerGet(s->CTX_SUFF(ts));
int64_t elapsed = now - s->pm_timer_initial;
*pu32 = ASMMultU64ByU32DivByU32(elapsed, PM_TMR_FREQ, TMTimerGetFreq(s->CTX_SUFF(ts)));
Log(("acpi: acpiPMTmrRead -> %#x\n", *pu32));
return VINF_SUCCESS;
}
return VERR_IOM_IOPORT_UNUSED;
}
#ifdef IN_RING3
PDMBOTHCBDECL(int) acpiGpe0StsRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
switch (cb)
{
case 1:
*pu32 = acpiGpe0StsReadb((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiGpe0EnRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb)
{
switch (cb)
{
case 1:
*pu32 = acpiGpe0EnReadb((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiGpe0StsWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 1:
acpiGpe0StsWriteb((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiGpe0EnWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 1:
acpiGpe0EnWriteb((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiSmiWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 1:
acpiSmiWriteU8((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiResetWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 1:
return acpiResetWriteU8((ACPIState*)pvUser, Port, u32);
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
#ifdef DEBUG_ACPI
PDMBOTHCBDECL(int) acpiDhexWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 1:
Log(("%#x\n", u32 & 0xff));
break;
case 2:
Log(("%#6x\n", u32 & 0xffff));
case 4:
Log(("%#10x\n", u32));
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
PDMBOTHCBDECL(int) acpiDchrWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb)
{
switch (cb)
{
case 1:
Log(("%c", u32 & 0xff));
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
#endif /* DEBUG_ACPI */
static int acpiRegisterPmHandlers(ACPIState* pThis)
{
int rc = VINF_SUCCESS;
#define R(offset, cnt, writer, reader, description) \
do { \
rc = PDMDevHlpIOPortRegister(pThis->pDevIns, acpiPmPort(pThis, offset), cnt, pThis, writer, reader, \
NULL, NULL, description); \
if (RT_FAILURE(rc)) \
return rc; \
} while (0)
#define L (GPE0_BLK_LEN / 2)
R(PM1a_EVT_OFFSET+2, 1, acpiPM1aEnWrite, acpiPm1aEnRead, "ACPI PM1a Enable");
R(PM1a_EVT_OFFSET, 1, acpiPM1aStsWrite, acpiPm1aStsRead, "ACPI PM1a Status");
R(PM1a_CTL_OFFSET, 1, acpiPM1aCtlWrite, acpiPm1aCtlRead, "ACPI PM1a Control");
R(PM_TMR_OFFSET, 1, NULL, acpiPMTmrRead, "ACPI PM Timer");
R(GPE0_OFFSET + L, L, acpiGpe0EnWrite, acpiGpe0EnRead, "ACPI GPE0 Enable");
R(GPE0_OFFSET, L, acpiGpe0StsWrite, acpiGpe0StsRead, "ACPI GPE0 Status");
#undef L
#undef R
/* register GC stuff */
if (pThis->fGCEnabled)
{
rc = PDMDevHlpIOPortRegisterGC(pThis->pDevIns, acpiPmPort(pThis, PM_TMR_OFFSET),
1, 0, NULL, "acpiPMTmrRead",
NULL, NULL, "ACPI PM Timer");
AssertRCReturn(rc, rc);
}
/* register R0 stuff */
if (pThis->fR0Enabled)
{
rc = PDMDevHlpIOPortRegisterR0(pThis->pDevIns, acpiPmPort(pThis, PM_TMR_OFFSET),
1, 0, NULL, "acpiPMTmrRead",
NULL, NULL, "ACPI PM Timer");
AssertRCReturn(rc, rc);
}
return rc;
}
static int acpiUnregisterPmHandlers(ACPIState *pThis)
{
#define U(offset, cnt) \
do { \
int rc = PDMDevHlpIOPortDeregister(pThis->pDevIns, acpiPmPort(pThis, offset), cnt); \
AssertRCReturn(rc, rc); \
} while (0)
#define L (GPE0_BLK_LEN / 2)
U(PM1a_EVT_OFFSET+2, 1);
U(PM1a_EVT_OFFSET, 1);
U(PM1a_CTL_OFFSET, 1);
U(PM_TMR_OFFSET, 1);
U(GPE0_OFFSET + L, L);
U(GPE0_OFFSET, L);
#undef L
#undef U
return VINF_SUCCESS;
}
/**
* Saved state structure description, version 4.
*/
static const SSMFIELD g_AcpiSavedStateFields4[] =
{
SSMFIELD_ENTRY(ACPIState, pm1a_en),
SSMFIELD_ENTRY(ACPIState, pm1a_sts),
SSMFIELD_ENTRY(ACPIState, pm1a_ctl),
SSMFIELD_ENTRY(ACPIState, pm_timer_initial),
SSMFIELD_ENTRY(ACPIState, gpe0_en),
SSMFIELD_ENTRY(ACPIState, gpe0_sts),
SSMFIELD_ENTRY(ACPIState, uBatteryIndex),
SSMFIELD_ENTRY(ACPIState, uSystemInfoIndex),
SSMFIELD_ENTRY(ACPIState, u64RamSize),
SSMFIELD_ENTRY(ACPIState, u8IndexShift),
SSMFIELD_ENTRY(ACPIState, u8UseIOApic),
SSMFIELD_ENTRY(ACPIState, uSleepState),
SSMFIELD_ENTRY_TERM()
};
/**
* Saved state structure description, version 5.
*/
static const SSMFIELD g_AcpiSavedStateFields5[] =
{
SSMFIELD_ENTRY(ACPIState, pm1a_en),
SSMFIELD_ENTRY(ACPIState, pm1a_sts),
SSMFIELD_ENTRY(ACPIState, pm1a_ctl),
SSMFIELD_ENTRY(ACPIState, pm_timer_initial),
SSMFIELD_ENTRY(ACPIState, gpe0_en),
SSMFIELD_ENTRY(ACPIState, gpe0_sts),
SSMFIELD_ENTRY(ACPIState, uBatteryIndex),
SSMFIELD_ENTRY(ACPIState, uSystemInfoIndex),
SSMFIELD_ENTRY(ACPIState, uSleepState),
SSMFIELD_ENTRY(ACPIState, u8IndexShift),
SSMFIELD_ENTRY(ACPIState, uPmIoPortBase),
SSMFIELD_ENTRY_TERM()
};
static DECLCALLBACK(int) acpi_save_state(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
return SSMR3PutStruct(pSSMHandle, s, &g_AcpiSavedStateFields5[0]);
}
static DECLCALLBACK(int) acpi_load_state(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle,
uint32_t uVersion, uint32_t uPass)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
/*
* Unregister PM handlers, will register with actual base
* after state successfully loaded.
*/
int rc = acpiUnregisterPmHandlers(s);
if (RT_FAILURE(rc))
return rc;
switch (uVersion)
{
case 4:
rc = SSMR3GetStruct(pSSMHandle, s, &g_AcpiSavedStateFields4[0]);
/** @todo Provide saner defaults for fields not found in saved state. */
break;
case 5:
rc = SSMR3GetStruct(pSSMHandle, s, &g_AcpiSavedStateFields5[0]);
break;
default:
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
if (RT_SUCCESS(rc))
{
rc = acpiRegisterPmHandlers(s);
if (RT_FAILURE(rc))
return rc;
rc = acpiFetchBatteryStatus(s);
if (RT_FAILURE(rc))
return rc;
rc = acpiFetchBatteryInfo(s);
if (RT_FAILURE(rc))
return rc;
rc = acpiPMTimerReset(s);
if (RT_FAILURE(rc))
return rc;
}
return rc;
}
/**
* @interface_method_impl{PDMIBASE,pfnQueryInterface}
*/
static DECLCALLBACK(void *) acpiQueryInterface(PPDMIBASE pInterface, const char *pszIID)
{
ACPIState *pThis = RT_FROM_MEMBER(pInterface, ACPIState, IBase);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIACPIPORT, &pThis->IACPIPort);
return NULL;
}
/**
* Create the ACPI tables.
*/
static int acpiPlantTables(ACPIState *s)
{
int rc;
RTGCPHYS32 GCPhysCur, GCPhysRsdt, GCPhysXsdt, GCPhysFadtAcpi1, GCPhysFadtAcpi2, GCPhysFacs, GCPhysDsdt;
RTGCPHYS32 GCPhysHpet = 0, GCPhysApic = 0;
uint32_t addend = 0;
RTGCPHYS32 aGCPhysRsdt[4];
RTGCPHYS32 aGCPhysXsdt[4];
uint32_t cAddr, iMadt = 0, iHpet = 0;
size_t cbRsdt = sizeof(ACPITBLHEADER);
size_t cbXsdt = sizeof(ACPITBLHEADER);
cAddr = 1; /* FADT */
if (s->u8UseIOApic)
iMadt = cAddr++; /* MADT */
if (s->fUseHpet)
iHpet = cAddr++; /* HPET */
cbRsdt += cAddr*sizeof(uint32_t); /* each entry: 32 bits phys. address. */
cbXsdt += cAddr*sizeof(uint64_t); /* each entry: 64 bits phys. address. */
rc = CFGMR3QueryU64(s->pDevIns->pCfgHandle, "RamSize", &s->u64RamSize);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(s->pDevIns, rc,
N_("Configuration error: Querying \"RamSize\" as integer failed"));
uint32_t cbRamHole;
rc = CFGMR3QueryU32Def(s->pDevIns->pCfgHandle, "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(s->pDevIns, rc,
N_("Configuration error: Querying \"RamHoleSize\" as integer failed"));
/*
* Calculate the sizes for the high and low regions.
*/
const uint64_t offRamHole = _4G - cbRamHole;
s->cbRamHigh = offRamHole < s->u64RamSize ? s->u64RamSize - offRamHole : 0;
uint64_t cbRamLow = offRamHole < s->u64RamSize ? offRamHole : s->u64RamSize;
if (cbRamLow > UINT32_C(0xffe00000)) /* See MEM3. */
{
/* Note: This is also enforced by DevPcBios.cpp. */
LogRel(("DevACPI: Clipping cbRamLow=%#RX64 down to 0xffe00000.\n", cbRamLow));
cbRamLow = UINT32_C(0xffe00000);
}
s->cbRamLow = (uint32_t)cbRamLow;
GCPhysCur = 0;
GCPhysRsdt = GCPhysCur;
GCPhysCur = RT_ALIGN_32(GCPhysCur + cbRsdt, 16);
GCPhysXsdt = GCPhysCur;
GCPhysCur = RT_ALIGN_32(GCPhysCur + cbXsdt, 16);
GCPhysFadtAcpi1 = GCPhysCur;
GCPhysCur = RT_ALIGN_32(GCPhysCur + ACPITBLFADT_VERSION1_SIZE, 16);
GCPhysFadtAcpi2 = GCPhysCur;
GCPhysCur = RT_ALIGN_32(GCPhysCur + sizeof(ACPITBLFADT), 64);
GCPhysFacs = GCPhysCur;
GCPhysCur = RT_ALIGN_32(GCPhysCur + sizeof(ACPITBLFACS), 16);
if (s->u8UseIOApic)
{
GCPhysApic = GCPhysCur;
GCPhysCur = RT_ALIGN_32(GCPhysCur + AcpiTableMADT::sizeFor(s), 16);
}
if (s->fUseHpet)
{
GCPhysHpet = GCPhysCur;
GCPhysCur = RT_ALIGN_32(GCPhysCur + sizeof(ACPITBLHPET), 16);
}
GCPhysDsdt = GCPhysCur;
void* pDsdtCode = NULL;
size_t cbDsdtSize = 0;
rc = acpiPrepareDsdt(s->pDevIns, &pDsdtCode, &cbDsdtSize);
if (RT_FAILURE(rc))
return rc;
GCPhysCur = RT_ALIGN_32(GCPhysCur + cbDsdtSize, 16);
if (GCPhysCur > 0x10000)
return PDMDEV_SET_ERROR(s->pDevIns, VERR_TOO_MUCH_DATA,
N_("Error: ACPI tables bigger than 64KB"));
Log(("RSDP 0x%08X\n", find_rsdp_space()));
addend = s->cbRamLow - 0x10000;
Log(("RSDT 0x%08X XSDT 0x%08X\n", GCPhysRsdt + addend, GCPhysXsdt + addend));
Log(("FACS 0x%08X FADT (1.0) 0x%08X, FADT (2+) 0x%08X\n", GCPhysFacs + addend, GCPhysFadtAcpi1 + addend, GCPhysFadtAcpi2 + addend));
Log(("DSDT 0x%08X", GCPhysDsdt + addend));
if (s->u8UseIOApic)
Log((" MADT 0x%08X", GCPhysApic + addend));
if (s->fUseHpet)
Log((" HPET 0x%08X", GCPhysHpet + addend));
Log(("\n"));
acpiSetupRSDP((ACPITBLRSDP*)s->au8RSDPPage, GCPhysRsdt + addend, GCPhysXsdt + addend);
acpiSetupDSDT(s, GCPhysDsdt + addend, pDsdtCode, cbDsdtSize);
acpiCleanupDsdt(s->pDevIns, pDsdtCode);
acpiSetupFACS(s, GCPhysFacs + addend);
acpiSetupFADT(s, GCPhysFadtAcpi1 + addend, GCPhysFadtAcpi2 + addend, GCPhysFacs + addend, GCPhysDsdt + addend);
aGCPhysRsdt[0] = GCPhysFadtAcpi1 + addend;
aGCPhysXsdt[0] = GCPhysFadtAcpi2 + addend;
if (s->u8UseIOApic)
{
acpiSetupMADT(s, GCPhysApic + addend);
aGCPhysRsdt[iMadt] = GCPhysApic + addend;
aGCPhysXsdt[iMadt] = GCPhysApic + addend;
}
if (s->fUseHpet)
{
acpiSetupHPET(s, GCPhysHpet + addend);
aGCPhysRsdt[iHpet] = GCPhysHpet + addend;
aGCPhysXsdt[iHpet] = GCPhysHpet + addend;
}
rc = acpiSetupRSDT(s, GCPhysRsdt + addend, cAddr, aGCPhysRsdt);
if (RT_FAILURE(rc))
return rc;
return acpiSetupXSDT(s, GCPhysXsdt + addend, cAddr, aGCPhysXsdt);
}
static int acpiUpdatePmHandlers(ACPIState *pThis, RTIOPORT uNewBase)
{
Log(("acpi: rebasing PM 0x%x -> 0x%x\n", pThis->uPmIoPortBase, uNewBase));
if (uNewBase != pThis->uPmIoPortBase)
{
int rc;
rc = acpiUnregisterPmHandlers(pThis);
if (RT_FAILURE(rc))
return rc;
pThis->uPmIoPortBase = uNewBase;
rc = acpiRegisterPmHandlers(pThis);
if (RT_FAILURE(rc))
return rc;
/* We have to update FADT table acccording to the new base */
rc = acpiPlantTables(pThis);
AssertRC(rc);
if (RT_FAILURE(rc))
return rc;
}
return VINF_SUCCESS;
}
static uint32_t acpiPciConfigRead(PPCIDEVICE pPciDev, uint32_t Address, unsigned cb)
{
PPDMDEVINS pDevIns = pPciDev->pDevIns;
ACPIState* pThis = PDMINS_2_DATA(pDevIns, ACPIState *);
Log2(("acpi: PCI config read: 0x%x (%d)\n", Address, cb));
return pThis->pfnAcpiPciConfigRead(pPciDev, Address, cb);
}
static void acpiPciConfigWrite(PPCIDEVICE pPciDev, uint32_t Address, uint32_t u32Value, unsigned cb)
{
PPDMDEVINS pDevIns = pPciDev->pDevIns;
ACPIState *pThis = PDMINS_2_DATA(pDevIns, ACPIState *);
Log2(("acpi: PCI config write: 0x%x -> 0x%x (%d)\n", u32Value, Address, cb));
pThis->pfnAcpiPciConfigWrite(pPciDev, Address, u32Value, cb);
/* PMREGMISC written */
if (Address == 0x80)
{
/* Check Power Management IO Space Enable (PMIOSE) bit */
if (pPciDev->config[0x80] & 0x1)
{
int rc;
RTIOPORT uNewBase =
RTIOPORT(RT_LE2H_U32(*(uint32_t*)&pPciDev->config[0x40]));
uNewBase &= 0xffc0;
rc = acpiUpdatePmHandlers(pThis, uNewBase);
AssertRC(rc);
}
}
}
/**
* Attach a new CPU.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param iLUN The logical unit which is being attached.
* @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
*
* @remarks This code path is not used during construction.
*/
static DECLCALLBACK(int) acpiAttach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
LogFlow(("acpiAttach: pDevIns=%p iLUN=%u fFlags=%#x\n", pDevIns, iLUN, fFlags));
AssertMsgReturn(!(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG),
("Hot-plug flag is not set\n"),
VERR_NOT_SUPPORTED);
AssertReturn(iLUN < VMM_MAX_CPU_COUNT, VERR_PDM_NO_SUCH_LUN);
/* Check if it was already attached */
if (VMCPUSET_IS_PRESENT(&s->CpuSetAttached, iLUN))
return VINF_SUCCESS;
PPDMIBASE IBaseTmp;
int rc = PDMDevHlpDriverAttach(pDevIns, iLUN, &s->IBase, &IBaseTmp, "ACPI CPU");
if (RT_SUCCESS(rc))
{
/* Enable the CPU */
VMCPUSET_ADD(&s->CpuSetAttached, iLUN);
/*
* Lock the CPU because we don't know if the guest will use it or not.
* Prevents ejection while the CPU is still used
*/
VMCPUSET_ADD(&s->CpuSetLocked, iLUN);
/* Notify the guest */
update_gpe0(s, s->gpe0_sts | 0x2, s->gpe0_en);
}
return rc;
}
/**
* Detach notification.
*
* @param pDevIns The device instance.
* @param iLUN The logical unit which is being detached.
* @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
*/
static DECLCALLBACK(void) acpiDetach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
LogFlow(("acpiDetach: pDevIns=%p iLUN=%u fFlags=%#x\n", pDevIns, iLUN, fFlags));
AssertMsgReturnVoid(!(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG),
("Hot-plug flag is not set\n"));
/* Check if it was already detached */
if (VMCPUSET_IS_PRESENT(&s->CpuSetAttached, iLUN))
{
AssertMsgReturnVoid(!(VMCPUSET_IS_PRESENT(&s->CpuSetLocked, iLUN)), ("CPU is still locked by the guest\n"));
/* Disable the CPU */
VMCPUSET_DEL(&s->CpuSetAttached, iLUN);
/* Notify the guest */
update_gpe0(s, s->gpe0_sts | 0x2, s->gpe0_en);
}
}
static DECLCALLBACK(void) acpiReset(PPDMDEVINS pDevIns)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
s->pm1a_en = 0;
s->pm1a_sts = 0;
s->pm1a_ctl = 0;
s->pm_timer_initial = TMTimerGet(s->CTX_SUFF(ts));
acpiPMTimerReset(s);
s->uBatteryIndex = 0;
s->uSystemInfoIndex = 0;
s->gpe0_en = 0;
s->gpe0_sts = 0;
s->uSleepState = 0;
/** @todo Should we really reset PM base? */
acpiUpdatePmHandlers(s, PM_PORT_BASE);
acpiPlantTables(s);
}
/**
* Relocates the GC pointer members.
*/
static DECLCALLBACK(void) acpiRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
s->tsRC = TMTimerRCPtr(s->CTX_SUFF(ts));
}
/**
* Construct a device instance for a VM.
*
* @returns VBox status.
* @param pDevIns The device instance data.
* If the registration structure is needed, pDevIns->pDevReg points to it.
* @param iInstance Instance number. Use this to figure out which registers and such to use.
* The device number is also found in pDevIns->iInstance, but since it's
* likely to be freqently used PDM passes it as parameter.
* @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration
* of the device instance. It's also found in pDevIns->pCfgHandle, but like
* iInstance it's expected to be used a bit in this function.
*/
static DECLCALLBACK(int) acpiConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle)
{
ACPIState *s = PDMINS_2_DATA(pDevIns, ACPIState *);
PCIDevice *dev = &s->dev;
PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
/* Validate and read the configuration. */
if (!CFGMR3AreValuesValid(pCfgHandle,
"RamSize\0"
"RamHoleSize\0"
"IOAPIC\0"
"NumCPUs\0"
"GCEnabled\0"
"R0Enabled\0"
"HpetEnabled\0"
"SmcEnabled\0"
"FdcEnabled\0"
"ShowRtc\0"
"ShowCpu\0"
"CpuHotPlug\0"
"AmlFilePath\0"
))
return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
N_("Configuration error: Invalid config key for ACPI device"));
s->pDevIns = pDevIns;
/* query whether we are supposed to present an IOAPIC */
int rc = CFGMR3QueryU8Def(pCfgHandle, "IOAPIC", &s->u8UseIOApic, 1);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"IOAPIC\""));
rc = CFGMR3QueryU16Def(pCfgHandle, "NumCPUs", &s->cCpus, 1);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Querying \"NumCPUs\" as integer failed"));
/* query whether we are supposed to present an FDC controller */
rc = CFGMR3QueryBoolDef(pCfgHandle, "FdcEnabled", &s->fUseFdc, true);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"FdcEnabled\""));
/* query whether we are supposed to present HPET */
rc = CFGMR3QueryBoolDef(pCfgHandle, "HpetEnabled", &s->fUseHpet, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"HpetEnabled\""));
/* query whether we are supposed to present SMC */
rc = CFGMR3QueryBoolDef(pCfgHandle, "SmcEnabled", &s->fUseSmc, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"SmcEnabled\""));
/* query whether we are supposed to present RTC object */
rc = CFGMR3QueryBoolDef(pCfgHandle, "ShowRtc", &s->fShowRtc, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"ShowRtc\""));
/* query whether we are supposed to present CPU objects */
rc = CFGMR3QueryBoolDef(pCfgHandle, "ShowCpu", &s->fShowCpu, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"ShowCpu\""));
/* query whether we are allow CPU hot plugging */
rc = CFGMR3QueryBoolDef(pCfgHandle, "CpuHotPlug", &s->fCpuHotPlug, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"CpuHotPlug\""));
rc = CFGMR3QueryBool(pCfgHandle, "GCEnabled", &s->fGCEnabled);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
s->fGCEnabled = true;
else if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"GCEnabled\""));
rc = CFGMR3QueryBool(pCfgHandle, "R0Enabled", &s->fR0Enabled);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
s->fR0Enabled = true;
else if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("configuration error: failed to read R0Enabled as boolean"));
/*
* Interfaces
*/
/* IBase */
s->IBase.pfnQueryInterface = acpiQueryInterface;
/* IACPIPort */
s->IACPIPort.pfnSleepButtonPress = acpiSleepButtonPress;
s->IACPIPort.pfnPowerButtonPress = acpiPowerButtonPress;
s->IACPIPort.pfnGetPowerButtonHandled = acpiGetPowerButtonHandled;
s->IACPIPort.pfnGetGuestEnteredACPIMode = acpiGetGuestEnteredACPIMode;
s->IACPIPort.pfnGetCpuStatus = acpiGetCpuStatus;
VMCPUSET_EMPTY(&s->CpuSetAttached);
VMCPUSET_EMPTY(&s->CpuSetLocked);
s->idCpuLockCheck = UINT32_C(0xffffffff);
/* The first CPU can't be attached/detached */
VMCPUSET_ADD(&s->CpuSetAttached, 0);
VMCPUSET_ADD(&s->CpuSetLocked, 0);
/* Try to attach the other CPUs */
for (unsigned i = 1; i < s->cCpus; i++)
{
if (s->fCpuHotPlug)
{
PPDMIBASE IBaseTmp;
rc = PDMDevHlpDriverAttach(pDevIns, i, &s->IBase, &IBaseTmp, "ACPI CPU");
if (RT_SUCCESS(rc))
{
VMCPUSET_ADD(&s->CpuSetAttached, i);
VMCPUSET_ADD(&s->CpuSetLocked, i);
Log(("acpi: Attached CPU %u\n", i));
}
else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
Log(("acpi: CPU %u not attached yet\n", i));
else
return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach CPU object\n"));
}
else
{
/* CPU is always attached if hot-plug is not enabled. */
VMCPUSET_ADD(&s->CpuSetAttached, i);
VMCPUSET_ADD(&s->CpuSetLocked, i);
}
}
/* Set default port base */
s->uPmIoPortBase = PM_PORT_BASE;
/*
* FDC and SMC try to use the same non-shareable interrupt (6),
* enable only one device.
*/
if (s->fUseSmc)
s->fUseFdc = false;
/* */
RTGCPHYS32 GCPhysRsdp = find_rsdp_space();
if (!GCPhysRsdp)
return PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY,
N_("Can not find space for RSDP. ACPI is disabled"));
rc = acpiPlantTables(s);
if (RT_FAILURE(rc))
return rc;
rc = PDMDevHlpROMRegister(pDevIns, GCPhysRsdp, 0x1000, s->au8RSDPPage,
PGMPHYS_ROM_FLAGS_PERMANENT_BINARY, "ACPI RSDP");
if (RT_FAILURE(rc))
return rc;
rc = acpiRegisterPmHandlers(s);
if (RT_FAILURE(rc))
return rc;
#define R(addr, cnt, writer, reader, description) \
do { \
rc = PDMDevHlpIOPortRegister(pDevIns, addr, cnt, s, writer, reader, \
NULL, NULL, description); \
if (RT_FAILURE(rc)) \
return rc; \
} while (0)
R(SMI_CMD, 1, acpiSmiWrite, NULL, "ACPI SMI");
#ifdef DEBUG_ACPI
R(DEBUG_HEX, 1, acpiDhexWrite, NULL, "ACPI Debug hex");
R(DEBUG_CHR, 1, acpiDchrWrite, NULL, "ACPI Debug char");
#endif
R(BAT_INDEX, 1, acpiBatIndexWrite, NULL, "ACPI Battery status index");
R(BAT_DATA, 1, NULL, acpiBatDataRead, "ACPI Battery status data");
R(SYSI_INDEX, 1, acpiSysInfoIndexWrite, NULL, "ACPI system info index");
R(SYSI_DATA, 1, acpiSysInfoDataWrite, acpiSysInfoDataRead, "ACPI system info data");
R(ACPI_RESET_BLK, 1, acpiResetWrite, NULL, "ACPI Reset");
#undef R
rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, acpiTimer, dev,
TMTIMER_FLAGS_DEFAULT_CRIT_SECT, "ACPI Timer", &s->tsR3);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("pfnTMTimerCreate -> %Rrc\n", rc));
return rc;
}
s->tsR0 = TMTimerR0Ptr(s->tsR3);
s->tsRC = TMTimerRCPtr(s->tsR3);
s->pm_timer_initial = TMTimerGet(s->tsR3);
acpiPMTimerReset(s);
PCIDevSetVendorId(dev, 0x8086); /* Intel */
PCIDevSetDeviceId(dev, 0x7113); /* 82371AB */
/* See p. 50 of PIIX4 manual */
dev->config[0x04] = 0x01; /* command */
dev->config[0x05] = 0x00;
dev->config[0x06] = 0x80; /* status */
dev->config[0x07] = 0x02;
dev->config[0x08] = 0x08; /* revision number */
dev->config[0x09] = 0x00; /* class code */
dev->config[0x0a] = 0x80;
dev->config[0x0b] = 0x06;
dev->config[0x0e] = 0x80; /* header type */
dev->config[0x0f] = 0x00; /* reserved */
dev->config[0x3c] = SCI_INT; /* interrupt line */
#if 0
dev->config[0x3d] = 0x01; /* interrupt pin */
#endif
dev->config[0x40] = 0x01; /* PM base address, this bit marks it as IO range, not PA */
#if 0
int smb_io_base = 0xb100;
dev->config[0x90] = smb_io_base | 1; /* SMBus base address */
dev->config[0x90] = smb_io_base >> 8;
#endif
rc = PDMDevHlpPCIRegister(pDevIns, dev);
if (RT_FAILURE(rc))
return rc;
PDMDevHlpPCISetConfigCallbacks(pDevIns, dev,
acpiPciConfigRead, &s->pfnAcpiPciConfigRead,
acpiPciConfigWrite, &s->pfnAcpiPciConfigWrite);
rc = PDMDevHlpSSMRegister(pDevIns, 5, sizeof(*s), acpi_save_state, acpi_load_state);
if (RT_FAILURE(rc))
return rc;
/*
* Get the corresponding connector interface
*/
rc = PDMDevHlpDriverAttach(pDevIns, 0, &s->IBase, &s->pDrvBase, "ACPI Driver Port");
if (RT_SUCCESS(rc))
{
s->pDrv = PDMIBASE_QUERY_INTERFACE(s->pDrvBase, PDMIACPICONNECTOR);
if (!s->pDrv)
return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_MISSING_INTERFACE,
N_("LUN #0 doesn't have an ACPI connector interface"));
}
else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
{
Log(("acpi: %s/%d: warning: no driver attached to LUN #0!\n",
pDevIns->pDevReg->szDeviceName, pDevIns->iInstance));
rc = VINF_SUCCESS;
}
else
return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach LUN #0"));
return rc;
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DeviceACPI =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szDeviceName */
"acpi",
/* szRCMod */
"VBoxDDGC.gc",
/* szR0Mod */
"VBoxDDR0.r0",
/* pszDescription */
"Advanced Configuration and Power Interface",
/* fFlags */
PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_ACPI,
/* cMaxInstances */
~0,
/* cbInstance */
sizeof(ACPIState),
/* pfnConstruct */
acpiConstruct,
/* pfnDestruct */
NULL,
/* pfnRelocate */
acpiRelocate,
/* pfnIOCtl */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
acpiReset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
acpiAttach,
/* pfnDetach */
acpiDetach,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
NULL,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */