DevACPI.cpp revision 3e6c6998d1dfeded8b9a23f5aa94ad63e9a681d9
/* $Id$ */
/** @file
* Advanced Configuration and Power Interface (ACPI) Device.
*/
/*
* Copyright (C) 2006-2007 innotek GmbH
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License as published by the Free Software Foundation,
* in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
* distribution. VirtualBox OSE is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY of any kind.
*/
#define LOG_GROUP LOG_GROUP_DEV_ACPI
#include <VBox/pdmdev.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#ifdef IN_RING3
#include <iprt/alloc.h>
#include <iprt/string.h>
#endif /* IN_RING3 */
#include "Builtins.h"
#ifdef LOG_ENABLED
#define DEBUG_ACPI
#endif
/* the compiled DSL */
#if defined(IN_RING3) && !defined(VBOX_DEVICE_STRUCT_TESTCASE)
#include <vboxaml.hex>
#endif /* !IN_RING3 */
#define IO_READ_PROTO(name) \
PDMBOTHCBDECL(int) name (PPDMDEVINS pDevIns, void *pvUser, \
RTIOPORT Port, uint32_t *pu32, unsigned cb)
#define IO_WRITE_PROTO(name) \
PDMBOTHCBDECL(int) name (PPDMDEVINS pDevIns, void *pvUser, \
RTIOPORT Port, uint32_t u32, unsigned cb)
#define DEBUG_HEX 0x3000
#define DEBUG_CHR 0x3001
#define PM_TMR_FREQ 3579545
#define PM1a_EVT_BLK 0x00004000
#define PM1b_EVT_BLK 0x00000000 /**< not supported */
#define PM1a_CTL_BLK 0x00004004
#define PM1b_CTL_BLK 0x00000000 /**< not supported */
#define PM2_CTL_BLK 0x00000000 /**< not supported */
#define PM_TMR_BLK 0x00004008
#define GPE0_BLK 0x00004020
#define GPE1_BLK 0x00000000 /**< not supported */
#define BAT_INDEX 0x00004040
#define BAT_DATA 0x00004044
#define SYSI_INDEX 0x00004048
#define SYSI_DATA 0x0000404c
#define ACPI_RESET_BLK 0x00004050
/* PM1x status register bits */
#define TMR_STS RT_BIT(0)
#define RSR1_STS (RT_BIT(1) | RT_BIT(2) | RT_BIT(3))
#define BM_STS RT_BIT(4)
#define GBL_STS RT_BIT(5)
#define RSR2_STS (RT_BIT(6) | RT_BIT(7))
#define PWRBTN_STS RT_BIT(8)
#define SLPBTN_STS RT_BIT(9)
#define RTC_STS RT_BIT(10)
#define IGN_STS RT_BIT(11)
#define RSR3_STS (RT_BIT(12) | RT_BIT(13) | RT_BIT(14))
#define WAK_STS RT_BIT(15)
#define RSR_STS (RSR1_STS | RSR2_STS | RSR3_STS)
/* PM1x enable register bits */
#define TMR_EN RT_BIT(0)
#define RSR1_EN (RT_BIT(1) | RT_BIT(2) | RT_BIT(3) | RT_BIT(4))
#define GBL_EN RT_BIT(5)
#define RSR2_EN (RT_BIT(6) | RT_BIT(7))
#define PWRBTN_EN RT_BIT(8)
#define SLPBTN_EN RT_BIT(9)
#define RTC_EN RT_BIT(10)
#define RSR3_EN (RT_BIT(11) | RT_BIT(12) | RT_BIT(13) | RT_BIT(14) | RT_BIT(15))
#define RSR_EN (RSR1_EN | RSR2_EN | RSR3_EN)
#define IGN_EN 0
/* PM1x control register bits */
#define SCI_EN RT_BIT(0)
#define BM_RLD RT_BIT(1)
#define GBL_RLS RT_BIT(2)
#define RSR1_CNT (RT_BIT(3) | RT_BIT(4) | RT_BIT(5) | RT_BIT(6) | RT_BIT(7) | RT_BIT(8))
#define IGN_CNT RT_BIT(9)
#define SLP_TYPx_SHIFT 10
#define SLP_TYPx_MASK 7
#define SLP_EN RT_BIT(13)
#define RSR2_CNT (RT_BIT(14) | RT_BIT(15))
#define RSR_CNT (RSR1_CNT | RSR2_CNT)
#define GPE0_BATTERY_INFO_CHANGED RT_BIT(0)
enum
{
BAT_STATUS_STATE = 0x00, /**< BST battery state */
BAT_STATUS_PRESENT_RATE = 0x01, /**< BST battery present rate */
BAT_STATUS_REMAINING_CAPACITY = 0x02, /**< BST battery remaining capacity */
BAT_STATUS_PRESENT_VOLTAGE = 0x03, /**< BST battery present voltage */
BAT_INFO_UNITS = 0x04, /**< BIF power unit */
BAT_INFO_DESIGN_CAPACITY = 0x05, /**< BIF design capacity */
BAT_INFO_LAST_FULL_CHARGE_CAPACITY = 0x06, /**< BIF last full charge capacity */
BAT_INFO_TECHNOLOGY = 0x07, /**< BIF battery technology */
BAT_INFO_DESIGN_VOLTAGE = 0x08, /**< BIF design voltage */
BAT_INFO_DESIGN_CAPACITY_OF_WARNING = 0x09, /**< BIF design capacity of warning */
BAT_INFO_DESIGN_CAPACITY_OF_LOW = 0x0A, /**< BIF design capacity of low */
BAT_INFO_CAPACITY_GRANULARITY_1 = 0x0B, /**< BIF battery capacity granularity 1 */
BAT_INFO_CAPACITY_GRANULARITY_2 = 0x0C, /**< BIF battery capacity granularity 2 */
BAT_DEVICE_STATUS = 0x0D, /**< STA device status */
BAT_POWER_SOURCE = 0x0E, /**< PSR power source */
BAT_INDEX_LAST
};
enum
{
SYSTEM_INFO_INDEX_MEMORY_LENGTH = 0,
SYSTEM_INFO_INDEX_USE_IOAPIC = 1,
SYSTEM_INFO_INDEX_LAST = 2,
SYSTEM_INFO_INDEX_INVALID = 0x80,
SYSTEM_INFO_INDEX_VALID = 0x200
};
#define AC_OFFLINE 0
#define AC_ONLINE 1
#define BAT_TECH_PRIMARY 1
#define BAT_TECH_SECONDARY 2
#define BAT_STATUS_DISCHARGING_MASK RT_BIT(0)
#define BAT_STATUS_CHARGING_MASK RT_BIT(1)
#define BAT_STATUS_CRITICAL_MASK RT_BIT(2)
#define STA_DEVICE_PRESENT_MASK RT_BIT(0)
#define STA_DEVICE_ENABLED_MASK RT_BIT(1)
#define STA_DEVICE_SHOW_IN_UI_MASK RT_BIT(2)
#define STA_DEVICE_FUNCTIONING_PROPERLY_MASK RT_BIT(3)
#define STA_BATTERY_PRESENT_MASK RT_BIT(4)
struct ACPIState
{
PCIDevice dev;
uint16_t pm1a_en;
uint16_t pm1a_sts;
uint16_t pm1a_ctl;
uint16_t Alignment0;
int64_t pm_timer_initial;
R3R0PTRTYPE(PTMTIMER) tsHC;
GCPTRTYPE(PTMTIMER) tsGC;
uint32_t gpe0_en;
uint32_t gpe0_sts;
unsigned int uBatteryIndex;
uint32_t au8BatteryInfo[13];
unsigned int uSystemInfoIndex;
uint64_t u64RamSize;
/** Current ACPI S* state. We support S0 and S5 */
uint32_t uSleepState;
uint8_t au8RSDPPage[0x1000];
/** This is a workaround for incorrect index field handling by Intels ACPICA.
* The system info _INI method writes to offset 0x200. We either observe a
* write request to index 0x80 (in that case we don't change the index) or a
* write request to offset 0x200 (in that case we divide the index value by
* 4. Note that the _STA method is sometimes called prior to the _INI method
* (ACPI spec 6.3.7, _STA). See the special case for BAT_DEVICE_STATUS in
* acpiBatIndexWrite() for handling this. */
uint8_t u8IndexShift;
uint8_t u8UseIOApic;
/** ACPI port base interface. */
PDMIBASE IBase;
/** ACPI port interface. */
PDMIACPIPORT IACPIPort;
/** Pointer to the device instance. */
PPDMDEVINSR3 pDevIns;
/** Pointer to the driver base interface */
R3PTRTYPE(PPDMIBASE) pDrvBase;
/** Pointer to the driver connector interface */
R3PTRTYPE(PPDMIACPICONNECTOR) pDrv;
};
#pragma pack(1)
/** Generic Address Structure (see ACPIspec 3.0, 5.2.3.1) */
struct ACPIGENADDR
{
uint8_t u8AddressSpaceId; /**< 0=sys, 1=IO, 2=PCICfg, 3=emb, 4=SMBus */
uint8_t u8RegisterBitWidth; /**< size in bits of the given register */
uint8_t u8RegisterBitOffset; /**< bit offset of register */
uint8_t u8AccessSize; /**< 1=byte, 2=word, 3=dword, 4=qword */
uint64_t u64Address; /**< 64-bit address of register */
};
AssertCompileSize(ACPIGENADDR, 12);
/** Root System Description Pointer */
struct ACPITBLRSDP
{
uint8_t au8Signature[8]; /**< 'RSD PTR ' */
uint8_t u8Checksum; /**< checksum for the first 20 bytes */
uint8_t au8OemId[6]; /**< OEM-supplied identifier */
uint8_t u8Revision; /**< revision number, currently 2 */
#define ACPI_REVISION 2 /**< ACPI 3.0 */
uint32_t u32RSDT; /**< phys addr of RSDT */
uint32_t u32Length; /**< bytes of this table */
uint64_t u64XSDT; /**< 64-bit phys addr of XSDT */
uint8_t u8ExtChecksum; /**< checksum of entire table */
uint8_t u8Reserved[3]; /**< reserved */
};
AssertCompileSize(ACPITBLRSDP, 36);
/** System Description Table Header */
struct ACPITBLHEADER
{
uint8_t au8Signature[4]; /**< table identifier */
uint32_t u32Length; /**< length of the table including header */
uint8_t u8Revision; /**< revision number */
uint8_t u8Checksum; /**< all fields inclusive this add to zero */
uint8_t au8OemId[6]; /**< OEM-supplied string */
uint8_t au8OemTabId[8]; /**< to identify the particular data table */
uint32_t u32OemRevision; /**< OEM-supplied revision number */
uint8_t au8CreatorId[4]; /**< ID for the ASL compiler */
uint32_t u32CreatorRev; /**< revision for the ASL compiler */
};
AssertCompileSize(ACPITBLHEADER, 36);
/** Root System Description Table */
struct ACPITBLRSDT
{
ACPITBLHEADER header;
uint32_t u32Entry[1]; /**< array of phys. addresses to other tables */
};
AssertCompileSize(ACPITBLRSDT, 40);
/** Extended System Description Table */
struct ACPITBLXSDT
{
ACPITBLHEADER header;
uint64_t u64Entry[1]; /**< array of phys. addresses to other tables */
};
AssertCompileSize(ACPITBLXSDT, 44);
/** Fixed ACPI Description Table */
struct ACPITBLFADT
{
ACPITBLHEADER header;
uint32_t u32FACS; /**< phys. address of FACS */
uint32_t u32DSDT; /**< phys. address of DSDT */
uint8_t u8IntModel; /**< was eleminated in ACPI 2.0 */
#define INT_MODEL_DUAL_PIC 1 /**< for ACPI 2+ */
#define INT_MODEL_MULTIPLE_APIC 2
uint8_t u8PreferredPMProfile; /**< preferred power management profile */
uint16_t u16SCIInt; /**< system vector the SCI is wired in 8259 mode */
#define SCI_INT 9
uint32_t u32SMICmd; /**< system port address of SMI command port */
#define SMI_CMD 0x0000442e
uint8_t u8AcpiEnable; /**< SMICmd val to disable ownship of ACPIregs */
#define ACPI_ENABLE 0xa1
uint8_t u8AcpiDisable; /**< SMICmd val to re-enable ownship of ACPIregs */
#define ACPI_DISABLE 0xa0
uint8_t u8S4BIOSReq; /**< SMICmd val to enter S4BIOS state */
uint8_t u8PStateCnt; /**< SMICmd val to assume processor performance
state control responsibility */
uint32_t u32PM1aEVTBLK; /**< port addr of PM1a event regs block */
uint32_t u32PM1bEVTBLK; /**< port addr of PM1b event regs block */
uint32_t u32PM1aCTLBLK; /**< port addr of PM1a control regs block */
uint32_t u32PM1bCTLBLK; /**< port addr of PM1b control regs block */
uint32_t u32PM2CTLBLK; /**< port addr of PM2 control regs block */
uint32_t u32PMTMRBLK; /**< port addr of PMTMR regs block */
uint32_t u32GPE0BLK; /**< port addr of gen-purp event 0 regs block */
uint32_t u32GPE1BLK; /**< port addr of gen-purp event 1 regs block */
uint8_t u8PM1EVTLEN; /**< bytes decoded by PM1a_EVT_BLK. >= 4 */
uint8_t u8PM1CTLLEN; /**< bytes decoded by PM1b_CNT_BLK. >= 2 */
uint8_t u8PM2CTLLEN; /**< bytes decoded by PM2_CNT_BLK. >= 1 or 0 */
uint8_t u8PMTMLEN; /**< bytes decoded by PM_TMR_BLK. ==4 */
uint8_t u8GPE0BLKLEN; /**< bytes decoded by GPE0_BLK. %2==0 */
#define GPE0_BLK_LEN 2
uint8_t u8GPE1BLKLEN; /**< bytes decoded by GPE1_BLK. %2==0 */
#define GPE1_BLK_LEN 0
uint8_t u8GPE1BASE; /**< offset of GPE1 based events */
#define GPE1_BASE 0
uint8_t u8CSTCNT; /**< SMICmd val to indicate OS supp for C states */
uint16_t u16PLVL2LAT; /**< us to enter/exit C2. >100 => unsupported */
#define P_LVL2_LAT 101 /**< C2 state not supported */
uint16_t u16PLVL3LAT; /**< us to enter/exit C3. >1000 => unsupported */
#define P_LVL3_LAT 1001 /**< C3 state not supported */
uint16_t u16FlushSize; /**< # of flush strides to read to flush dirty
lines from any processors memory caches */
#define FLUSH_SIZE 0 /**< Ignored if WBVIND set in FADT_FLAGS */
uint16_t u16FlushStride; /**< cache line width */
#define FLUSH_STRIDE 0 /**< Ignored if WBVIND set in FADT_FLAGS */
uint8_t u8DutyOffset;
uint8_t u8DutyWidth;
uint8_t u8DayAlarm; /**< RTC CMOS RAM index of day-of-month alarm */
uint8_t u8MonAlarm; /**< RTC CMOS RAM index of month-of-year alarm */
uint8_t u8Century; /**< RTC CMOS RAM index of century */
uint16_t u16IAPCBOOTARCH; /**< IA-PC boot architecture flags */
#define IAPC_BOOT_ARCH_LEGACY_DEV RT_BIT(0) /**< legacy devices present such as LPT
(COM too?) */
#define IAPC_BOOT_ARCH_8042 RT_BIT(1) /**< legacy keyboard device present */
#define IAPC_BOOT_ARCH_NO_VGA RT_BIT(2) /**< VGA not present */
uint8_t u8Must0_0; /**< must be 0 */
uint32_t u32Flags; /**< fixed feature flags */
#define FADT_FL_WBINVD RT_BIT(0) /**< emulation of WBINVD available */
#define FADT_FL_WBINVD_FLUSH RT_BIT(1)
#define FADT_FL_PROC_C1 RT_BIT(2) /**< 1=C1 supported on all processors */
#define FADT_FL_P_LVL2_UP RT_BIT(3) /**< 1=C2 works on SMP and UNI systems */
#define FADT_FL_PWR_BUTTON RT_BIT(4) /**< 1=power button handled as ctrl method dev */
#define FADT_FL_SLP_BUTTON RT_BIT(5) /**< 1=sleep button handled as ctrl method dev */
#define FADT_FL_FIX_RTC RT_BIT(6) /**< 0=RTC wake status in fixed register */
#define FADT_FL_RTC_S4 RT_BIT(7) /**< 1=RTC can wake system from S4 */
#define FADT_FL_TMR_VAL_EXT RT_BIT(8) /**< 1=TMR_VAL implemented as 32 bit */
#define FADT_FL_DCK_CAP RT_BIT(9) /**< 0=system cannot support docking */
#define FADT_FL_RESET_REG_SUP RT_BIT(10) /**< 1=system supports system resets */
#define FADT_FL_SEALED_CASE RT_BIT(11) /**< 1=case is sealed */
#define FADT_FL_HEADLESS RT_BIT(12) /**< 1=system cannot detect moni/keyb/mouse */
#define FADT_FL_CPU_SW_SLP RT_BIT(13)
#define FADT_FL_PCI_EXT_WAK RT_BIT(14) /**< 1=system supports PCIEXP_WAKE_STS */
#define FADT_FL_USE_PLATFORM_CLOCK RT_BIT(15) /**< 1=system has ACPI PM timer */
#define FADT_FL_S4_RTC_STS_VALID RT_BIT(16) /**< 1=RTC_STS flag is valid when waking from S4 */
#define FADT_FL_REMOVE_POWER_ON_CAPABLE RT_BIT(17) /**< 1=platform can remote power on */
#define FADT_FL_FORCE_APIC_CLUSTER_MODEL RT_BIT(18)
#define FADT_FL_FORCE_APIC_PHYS_DEST_MODE RT_BIT(19)
ACPIGENADDR ResetReg; /**< ext addr of reset register */
uint8_t u8ResetVal; /**< ResetReg value to reset the system */
#define ACPI_RESET_REG_VAL 0x10
uint8_t au8Must0_1[3]; /**< must be 0 */
uint64_t u64XFACS; /**< 64-bit phys address of FACS */
uint64_t u64XDSDT; /**< 64-bit phys address of DSDT */
ACPIGENADDR X_PM1aEVTBLK; /**< ext addr of PM1a event regs block */
ACPIGENADDR X_PM1bEVTBLK; /**< ext addr of PM1b event regs block */
ACPIGENADDR X_PM1aCTLBLK; /**< ext addr of PM1a control regs block */
ACPIGENADDR X_PM1bCTLBLK; /**< ext addr of PM1b control regs block */
ACPIGENADDR X_PM2CTLBLK; /**< ext addr of PM2 control regs block */
ACPIGENADDR X_PMTMRBLK; /**< ext addr of PMTMR control regs block */
ACPIGENADDR X_GPE0BLK; /**< ext addr of GPE1 regs block */
ACPIGENADDR X_GPE1BLK; /**< ext addr of GPE1 regs block */
};
AssertCompileSize(ACPITBLFADT, 244);
/** Firmware ACPI Control Structure */
struct ACPITBLFACS
{
uint8_t au8Signature[4]; /**< 'FACS' */
uint32_t u32Length; /**< bytes of entire FACS structure >= 64 */
uint32_t u32HWSignature; /**< systems HW signature at last boot */
uint32_t u32FWVector; /**< address of waking vector */
uint32_t u32GlobalLock; /**< global lock to sync HW/SW */
uint32_t u32Flags; /**< FACS flags */
uint64_t u64X_FWVector; /**< 64-bit waking vector */
uint8_t u8Version; /**< version of this table */
uint8_t au8Reserved[31]; /**< zero */
};
AssertCompileSize(ACPITBLFACS, 64);
/** Processor Local APIC Structure */
struct ACPITBLLAPIC
{
uint8_t u8Type; /**< 0 = LAPIC */
uint8_t u8Length; /**< 8 */
uint8_t u8ProcId; /**< processor ID */
uint8_t u8ApicId; /**< local APIC ID */
uint32_t u32Flags; /**< Flags */
#define LAPIC_ENABLED 0x1
};
AssertCompileSize(ACPITBLLAPIC, 8);
/** I/O APIC Structure */
struct ACPITBLIOAPIC
{
uint8_t u8Type; /**< 1 == I/O APIC */
uint8_t u8Length; /**< 12 */
uint8_t u8IOApicId; /**< I/O APIC ID */
uint8_t u8Reserved; /**< 0 */
uint32_t u32Address; /**< phys address to access I/O APIC */
uint32_t u32GSIB; /**< global system interrupt number to start */
};
AssertCompileSize(ACPITBLIOAPIC, 12);
/** Multiple APIC Description Table */
struct ACPITBLMADT
{
ACPITBLHEADER header;
uint32_t u32LAPIC; /**< local APIC address */
uint32_t u32Flags; /**< Flags */
#define PCAT_COMPAT 0x1 /**< system has also a dual-8259 setup */
ACPITBLLAPIC LApic;
ACPITBLIOAPIC IOApic;
};
AssertCompileSize(ACPITBLMADT, 64);
#pragma pack()
#ifndef VBOX_DEVICE_STRUCT_TESTCASE
__BEGIN_DECLS
IO_READ_PROTO (acpiPMTmrRead);
#ifdef IN_RING3
IO_READ_PROTO (acpiPm1aEnRead);
IO_WRITE_PROTO (acpiPM1aEnWrite);
IO_READ_PROTO (acpiPm1aStsRead);
IO_WRITE_PROTO (acpiPM1aStsWrite);
IO_READ_PROTO (acpiPm1aCtlRead);
IO_WRITE_PROTO (acpiPM1aCtlWrite);
IO_WRITE_PROTO (acpiSmiWrite);
IO_WRITE_PROTO (acpiBatIndexWrite);
IO_READ_PROTO (acpiBatDataRead);
IO_READ_PROTO (acpiSysInfoDataRead);
IO_WRITE_PROTO (acpiSysInfoDataWrite);
IO_READ_PROTO (acpiGpe0EnRead);
IO_WRITE_PROTO (acpiGpe0EnWrite);
IO_READ_PROTO (acpiGpe0StsRead);
IO_WRITE_PROTO (acpiGpe0StsWrite);
IO_WRITE_PROTO (acpiResetWrite);
# ifdef DEBUG_ACPI
IO_WRITE_PROTO (acpiDhexWrite);
IO_WRITE_PROTO (acpiDchrWrite);
# endif
#endif
__END_DECLS
#ifdef IN_RING3
/* Simple acpiChecksum: all the bytes must add up to 0. */
static uint8_t acpiChecksum (const uint8_t * const data, uint32_t len)
{
uint8_t sum = 0;
for (size_t i = 0; i < len; ++i)
sum += data[i];
return -sum;
}
static void acpiPrepareHeader (ACPITBLHEADER *header, const char au8Signature[4],
uint32_t u32Length, uint8_t u8Revision)
{
memcpy(header->au8Signature, au8Signature, 4);
header->u32Length = RT_H2LE_U32(u32Length);
header->u8Revision = u8Revision;
memcpy(header->au8OemId, "VBOX ", 6);
memcpy(header->au8OemTabId, "VBOX", 4);
memcpy(header->au8OemTabId+4, au8Signature, 4);
header->u32OemRevision = RT_H2LE_U32(1);
memcpy(header->au8CreatorId, "ASL ", 4);
header->u32CreatorRev = RT_H2LE_U32(0x61);
}
static void acpiWriteGenericAddr(ACPIGENADDR *g, uint8_t u8AddressSpaceId,
uint8_t u8RegisterBitWidth, uint8_t u8RegisterBitOffset,
uint8_t u8AccessSize, uint64_t u64Address)
{
g->u8AddressSpaceId = u8AddressSpaceId;
g->u8RegisterBitWidth = u8RegisterBitWidth;
g->u8RegisterBitOffset = u8RegisterBitOffset;
g->u8AccessSize = u8AccessSize;
g->u64Address = RT_H2LE_U64(u64Address);
}
static void acpiPhyscpy (ACPIState *s, RTGCPHYS dst, const void * const src, size_t size)
{
PDMDevHlpPhysWrite (s->pDevIns, dst, src, size);
}
/* Differentiated System Description Table (DSDT) */
static void acpiSetupDSDT (ACPIState *s, RTGCPHYS addr)
{
acpiPhyscpy (s, addr, AmlCode, sizeof(AmlCode));
}
/* Firmware ACPI Control Structure (FACS) */
static void acpiSetupFACS (ACPIState *s, RTGCPHYS addr)
{
ACPITBLFACS facs;
memset (&facs, 0, sizeof(facs));
memcpy (facs.au8Signature, "FACS", 4);
facs.u32Length = RT_H2LE_U32(sizeof(ACPITBLFACS));
facs.u32HWSignature = RT_H2LE_U32(0);
facs.u32FWVector = RT_H2LE_U32(0);
facs.u32GlobalLock = RT_H2LE_U32(0);
facs.u32Flags = RT_H2LE_U32(0);
facs.u64X_FWVector = RT_H2LE_U64(0);
facs.u8Version = 1;
acpiPhyscpy (s, addr, (const uint8_t*)&facs, sizeof(facs));
}
/* Fixed ACPI Description Table (FADT aka FACP) */
static void acpiSetupFADT (ACPIState *s, RTGCPHYS addr, uint32_t facs_addr, uint32_t dsdt_addr)
{
ACPITBLFADT fadt;
memset (&fadt, 0, sizeof(fadt));
acpiPrepareHeader (&fadt.header, "FACP", sizeof(fadt), 4);
fadt.u32FACS = RT_H2LE_U32(facs_addr);
fadt.u32DSDT = RT_H2LE_U32(dsdt_addr);
fadt.u8IntModel = INT_MODEL_DUAL_PIC;
fadt.u8PreferredPMProfile = 0; /* unspecified */
fadt.u16SCIInt = RT_H2LE_U16(SCI_INT);
fadt.u32SMICmd = RT_H2LE_U32(SMI_CMD);
fadt.u8AcpiEnable = ACPI_ENABLE;
fadt.u8AcpiDisable = ACPI_DISABLE;
fadt.u8S4BIOSReq = 0;
fadt.u8PStateCnt = 0;
fadt.u32PM1aEVTBLK = RT_H2LE_U32(PM1a_EVT_BLK);
fadt.u32PM1bEVTBLK = RT_H2LE_U32(PM1b_EVT_BLK);
fadt.u32PM1aCTLBLK = RT_H2LE_U32(PM1a_CTL_BLK);
fadt.u32PM1bCTLBLK = RT_H2LE_U32(PM1b_CTL_BLK);
fadt.u32PM2CTLBLK = RT_H2LE_U32(PM2_CTL_BLK);
fadt.u32PMTMRBLK = RT_H2LE_U32(PM_TMR_BLK);
fadt.u32GPE0BLK = RT_H2LE_U32(GPE0_BLK);
fadt.u32GPE1BLK = RT_H2LE_U32(GPE1_BLK);
fadt.u8PM1EVTLEN = 4;
fadt.u8PM1CTLLEN = 2;
fadt.u8PM2CTLLEN = 0;
fadt.u8PMTMLEN = 4;
fadt.u8GPE0BLKLEN = GPE0_BLK_LEN;
fadt.u8GPE1BLKLEN = GPE1_BLK_LEN;
fadt.u8GPE1BASE = GPE1_BASE;
fadt.u8CSTCNT = 0;
fadt.u16PLVL2LAT = RT_H2LE_U16(P_LVL2_LAT);
fadt.u16PLVL3LAT = RT_H2LE_U16(P_LVL3_LAT);
fadt.u16FlushSize = RT_H2LE_U16(FLUSH_SIZE);
fadt.u16FlushStride = RT_H2LE_U16(FLUSH_STRIDE);
fadt.u8DutyOffset = 0;
fadt.u8DutyWidth = 0;
fadt.u8DayAlarm = 0;
fadt.u8MonAlarm = 0;
fadt.u8Century = 0;
fadt.u16IAPCBOOTARCH = RT_H2LE_U16(IAPC_BOOT_ARCH_LEGACY_DEV | IAPC_BOOT_ARCH_8042);
/** @note WBINVD is required for ACPI versions newer than 1.0 */
fadt.u32Flags = RT_H2LE_U32( FADT_FL_WBINVD | FADT_FL_SLP_BUTTON
| FADT_FL_FIX_RTC | FADT_FL_TMR_VAL_EXT);
acpiWriteGenericAddr(&fadt.ResetReg, 1, 8, 0, 1, ACPI_RESET_BLK);
fadt.u8ResetVal = ACPI_RESET_REG_VAL;
fadt.u64XFACS = RT_H2LE_U64((uint64_t)facs_addr);
fadt.u64XDSDT = RT_H2LE_U64((uint64_t)dsdt_addr);
acpiWriteGenericAddr(&fadt.X_PM1aEVTBLK, 1, 32, 0, 2, PM1a_EVT_BLK);
acpiWriteGenericAddr(&fadt.X_PM1bEVTBLK, 0, 0, 0, 0, PM1b_EVT_BLK);
acpiWriteGenericAddr(&fadt.X_PM1aCTLBLK, 1, 16, 0, 2, PM1a_CTL_BLK);
acpiWriteGenericAddr(&fadt.X_PM1bCTLBLK, 0, 0, 0, 0, PM1b_CTL_BLK);
acpiWriteGenericAddr(&fadt.X_PM2CTLBLK, 0, 0, 0, 0, PM2_CTL_BLK);
acpiWriteGenericAddr(&fadt.X_PMTMRBLK, 1, 32, 0, 3, PM_TMR_BLK);
acpiWriteGenericAddr(&fadt.X_GPE0BLK, 1, 16, 0, 1, GPE0_BLK);
acpiWriteGenericAddr(&fadt.X_GPE1BLK, 0, 0, 0, 0, GPE1_BLK);
fadt.header.u8Checksum = acpiChecksum ((uint8_t*)&fadt, sizeof(fadt));
acpiPhyscpy (s, addr, &fadt, sizeof(fadt));
}
/*
* Root System Description Table.
* The RSDT and XSDT tables are basically identical. The only difference is 32 vs 64 bits
* addresses for description headers. RSDT is for ACPI 1.0. XSDT for ACPI 2.0 and up.
*/
static int acpiSetupRSDT (ACPIState *s, RTGCPHYS addr, unsigned int nb_entries, uint32_t *addrs)
{
ACPITBLRSDT *rsdt;
const size_t size = sizeof(ACPITBLHEADER) + nb_entries * sizeof(rsdt->u32Entry[0]);
rsdt = (ACPITBLRSDT*)RTMemAllocZ (size);
if (!rsdt)
return PDMDEV_SET_ERROR(s->pDevIns, VERR_NO_TMP_MEMORY, N_("Cannot allocate RSDT"));
acpiPrepareHeader (&rsdt->header, "RSDT", size, 1);
for (unsigned int i = 0; i < nb_entries; ++i)
{
rsdt->u32Entry[i] = RT_H2LE_U32(addrs[i]);
Log(("Setup RSDT: [%d] = %x\n", i, rsdt->u32Entry[i]));
}
rsdt->header.u8Checksum = acpiChecksum ((uint8_t*)rsdt, size);
acpiPhyscpy (s, addr, rsdt, size);
RTMemFree (rsdt);
return VINF_SUCCESS;
}
/* Extended System Description Table. */
static int acpiSetupXSDT (ACPIState *s, RTGCPHYS addr, unsigned int nb_entries, uint32_t *addrs)
{
ACPITBLXSDT *xsdt;
const size_t size = sizeof(ACPITBLHEADER) + nb_entries * sizeof(xsdt->u64Entry[0]);
xsdt = (ACPITBLXSDT*)RTMemAllocZ (size);
if (!xsdt)
return VERR_NO_TMP_MEMORY;
acpiPrepareHeader (&xsdt->header, "XSDT", size, 1 /* according to ACPI 3.0 specs */);
for (unsigned int i = 0; i < nb_entries; ++i)
{
xsdt->u64Entry[i] = RT_H2LE_U64((uint64_t)addrs[i]);
Log(("Setup XSDT: [%d] = %VX64\n", i, xsdt->u64Entry[i]));
}
xsdt->header.u8Checksum = acpiChecksum ((uint8_t*)xsdt, size);
acpiPhyscpy (s, addr, xsdt, size);
RTMemFree (xsdt);
return VINF_SUCCESS;
}
/* Root System Description Pointer (RSDP) */
static void acpiSetupRSDP (ACPITBLRSDP *rsdp, uint32_t rsdt_addr, uint64_t xsdt_addr)
{
memset(rsdp, 0, sizeof(*rsdp));
/* ACPI 1.0 part (RSDT */
memcpy(rsdp->au8Signature, "RSD PTR ", 8);
memcpy(rsdp->au8OemId, "VBOX ", 6);
rsdp->u8Revision = ACPI_REVISION;
rsdp->u32RSDT = RT_H2LE_U32(rsdt_addr);
rsdp->u8Checksum = acpiChecksum((uint8_t*)rsdp, RT_OFFSETOF(ACPITBLRSDP, u32Length));
/* ACPI 2.0 part (XSDT) */
rsdp->u32Length = RT_H2LE_U32(sizeof(ACPITBLRSDP));
rsdp->u64XSDT = RT_H2LE_U64(xsdt_addr);
rsdp->u8ExtChecksum = acpiChecksum ((uint8_t*)rsdp, sizeof(ACPITBLRSDP));
}
/* Multiple APIC Description Table. */
/** @todo All hardcoded, should set this up based on the actual VM config!!!!! */
/** @note APIC without IO-APIC hangs Windows Vista therefore we setup both */
static void acpiSetupMADT (ACPIState *s, RTGCPHYS addr)
{
ACPITBLMADT madt;
/* Don't call this function if u8UseIOApic==false! */
Assert(s->u8UseIOApic);
memset(&madt, 0, sizeof(madt));
acpiPrepareHeader(&madt.header, "APIC", sizeof(madt), 2);
madt.u32LAPIC = RT_H2LE_U32(0xfee00000);
madt.u32Flags = RT_H2LE_U32(PCAT_COMPAT);
madt.LApic.u8Type = 0;
madt.LApic.u8Length = sizeof(ACPITBLLAPIC);
madt.LApic.u8ProcId = 0;
madt.LApic.u8ApicId = 0;
madt.LApic.u32Flags = RT_H2LE_U32(LAPIC_ENABLED);
madt.IOApic.u8Type = 1;
madt.IOApic.u8Length = sizeof(ACPITBLIOAPIC);
madt.IOApic.u8IOApicId = 0;
madt.IOApic.u8Reserved = 0;
madt.IOApic.u32Address = RT_H2LE_U32(0xfec00000);
madt.IOApic.u32GSIB = RT_H2LE_U32(0);
madt.header.u8Checksum = acpiChecksum ((uint8_t*)&madt, sizeof(madt));
acpiPhyscpy (s, addr, &madt, sizeof(madt));
}
/* SCI IRQ */
DECLINLINE(void) acpiSetIrq (ACPIState *s, int level)
{
if (s->pm1a_ctl & SCI_EN)
PDMDevHlpPCISetIrq (s->pDevIns, -1, level);
}
DECLINLINE(uint32_t) pm1a_pure_en (uint32_t en)
{
return en & ~(RSR_EN | IGN_EN);
}
DECLINLINE(uint32_t) pm1a_pure_sts (uint32_t sts)
{
return sts & ~(RSR_STS | IGN_STS);
}
DECLINLINE(int) pm1a_level (ACPIState *s)
{
return (pm1a_pure_en (s->pm1a_en) & pm1a_pure_sts (s->pm1a_sts)) != 0;
}
DECLINLINE(int) gpe0_level (ACPIState *s)
{
return (s->gpe0_en & s->gpe0_sts) != 0;
}
static void update_pm1a (ACPIState *s, uint32_t sts, uint32_t en)
{
int old_level, new_level;
if (gpe0_level (s))
return;
old_level = pm1a_level (s);
new_level = (pm1a_pure_en (en) & pm1a_pure_sts (sts)) != 0;
s->pm1a_en = en;
s->pm1a_sts = sts;
if (new_level != old_level)
acpiSetIrq (s, new_level);
}
static void update_gpe0 (ACPIState *s, uint32_t sts, uint32_t en)
{
int old_level, new_level;
if (pm1a_level (s))
return;
old_level = (s->gpe0_en & s->gpe0_sts) != 0;
new_level = (en & sts) != 0;
s->gpe0_en = en;
s->gpe0_sts = sts;
if (new_level != old_level)
acpiSetIrq (s, new_level);
}
static int acpiPowerDown (ACPIState *s)
{
int rc = PDMDevHlpVMPowerOff(s->pDevIns);
if (VBOX_FAILURE (rc))
AssertMsgFailed (("Could not power down the VM. rc = %Vrc\n", rc));
return rc;
}
/** Converts a ACPI port interface pointer to an ACPI state pointer. */
#define IACPIPORT_2_ACPISTATE(pInterface) ( (ACPIState*)((uintptr_t)pInterface - RT_OFFSETOF(ACPIState, IACPIPort)) )
/**
* Send an ACPI power off event.
*
* @returns VBox status code
* @param pInterface Pointer to the interface structure containing the called function pointer.
*/
static DECLCALLBACK(int) acpiPowerButtonPress(PPDMIACPIPORT pInterface)
{
ACPIState *s = IACPIPORT_2_ACPISTATE(pInterface);
update_pm1a (s, s->pm1a_sts | PWRBTN_STS, s->pm1a_en);
return VINF_SUCCESS;
}
/* PM1a_EVT_BLK enable */
static uint32_t acpiPm1aEnReadw (ACPIState *s, uint32_t addr)
{
uint16_t val = s->pm1a_en;
Log (("acpi: acpiPm1aEnReadw -> %#x\n", val));
return val;
}
static void acpiPM1aEnWritew (ACPIState *s, uint32_t addr, uint32_t val)
{
Log (("acpi: acpiPM1aEnWritew <- %#x (%#x)\n", val, val & ~(RSR_EN | IGN_EN)));
val &= ~(RSR_EN | IGN_EN);
update_pm1a (s, s->pm1a_sts, val);
}
/* PM1a_EVT_BLK status */
static uint32_t acpiPm1aStsReadw (ACPIState *s, uint32_t addr)
{
uint16_t val = s->pm1a_sts;
Log (("acpi: acpiPm1aStsReadw -> %#x\n", val));
return val;
}
static void acpiPM1aStsWritew (ACPIState *s, uint32_t addr, uint32_t val)
{
Log (("acpi: acpiPM1aStsWritew <- %#x (%#x)\n", val, val & ~(RSR_STS | IGN_STS)));
val = s->pm1a_sts & ~(val & ~(RSR_STS | IGN_STS));
update_pm1a (s, val, s->pm1a_en);
}
/* PM1a_CTL_BLK */
static uint32_t acpiPm1aCtlReadw (ACPIState *s, uint32_t addr)
{
uint16_t val = s->pm1a_ctl;
Log (("acpi: acpiPm1aCtlReadw -> %#x\n", val));
return val;
}
static int acpiPM1aCtlWritew (ACPIState *s, uint32_t addr, uint32_t val)
{
uint32_t uSleepState;
Log (("acpi: acpiPM1aCtlWritew <- %#x (%#x)\n", val, val & ~(RSR_CNT | IGN_CNT)));
s->pm1a_ctl = val & ~(RSR_CNT | IGN_CNT);
uSleepState = (s->pm1a_ctl >> SLP_TYPx_SHIFT) & SLP_TYPx_MASK;
if (uSleepState != s->uSleepState)
{
s->uSleepState = uSleepState;
switch (uSleepState)
{
case 0x00: /* S0 */
break;
case 0x05: /* S5 */
LogRel (("Entering S5 (power down)\n"));
return acpiPowerDown (s);
default:
AssertMsgFailed (("Unknown sleep state %#x\n", uSleepState));
break;
}
}
return VINF_SUCCESS;
}
/* GPE0_BLK */
static uint32_t acpiGpe0EnReadb (ACPIState *s, uint32_t addr)
{
uint8_t val = s->gpe0_en;
Log (("acpi: acpiGpe0EnReadl -> %#x\n", val));
return val;
}
static void acpiGpe0EnWriteb (ACPIState *s, uint32_t addr, uint32_t val)
{
Log (("acpi: acpiGpe0EnWritel <- %#x\n", val));
update_gpe0 (s, s->gpe0_sts, val);
}
static uint32_t acpiGpe0StsReadb (ACPIState *s, uint32_t addr)
{
uint8_t val = s->gpe0_sts;
Log (("acpi: acpiGpe0StsReadl -> %#x\n", val));
return val;
}
static void acpiGpe0StsWriteb (ACPIState *s, uint32_t addr, uint32_t val)
{
val = s->gpe0_sts & ~val;
update_gpe0 (s, val, s->gpe0_en);
Log (("acpi: acpiGpe0StsWritel <- %#x\n", val));
}
static int acpiResetWriteU8(ACPIState *s, uint32_t addr, uint32_t val)
{
int rc = VINF_SUCCESS;
Log(("ACPI: acpiResetWriteU8: %x %x\n", addr, val));
if (val == ACPI_RESET_REG_VAL)
{
# ifndef IN_RING3
rc = VINF_IOM_HC_IOPORT_WRITE;
# else /* IN_RING3 */
rc = PDMDevHlpVMReset(s->pDevIns);
# endif /* !IN_RING3 */
}
return rc;
}
/* SMI */
static void acpiSmiWriteU8 (ACPIState *s, uint32_t addr, uint32_t val)
{
Log (("acpi: acpiSmiWriteU8 %#x\n", val));
if (val == ACPI_ENABLE)
s->pm1a_ctl |= SCI_EN;
else if (val == ACPI_DISABLE)
s->pm1a_ctl &= ~SCI_EN;
else
Log (("acpi: acpiSmiWriteU8 %#x <- unknown value\n", val));
}
static uint32_t find_rsdp_space (void)
{
return 0xe0000;
}
static void acpiPMTimerReset (ACPIState *s)
{
uint64_t interval, freq;
freq = TMTimerGetFreq (s->CTXSUFF(ts));
interval = ASMMultU64ByU32DivByU32 (0xffffffff, freq, PM_TMR_FREQ);
Log (("interval = %RU64\n", interval));
TMTimerSet (s->CTXSUFF(ts), TMTimerGet (s->CTXSUFF(ts)) + interval);
}
static DECLCALLBACK(void) acpiTimer (PPDMDEVINS pDevIns, PTMTIMER pTimer)
{
ACPIState *s = PDMINS2DATA (pDevIns, ACPIState *);
Log (("acpi: pm timer sts %#x (%d), en %#x (%d)\n",
s->pm1a_sts, (s->pm1a_sts & TMR_STS) != 0,
s->pm1a_en, (s->pm1a_en & TMR_EN) != 0));
update_pm1a (s, s->pm1a_sts | TMR_STS, s->pm1a_en);
acpiPMTimerReset (s);
}
/**
* _BST method.
*/
static void acpiFetchBatteryStatus (ACPIState *s)
{
uint32_t *p = s->au8BatteryInfo;
bool fPresent; /* battery present? */
PDMACPIBATCAPACITY hostRemainingCapacity; /* 0..100 */
PDMACPIBATSTATE hostBatteryState; /* bitfield */
uint32_t hostPresentRate; /* 0..1000 */
int rc;
if (!s->pDrv)
return;
rc = s->pDrv->pfnQueryBatteryStatus (s->pDrv, &fPresent, &hostRemainingCapacity,
&hostBatteryState, &hostPresentRate);
AssertRC (rc);
/* default values */
p[BAT_STATUS_STATE] = hostBatteryState;
p[BAT_STATUS_PRESENT_RATE] = hostPresentRate == ~0U ? 0xFFFFFFFF
: hostPresentRate * 50; /* mW */
p[BAT_STATUS_REMAINING_CAPACITY] = 50000; /* mWh */
p[BAT_STATUS_PRESENT_VOLTAGE] = 10000; /* mV */
/* did we get a valid battery state? */
if (hostRemainingCapacity != PDM_ACPI_BAT_CAPACITY_UNKNOWN)
p[BAT_STATUS_REMAINING_CAPACITY] = hostRemainingCapacity * 500; /* mWh */
if (hostBatteryState == PDM_ACPI_BAT_STATE_CHARGED)
p[BAT_STATUS_PRESENT_RATE] = 0; /* mV */
}
/**
* _BIF method.
*/
static void acpiFetchBatteryInfo (ACPIState *s)
{
uint32_t *p = s->au8BatteryInfo;
p[BAT_INFO_UNITS] = 0; /* mWh */
p[BAT_INFO_DESIGN_CAPACITY] = 50000; /* mWh */
p[BAT_INFO_LAST_FULL_CHARGE_CAPACITY] = 50000; /* mWh */
p[BAT_INFO_TECHNOLOGY] = BAT_TECH_PRIMARY;
p[BAT_INFO_DESIGN_VOLTAGE] = 10000; /* mV */
p[BAT_INFO_DESIGN_CAPACITY_OF_WARNING] = 100; /* mWh */
p[BAT_INFO_DESIGN_CAPACITY_OF_LOW] = 50; /* mWh */
p[BAT_INFO_CAPACITY_GRANULARITY_1] = 1; /* mWh */
p[BAT_INFO_CAPACITY_GRANULARITY_2] = 1; /* mWh */
}
/**
* _STA method.
*/
static uint32_t acpiGetBatteryDeviceStatus (ACPIState *s)
{
bool fPresent; /* battery present? */
PDMACPIBATCAPACITY hostRemainingCapacity; /* 0..100 */
PDMACPIBATSTATE hostBatteryState; /* bitfield */
uint32_t hostPresentRate; /* 0..1000 */
int rc;
if (!s->pDrv)
return 0;
rc = s->pDrv->pfnQueryBatteryStatus (s->pDrv, &fPresent, &hostRemainingCapacity,
&hostBatteryState, &hostPresentRate);
AssertRC (rc);
return fPresent
? STA_DEVICE_PRESENT_MASK /* present */
| STA_DEVICE_ENABLED_MASK /* enabled and decodes its resources */
| STA_DEVICE_SHOW_IN_UI_MASK /* should be shown in UI */
| STA_DEVICE_FUNCTIONING_PROPERLY_MASK /* functioning properly */
| STA_BATTERY_PRESENT_MASK /* battery is present */
: 0; /* device not present */
}
static uint32_t acpiGetPowerSource (ACPIState *s)
{
PDMACPIPOWERSOURCE ps;
/* query the current power source from the host driver */
if (!s->pDrv)
return AC_ONLINE;
int rc = s->pDrv->pfnQueryPowerSource (s->pDrv, &ps);
AssertRC (rc);
return ps == PDM_ACPI_POWER_SOURCE_BATTERY ? AC_OFFLINE : AC_ONLINE;
}
IO_WRITE_PROTO (acpiBatIndexWrite)
{
ACPIState *s = (ACPIState *)pvUser;
switch (cb)
{
case 4:
u32 >>= s->u8IndexShift;
/* see comment at the declaration of u8IndexShift */
if (s->u8IndexShift == 0 && u32 == (BAT_DEVICE_STATUS << 2))
{
s->u8IndexShift = 2;
u32 >>= 2;
}
Assert (u32 < BAT_INDEX_LAST);
s->uBatteryIndex = u32;
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_READ_PROTO (acpiBatDataRead)
{
ACPIState *s = (ACPIState *)pvUser;
switch (cb)
{
case 4:
switch (s->uBatteryIndex)
{
case BAT_STATUS_STATE:
acpiFetchBatteryStatus(s);
case BAT_STATUS_PRESENT_RATE:
case BAT_STATUS_REMAINING_CAPACITY:
case BAT_STATUS_PRESENT_VOLTAGE:
*pu32 = s->au8BatteryInfo[s->uBatteryIndex];
break;
case BAT_INFO_UNITS:
acpiFetchBatteryInfo(s);
case BAT_INFO_DESIGN_CAPACITY:
case BAT_INFO_LAST_FULL_CHARGE_CAPACITY:
case BAT_INFO_TECHNOLOGY:
case BAT_INFO_DESIGN_VOLTAGE:
case BAT_INFO_DESIGN_CAPACITY_OF_WARNING:
case BAT_INFO_DESIGN_CAPACITY_OF_LOW:
case BAT_INFO_CAPACITY_GRANULARITY_1:
case BAT_INFO_CAPACITY_GRANULARITY_2:
*pu32 = s->au8BatteryInfo[s->uBatteryIndex];
break;
case BAT_DEVICE_STATUS:
*pu32 = acpiGetBatteryDeviceStatus(s);
break;
case BAT_POWER_SOURCE:
*pu32 = acpiGetPowerSource(s);
break;
default:
AssertMsgFailed (("Invalid battery index %d\n", s->uBatteryIndex));
break;
}
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
// LogRel(("Query %04x => %08x\n", s->uBatteryIndex, *pu32));
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiSysInfoIndexWrite)
{
ACPIState *s = (ACPIState *)pvUser;
Log(("system_index = %d, %d\n", u32, u32 >> 2));
switch (cb) {
case 4:
if (u32 == SYSTEM_INFO_INDEX_VALID || u32 == SYSTEM_INFO_INDEX_INVALID)
s->uSystemInfoIndex = u32;
else
{
u32 >>= s->u8IndexShift;
Assert (u32 < SYSTEM_INFO_INDEX_LAST);
s->uSystemInfoIndex = u32;
}
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_READ_PROTO (acpiSysInfoDataRead)
{
ACPIState *s = (ACPIState *)pvUser;
switch (cb)
{
case 4:
switch (s->uSystemInfoIndex)
{
case SYSTEM_INFO_INDEX_MEMORY_LENGTH:
*pu32 = s->u64RamSize;
break;
case SYSTEM_INFO_INDEX_USE_IOAPIC:
*pu32 = s->u8UseIOApic;
break;
default:
AssertMsgFailed (("Invalid system info index %d\n", s->uSystemInfoIndex));
break;
}
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
Log(("index %d val %d\n", s->uSystemInfoIndex, *pu32));
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiSysInfoDataWrite)
{
ACPIState *s = (ACPIState *)pvUser;
Log(("addr=%#x cb=%d u32=%#x si=%#x\n", Port, cb, u32, s->uSystemInfoIndex));
if (cb == 4 && u32 == 0xbadc0de)
{
switch (s->uSystemInfoIndex)
{
case SYSTEM_INFO_INDEX_INVALID:
s->u8IndexShift = 0;
break;
case SYSTEM_INFO_INDEX_VALID:
s->u8IndexShift = 2;
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x system_index=%#x\n",
Port, cb, u32, s->uSystemInfoIndex));
break;
}
}
else
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
return VINF_SUCCESS;
}
/* IO Helpers */
IO_READ_PROTO (acpiPm1aEnRead)
{
switch (cb)
{
case 2:
*pu32 = acpiPm1aEnReadw ((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
IO_READ_PROTO (acpiPm1aStsRead)
{
switch (cb)
{
case 2:
*pu32 = acpiPm1aStsReadw ((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
IO_READ_PROTO (acpiPm1aCtlRead)
{
switch (cb)
{
case 2:
*pu32 = acpiPm1aCtlReadw ((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiPM1aEnWrite)
{
switch (cb)
{
case 2:
acpiPM1aEnWritew ((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiPM1aStsWrite)
{
switch (cb)
{
case 2:
acpiPM1aStsWritew ((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiPM1aCtlWrite)
{
switch (cb)
{
case 2:
return acpiPM1aCtlWritew ((ACPIState*)pvUser, Port, u32);
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
#endif /* IN_RING3 */
/**
* PMTMR readable from host/guest.
*/
IO_READ_PROTO (acpiPMTmrRead)
{
if (cb == 4)
{
ACPIState *s = PDMINS2DATA (pDevIns, ACPIState *);
int64_t now = TMTimerGet (s->CTXSUFF(ts));
int64_t elapsed = now - s->pm_timer_initial;
*pu32 = ASMMultU64ByU32DivByU32 (elapsed, PM_TMR_FREQ, TMTimerGetFreq (s->CTXSUFF(ts)));
Log (("acpi: acpiPMTmrRead -> %#x\n", *pu32));
return VINF_SUCCESS;
}
return VERR_IOM_IOPORT_UNUSED;
}
#ifdef IN_RING3
IO_READ_PROTO (acpiGpe0StsRead)
{
switch (cb)
{
case 1:
*pu32 = acpiGpe0StsReadb ((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
IO_READ_PROTO (acpiGpe0EnRead)
{
switch (cb)
{
case 1:
*pu32 = acpiGpe0EnReadb ((ACPIState*)pvUser, Port);
break;
default:
return VERR_IOM_IOPORT_UNUSED;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiGpe0StsWrite)
{
switch (cb)
{
case 1:
acpiGpe0StsWriteb ((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiGpe0EnWrite)
{
switch (cb)
{
case 1:
acpiGpe0EnWriteb ((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiSmiWrite)
{
switch (cb)
{
case 1:
acpiSmiWriteU8 ((ACPIState*)pvUser, Port, u32);
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiResetWrite)
{
switch (cb)
{
case 1:
return acpiResetWriteU8 ((ACPIState*)pvUser, Port, u32);
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
#ifdef DEBUG_ACPI
IO_WRITE_PROTO (acpiDhexWrite)
{
switch (cb)
{
case 1:
Log (("%#x\n", u32 & 0xff));
break;
case 2:
Log (("%#6x\n", u32 & 0xffff));
case 4:
Log (("%#10x\n", u32));
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
IO_WRITE_PROTO (acpiDchrWrite)
{
switch (cb)
{
case 1:
Log (("%c", u32 & 0xff));
break;
default:
AssertMsgFailed(("Port=%#x cb=%d u32=%#x\n", Port, cb, u32));
break;
}
return VINF_SUCCESS;
}
#endif /* DEBUG_ACPI */
/**
* Saved state structure description.
*/
static const SSMFIELD g_AcpiSavedStateFields[] =
{
SSMFIELD_ENTRY (ACPIState, pm1a_en),
SSMFIELD_ENTRY (ACPIState, pm1a_sts),
SSMFIELD_ENTRY (ACPIState, pm1a_ctl),
SSMFIELD_ENTRY (ACPIState, pm_timer_initial),
SSMFIELD_ENTRY (ACPIState, gpe0_en),
SSMFIELD_ENTRY (ACPIState, gpe0_sts),
SSMFIELD_ENTRY (ACPIState, uBatteryIndex),
SSMFIELD_ENTRY (ACPIState, uSystemInfoIndex),
SSMFIELD_ENTRY (ACPIState, u64RamSize),
SSMFIELD_ENTRY (ACPIState, u8IndexShift),
SSMFIELD_ENTRY (ACPIState, u8UseIOApic),
SSMFIELD_ENTRY (ACPIState, uSleepState),
SSMFIELD_ENTRY_TERM ()
};
static DECLCALLBACK(int) acpi_save_state (PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
{
ACPIState *s = PDMINS2DATA (pDevIns, ACPIState *);
return SSMR3PutStruct (pSSMHandle, s, &g_AcpiSavedStateFields[0]);
}
static DECLCALLBACK(int) acpi_load_state (PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle,
uint32_t u32Version)
{
ACPIState *s = PDMINS2DATA (pDevIns, ACPIState *);
int rc;
if (u32Version != 4)
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
rc = SSMR3GetStruct (pSSMHandle, s, &g_AcpiSavedStateFields[0]);
if (VBOX_SUCCESS (rc))
{
acpiFetchBatteryStatus (s);
acpiFetchBatteryInfo (s);
acpiPMTimerReset (s);
}
return rc;
}
/**
* Queries an interface to the driver.
*
* @returns Pointer to interface.
* @returns NULL if the interface was not supported by the driver.
* @param pInterface Pointer to this interface structure.
* @param enmInterface The requested interface identification.
* @thread Any thread.
*/
static DECLCALLBACK(void *) acpiQueryInterface(PPDMIBASE pInterface, PDMINTERFACE enmInterface)
{
ACPIState *pData = (ACPIState*)((uintptr_t)pInterface - RT_OFFSETOF(ACPIState, IBase));
switch (enmInterface)
{
case PDMINTERFACE_BASE:
return &pData->IBase;
case PDMINTERFACE_ACPI_PORT:
return &pData->IACPIPort;
default:
return NULL;
}
}
/**
* Create the ACPI tables.
*/
static int acpiPlantTables (ACPIState *s)
{
int rc;
uint32_t rsdt_addr, xsdt_addr, fadt_addr, facs_addr, dsdt_addr, last_addr, apic_addr = 0;
uint32_t addend = 0;
uint32_t rsdt_addrs[4];
uint32_t cAddr;
size_t rsdt_tbl_len = sizeof(ACPITBLHEADER);
size_t xsdt_tbl_len = sizeof(ACPITBLHEADER);
cAddr = 1; /* FADT */
if (s->u8UseIOApic)
cAddr++; /* MADT */
rsdt_tbl_len += cAddr*4; /* each entry: 32 bits phys. address. */
xsdt_tbl_len += cAddr*8; /* each entry: 64 bits phys. address. */
rc = CFGMR3QueryU64 (s->pDevIns->pCfgHandle, "RamSize", &s->u64RamSize);
if (VBOX_FAILURE (rc))
return PDMDEV_SET_ERROR(s->pDevIns, rc,
N_("Configuration error: Querying "
"\"RamSize\" as integer failed"));
if (s->u64RamSize > (0xffffffff - 0x10000))
return PDMDEV_SET_ERROR(s->pDevIns, VERR_OUT_OF_RANGE,
N_("Configuration error: Invalid \"RamSize\", maximum allowed "
"value is 4095MB"));
rsdt_addr = 0;
xsdt_addr = RT_ALIGN_32 (rsdt_addr + rsdt_tbl_len, 16);
fadt_addr = RT_ALIGN_32 (xsdt_addr + xsdt_tbl_len, 16);
facs_addr = RT_ALIGN_32 (fadt_addr + sizeof(ACPITBLFADT), 16);
if (s->u8UseIOApic)
{
apic_addr = RT_ALIGN_32 (facs_addr + sizeof(ACPITBLFACS), 16);
dsdt_addr = RT_ALIGN_32 (apic_addr + sizeof(ACPITBLMADT), 16);
}
else
{
dsdt_addr = RT_ALIGN_32 (facs_addr + sizeof(ACPITBLFACS), 16);
}
last_addr = RT_ALIGN_32 (dsdt_addr + sizeof(AmlCode), 16);
if (last_addr > 0x10000)
return PDMDEV_SET_ERROR(s->pDevIns, VERR_TOO_MUCH_DATA,
N_("Error: ACPI tables > 64KB!"));
Log(("RSDP 0x%08X\n", find_rsdp_space()));
addend = (uint32_t) s->u64RamSize - 0x10000;
Log(("RSDT 0x%08X XSDT 0x%08X\n", rsdt_addr + addend, xsdt_addr + addend));
Log(("FACS 0x%08X FADT 0x%08X\n", facs_addr + addend, fadt_addr + addend));
Log(("DSDT 0x%08X\n", dsdt_addr + addend));
acpiSetupRSDP ((ACPITBLRSDP*)s->au8RSDPPage, rsdt_addr + addend, xsdt_addr + addend);
acpiSetupDSDT (s, dsdt_addr + addend);
acpiSetupFACS (s, facs_addr + addend);
acpiSetupFADT (s, fadt_addr + addend, facs_addr + addend, dsdt_addr + addend);
rsdt_addrs[0] = fadt_addr + addend;
if (s->u8UseIOApic)
{
acpiSetupMADT (s, apic_addr + addend);
rsdt_addrs[1] = apic_addr + addend;
}
rc = acpiSetupRSDT (s, rsdt_addr + addend, cAddr, rsdt_addrs);
if (VBOX_FAILURE(rc))
return rc;
return acpiSetupXSDT (s, xsdt_addr + addend, cAddr, rsdt_addrs);
}
/**
* Construct a device instance for a VM.
*
* @returns VBox status.
* @param pDevIns The device instance data.
* If the registration structure is needed, pDevIns->pDevReg points to it.
* @param iInstance Instance number. Use this to figure out which registers and such to use.
* The device number is also found in pDevIns->iInstance, but since it's
* likely to be freqently used PDM passes it as parameter.
* @param pCfgHandle Configuration node handle for the device. Use this to obtain the configuration
* of the device instance. It's also found in pDevIns->pCfgHandle, but like
* iInstance it's expected to be used a bit in this function.
*/
static DECLCALLBACK(int) acpiConstruct (PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle)
{
int rc;
ACPIState *s = PDMINS2DATA (pDevIns, ACPIState *);
uint32_t rsdp_addr;
PCIDevice *dev;
bool fGCEnabled;
bool fR0Enabled;
/* Validate and read the configuration. */
if (!CFGMR3AreValuesValid (pCfgHandle, "RamSize\0IOAPIC\0GCEnabled\0R0Enabled\0"))
return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
N_("Configuration error: Invalid config key for ACPI device"));
s->pDevIns = pDevIns;
/* query whether we are supposed to present an IOAPIC */
rc = CFGMR3QueryU8 (pCfgHandle, "IOAPIC", &s->u8UseIOApic);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
s->u8UseIOApic = 1;
else if (VBOX_FAILURE (rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"IOAPIC\"."));
rc = CFGMR3QueryBool (pCfgHandle, "GCEnabled", &fGCEnabled);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
fGCEnabled = true;
else if (VBOX_FAILURE (rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Failed to read \"GCEnabled\"."));
rc = CFGMR3QueryBool(pCfgHandle, "R0Enabled", &fR0Enabled);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
fR0Enabled = true;
else if (VBOX_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("configuration error: failed to read R0Enabled as boolean."));
/* */
rsdp_addr = find_rsdp_space ();
if (!rsdp_addr)
return PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY,
N_("Can not find space for RSDP. ACPI is disabled."));
rc = acpiPlantTables (s);
if (VBOX_FAILURE (rc))
return rc;
rc = PDMDevHlpROMRegister (pDevIns, rsdp_addr, 0x1000, s->au8RSDPPage, false /* fShadow */, "ACPI RSDP");
if (VBOX_FAILURE (rc))
return rc;
#define R(addr, cnt, writer, reader, description) \
do { \
rc = PDMDevHlpIOPortRegister (pDevIns, addr, cnt, s, writer, reader, \
NULL, NULL, description); \
if (VBOX_FAILURE (rc)) \
return rc; \
} while (0)
#define L (GPE0_BLK_LEN / 2)
R (PM1a_EVT_BLK+2, 1, acpiPM1aEnWrite, acpiPm1aEnRead, "ACPI PM1a Enable");
R (PM1a_EVT_BLK, 1, acpiPM1aStsWrite, acpiPm1aStsRead, "ACPI PM1a Status");
R (PM1a_CTL_BLK, 1, acpiPM1aCtlWrite, acpiPm1aCtlRead, "ACPI PM1a Control");
R (PM_TMR_BLK, 1, NULL, acpiPMTmrRead, "ACPI PM Timer");
R (SMI_CMD, 1, acpiSmiWrite, NULL, "ACPI SMI");
#ifdef DEBUG_ACPI
R (DEBUG_HEX, 1, acpiDhexWrite, NULL, "ACPI Debug hex");
R (DEBUG_CHR, 1, acpiDchrWrite, NULL, "ACPI Debug char");
#endif
R (BAT_INDEX, 1, acpiBatIndexWrite, NULL, "ACPI Battery status index");
R (BAT_DATA, 1, NULL, acpiBatDataRead, "ACPI Battery status data");
R (SYSI_INDEX, 1, acpiSysInfoIndexWrite, NULL, "ACPI system info index");
R (SYSI_DATA, 1, acpiSysInfoDataWrite, acpiSysInfoDataRead, "ACPI system info data");
R (GPE0_BLK + L, L, acpiGpe0EnWrite, acpiGpe0EnRead, "ACPI GPE0 Enable");
R (GPE0_BLK, L, acpiGpe0StsWrite, acpiGpe0StsRead, "ACPI GPE0 Status");
R (ACPI_RESET_BLK, 1, acpiResetWrite, NULL, "ACPI Reset");
#undef L
#undef R
/* register GC stuff */
if (fGCEnabled)
{
rc = PDMDevHlpIOPortRegisterGC (pDevIns, PM_TMR_BLK, 1, 0, NULL, "acpiPMTmrRead",
NULL, NULL, "ACPI PM Timer");
AssertRCReturn(rc, rc);
}
/* register R0 stuff */
if (fR0Enabled)
{
rc = PDMDevHlpIOPortRegisterR0 (pDevIns, PM_TMR_BLK, 1, 0, NULL, "acpiPMTmrRead",
NULL, NULL, "ACPI PM Timer");
AssertRCReturn(rc, rc);
}
rc = PDMDevHlpTMTimerCreate (pDevIns, TMCLOCK_VIRTUAL_SYNC, acpiTimer, "ACPI Timer", &s->tsHC);
if (VBOX_FAILURE(rc))
{
AssertMsgFailed(("pfnTMTimerCreate -> %Vrc\n", rc));
return rc;
}
s->tsGC = TMTimerGCPtr (s->tsHC);
s->pm_timer_initial = TMTimerGet (s->tsHC);
acpiPMTimerReset (s);
dev = &s->dev;
dev->config[0x00] = 0x86;
dev->config[0x01] = 0x80;
dev->config[0x02] = 0x13;
dev->config[0x03] = 0x71;
dev->config[0x04] = 0x01;
dev->config[0x05] = 0x00;
dev->config[0x06] = 0x80;
dev->config[0x07] = 0x02;
dev->config[0x08] = 0x08;
dev->config[0x09] = 0x00;
dev->config[0x0a] = 0x80;
dev->config[0x0b] = 0x06;
dev->config[0x0e] = 0x80;
dev->config[0x0f] = 0x00;
#if 0 /* The ACPI controller usually has no subsystem ID. */
dev->config[0x2c] = 0x86;
dev->config[0x2d] = 0x80;
dev->config[0x2e] = 0x00;
dev->config[0x2f] = 0x00;
#endif
dev->config[0x3c] = SCI_INT;
rc = PDMDevHlpPCIRegister (pDevIns, dev);
if (VBOX_FAILURE (rc))
return rc;
rc = PDMDevHlpSSMRegister (pDevIns, pDevIns->pDevReg->szDeviceName, iInstance, 4, sizeof(*s),
NULL, acpi_save_state, NULL, NULL, acpi_load_state, NULL);
if (VBOX_FAILURE(rc))
return rc;
/*
* Interfaces
*/
/* IBase */
s->IBase.pfnQueryInterface = acpiQueryInterface;
/* IACPIPort */
s->IACPIPort.pfnPowerButtonPress = acpiPowerButtonPress;
/*
* Get the corresponding connector interface
*/
rc = PDMDevHlpDriverAttach (pDevIns, 0, &s->IBase, &s->pDrvBase, "ACPI Driver Port");
if (VBOX_SUCCESS (rc))
{
s->pDrv = (PPDMIACPICONNECTOR)s->pDrvBase->pfnQueryInterface (s->pDrvBase,
PDMINTERFACE_ACPI_CONNECTOR);
if (!s->pDrv)
return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_MISSING_INTERFACE,
N_("LUN #0 doesn't have an ACPI connector interface!\n"));
}
else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
{
Log (("acpi: %s/%d: warning: no driver attached to LUN #0!\n",
pDevIns->pDevReg->szDeviceName, pDevIns->iInstance));
rc = VINF_SUCCESS;
}
else
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Failed to attach LUN #0!"));
return rc;
}
/**
* Relocates the GC pointer members.
*/
static DECLCALLBACK(void) acpiRelocate (PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
ACPIState *s = PDMINS2DATA (pDevIns, ACPIState *);
s->tsGC = TMTimerGCPtr (s->tsHC);
}
static DECLCALLBACK(void) acpiReset (PPDMDEVINS pDevIns)
{
ACPIState *s = PDMINS2DATA (pDevIns, ACPIState *);
s->pm1a_en = 0;
s->pm1a_sts = 0;
s->pm1a_ctl = 0;
s->pm_timer_initial = TMTimerGet (s->CTXSUFF(ts));
acpiPMTimerReset(s);
s->uBatteryIndex = 0;
s->uSystemInfoIndex = 0;
s->gpe0_en = 0;
s->gpe0_sts = 0;
s->uSleepState = 0;
acpiPlantTables(s);
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DeviceACPI =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szDeviceName */
"acpi",
/* szGCMod */
"VBoxDDGC.gc",
/* szR0Mod */
"VBoxDDR0.r0",
/* pszDescription */
"Advanced Configuration and Power Interface",
/* fFlags */
PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_ACPI,
/* cMaxInstances */
~0,
/* cbInstance */
sizeof(ACPIState),
/* pfnConstruct */
acpiConstruct,
/* pfnDestruct */
NULL,
/* pfnRelocate */
acpiRelocate,
/* pfnIOCtl */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
acpiReset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
NULL,
/* pfnDetach */
NULL,
/* pfnQueryInterface. */
NULL
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */