slirp.c revision d70a104356024e1b9c0930be52b78b03146e99bb
#include "slirp.h"
#ifdef RT_OS_OS2
# include <paths.h>
#endif
#include <VBox/err.h>
#include <iprt/assert.h>
static const uint8_t special_ethaddr[6] = {
0x52, 0x54, 0x00, 0x12, 0x35, 0x00
};
#ifdef _WIN32
static int get_dns_addr_domain(PNATState pData, bool fVerbose,
struct in_addr *pdns_addr,
const char **ppszDomain)
{
int rc = 0;
FIXED_INFO *FixedInfo=NULL;
ULONG BufLen;
DWORD ret;
IP_ADDR_STRING *pIPAddr;
struct in_addr tmp_addr;
FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
BufLen = sizeof(FIXED_INFO);
/** @todo: this API returns all DNS servers, no matter whether the
* corresponding network adapter is disabled or not. Maybe replace
* this by GetAdapterAddresses(), which is XP/Vista only though. */
if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
if (FixedInfo) {
GlobalFree(FixedInfo);
FixedInfo = NULL;
}
FixedInfo = GlobalAlloc(GPTR, BufLen);
}
if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
Log(("GetNetworkParams failed. ret = %08x\n", (u_int)ret ));
if (FixedInfo) {
GlobalFree(FixedInfo);
FixedInfo = NULL;
}
rc = -1;
goto get_dns_prefix;
}
pIPAddr = &(FixedInfo->DnsServerList);
inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
Log(("nat: DNS Servers:\n"));
if (fVerbose || pdns_addr->s_addr != tmp_addr.s_addr)
LogRel(("NAT: DNS address: %s\n", pIPAddr->IpAddress.String));
*pdns_addr = tmp_addr;
pIPAddr = FixedInfo -> DnsServerList.Next;
while ( pIPAddr )
{
if (fVerbose)
LogRel(("NAT: ignored DNS address: %s\n", pIPAddr ->IpAddress.String));
pIPAddr = pIPAddr ->Next;
}
if (FixedInfo) {
GlobalFree(FixedInfo);
FixedInfo = NULL;
}
get_dns_prefix:
if (ppszDomain)
{
OSVERSIONINFO ver;
char szDnsDomain[256];
DWORD dwSize = sizeof(szDnsDomain);
*ppszDomain = NULL;
GetVersionEx(&ver);
if (ver.dwMajorVersion >= 5)
{
/* GetComputerNameEx exists in Windows versions starting with 2000. */
if (GetComputerNameEx(ComputerNameDnsDomain, szDnsDomain, &dwSize))
{
if (szDnsDomain[0])
{
/* Just non-empty strings are valid. */
*ppszDomain = RTStrDup(szDnsDomain);
if (pData->fPassDomain)
{
if (fVerbose)
LogRel(("NAT: passing domain name %s\n", szDnsDomain));
}
else
Log(("nat: ignoring domain %s\n", szDnsDomain));
}
}
else
Log(("nat: GetComputerNameEx failed (%d)\n", GetLastError()));
}
}
return rc;
}
#else
static int get_dns_addr_domain(PNATState pData, bool fVerbose,
struct in_addr *pdns_addr,
const char **ppszDomain)
{
char buff[512];
char buff2[256];
FILE *f;
int found = 0;
struct in_addr tmp_addr;
#ifdef RT_OS_OS2
/* Try various locations. */
char *etc = getenv("ETC");
f = NULL;
if (etc)
{
snprintf(buff, sizeof(buff), "%s/RESOLV2", etc);
f = fopen(buff, "rt");
}
if (!f) {
snprintf(buff, sizeof(buff), "%s/RESOLV2", _PATH_ETC);
f = fopen(buff, "rt");
}
if (!f) {
snprintf(buff, sizeof(buff), "%s/resolv.conf", _PATH_ETC);
f = fopen(buff, "rt");
}
#else
f = fopen("/etc/resolv.conf", "r");
#endif
if (!f)
return -1;
if (ppszDomain)
*ppszDomain = NULL;
Log(("nat: DNS Servers:\n"));
while (fgets(buff, 512, f) != NULL) {
if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
if (!inet_aton(buff2, &tmp_addr))
continue;
if (tmp_addr.s_addr == loopback_addr.s_addr)
tmp_addr = our_addr;
/* If it's the first one, set it to dns_addr */
if (!found)
{
if (fVerbose || pdns_addr->s_addr != tmp_addr.s_addr)
LogRel(("NAT: DNS address: %s\n", buff2));
*pdns_addr = tmp_addr;
}
else
{
if (fVerbose)
LogRel(("NAT: ignored DNS address: %s\n", buff2));
}
found++;
}
if ( ppszDomain
&& (!strncmp(buff, "domain", 6) || !strncmp(buff, "search", 6)))
{
/* Domain name/search list present. Pick first entry */
if (*ppszDomain == NULL)
{
char *tok;
char *saveptr;
tok = strtok_r(&buff[6], " \t\n", &saveptr);
if (tok)
{
*ppszDomain = RTStrDup(tok);
if (pData->fPassDomain)
{
if (fVerbose)
LogRel(("NAT: passing domain name %s\n", tok));
}
else
Log(("nat: ignoring domain %s\n", tok));
}
}
}
}
fclose(f);
if (!found)
return -1;
return 0;
}
#endif
int get_dns_addr(PNATState pData, struct in_addr *pdns_addr)
{
return get_dns_addr_domain(pData, false, pdns_addr, NULL);
}
int slirp_init(PNATState *ppData, const char *pszNetAddr, bool fPassDomain,
const char *pszTFTPPrefix, const char *pszBootFile,
void *pvUser)
{
int fNATfailed = 0;
PNATState pData = malloc(sizeof(NATState));
*ppData = pData;
if (!pData)
return VERR_NO_MEMORY;
memset(pData, '\0', sizeof(NATState));
pData->fPassDomain = fPassDomain;
pData->pvUser = pvUser;
#if ARCH_BITS == 64
pData->cpvHashUsed = 1;
#endif
tftp_prefix = pszTFTPPrefix;
bootp_filename = pszBootFile;
#ifdef _WIN32
{
WSADATA Data;
WSAStartup(MAKEWORD(2,0), &Data);
}
#endif
Assert(sizeof(struct ip) == 20);
link_up = 1;
if_init(pData);
ip_init(pData);
/* Initialise mbufs *after* setting the MTU */
m_init(pData);
/* set default addresses */
inet_aton("127.0.0.1", &loopback_addr);
inet_aton("127.0.0.1", &dns_addr);
if (get_dns_addr_domain(pData, true, &dns_addr, &pData->pszDomain) < 0)
fNATfailed = 1;
inet_aton(pszNetAddr, &special_addr);
alias_addr.s_addr = special_addr.s_addr | htonl(CTL_ALIAS);
getouraddr(pData);
return fNATfailed ? VINF_NAT_DNS : VINF_SUCCESS;
}
/**
* Marks the link as up, making it possible to establish new connections.
*/
void slirp_link_up(PNATState pData)
{
link_up = 1;
}
/**
* Marks the link as down and cleans up the current connections.
*/
void slirp_link_down(PNATState pData)
{
struct socket *so;
while ((so = tcb.so_next) != &tcb)
{
if (so->so_state & SS_NOFDREF || so->s == -1)
sofree(pData, so);
else
tcp_drop(pData, sototcpcb(so), 0);
}
while ((so = udb.so_next) != &udb)
udp_detach(pData, so);
link_up = 0;
}
/**
* Terminates the slirp component.
*/
void slirp_term(PNATState pData)
{
if (pData->pszDomain)
RTStrFree((char *)(void *)pData->pszDomain);
#if ARCH_BITS == 64
LogRel(("NAT: cpvHashUsed=%RU32 cpvHashCollisions=%RU32 cpvHashInserts=%RU64 cpvHashDone=%RU64\n",
pData->cpvHashUsed, pData->cpvHashCollisions, pData->cpvHashInserts, pData->cpvHashDone));
#endif
slirp_link_down(pData);
#ifdef WIN32
WSACleanup();
#endif
#ifdef LOG_ENABLED
Log(("\n"
"NAT statistics\n"
"--------------\n"
"\n"));
ipstats(pData);
tcpstats(pData);
udpstats(pData);
icmpstats(pData);
mbufstats(pData);
sockstats(pData);
Log(("\n"
"\n"
"\n"));
#endif
free(pData);
}
#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
#define UPD_NFDS(x) if (nfds < (x)) nfds = (x)
/*
* curtime kept to an accuracy of 1ms
*/
#ifdef _WIN32
static void updtime(PNATState pData)
{
struct _timeb tb;
_ftime(&tb);
curtime = (u_int)tb.time * (u_int)1000;
curtime += (u_int)tb.millitm;
}
#else
static void updtime(PNATState pData)
{
gettimeofday(&tt, 0);
curtime = (u_int)tt.tv_sec * (u_int)1000;
curtime += (u_int)tt.tv_usec / (u_int)1000;
if ((tt.tv_usec % 1000) >= 500)
curtime++;
}
#endif
void slirp_select_fill(PNATState pData, int *pnfds,
fd_set *readfds, fd_set *writefds, fd_set *xfds)
{
struct socket *so, *so_next;
struct timeval timeout;
int nfds;
int tmp_time;
nfds = *pnfds;
/*
* First, TCP sockets
*/
do_slowtimo = 0;
if (link_up) {
/*
* *_slowtimo needs calling if there are IP fragments
* in the fragment queue, or there are TCP connections active
*/
do_slowtimo = ((tcb.so_next != &tcb) ||
((struct ipasfrag *)&ipq != u32_to_ptr(pData, ipq.next, struct ipasfrag *)));
for (so = tcb.so_next; so != &tcb; so = so_next) {
so_next = so->so_next;
/*
* See if we need a tcp_fasttimo
*/
if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK)
time_fasttimo = curtime; /* Flag when we want a fasttimo */
/*
* NOFDREF can include still connecting to local-host,
* newly socreated() sockets etc. Don't want to select these.
*/
if (so->so_state & SS_NOFDREF || so->s == -1)
continue;
/*
* Set for reading sockets which are accepting
*/
if (so->so_state & SS_FACCEPTCONN) {
FD_SET(so->s, readfds);
UPD_NFDS(so->s);
continue;
}
/*
* Set for writing sockets which are connecting
*/
if (so->so_state & SS_ISFCONNECTING) {
FD_SET(so->s, writefds);
UPD_NFDS(so->s);
continue;
}
/*
* Set for writing if we are connected, can send more, and
* we have something to send
*/
if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
FD_SET(so->s, writefds);
UPD_NFDS(so->s);
}
/*
* Set for reading (and urgent data) if we are connected, can
* receive more, and we have room for it XXX /2 ?
*/
if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
FD_SET(so->s, readfds);
FD_SET(so->s, xfds);
UPD_NFDS(so->s);
}
}
/*
* UDP sockets
*/
for (so = udb.so_next; so != &udb; so = so_next) {
so_next = so->so_next;
/*
* See if it's timed out
*/
if (so->so_expire) {
if (so->so_expire <= curtime) {
udp_detach(pData, so);
continue;
} else
do_slowtimo = 1; /* Let socket expire */
}
/*
* When UDP packets are received from over the
* link, they're sendto()'d straight away, so
* no need for setting for writing
* Limit the number of packets queued by this session
* to 4. Note that even though we try and limit this
* to 4 packets, the session could have more queued
* if the packets needed to be fragmented
* (XXX <= 4 ?)
*/
if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
FD_SET(so->s, readfds);
UPD_NFDS(so->s);
}
}
}
/*
* Setup timeout to use minimum CPU usage, especially when idle
*/
/*
* First, see the timeout needed by *timo
*/
timeout.tv_sec = 0;
timeout.tv_usec = -1;
/*
* If a slowtimo is needed, set timeout to 500ms from the last
* slow timeout. If a fast timeout is needed, set timeout within
* 200ms of when it was requested.
*/
if (do_slowtimo) {
/* XXX + 10000 because some select()'s aren't that accurate */
timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000;
if (timeout.tv_usec < 0)
timeout.tv_usec = 0;
else if (timeout.tv_usec > 510000)
timeout.tv_usec = 510000;
/* Can only fasttimo if we also slowtimo */
if (time_fasttimo) {
tmp_time = (200 - (curtime - time_fasttimo)) * 1000;
if (tmp_time < 0)
tmp_time = 0;
/* Choose the smallest of the 2 */
if (tmp_time < timeout.tv_usec)
timeout.tv_usec = (u_int)tmp_time;
}
}
*pnfds = nfds;
}
void slirp_select_poll(PNATState pData, fd_set *readfds, fd_set *writefds, fd_set *xfds)
{
struct socket *so, *so_next;
int ret;
/* Update time */
updtime(pData);
/*
* See if anything has timed out
*/
if (link_up) {
if (time_fasttimo && ((curtime - time_fasttimo) >= 2)) {
tcp_fasttimo(pData);
time_fasttimo = 0;
}
if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) {
ip_slowtimo(pData);
tcp_slowtimo(pData);
last_slowtimo = curtime;
}
}
/*
* Check sockets
*/
if (link_up) {
/*
* Check TCP sockets
*/
for (so = tcb.so_next; so != &tcb; so = so_next) {
so_next = so->so_next;
/*
* FD_ISSET is meaningless on these sockets
* (and they can crash the program)
*/
if (so->so_state & SS_NOFDREF || so->s == -1)
continue;
/*
* Check for URG data
* This will soread as well, so no need to
* test for readfds below if this succeeds
*/
if (FD_ISSET(so->s, xfds))
sorecvoob(pData, so);
/*
* Check sockets for reading
*/
else if (FD_ISSET(so->s, readfds)) {
/*
* Check for incoming connections
*/
if (so->so_state & SS_FACCEPTCONN) {
tcp_connect(pData, so);
continue;
} /* else */
ret = soread(pData, so);
/* Output it if we read something */
if (ret > 0)
tcp_output(pData, sototcpcb(so));
}
/*
* Check sockets for writing
*/
if (FD_ISSET(so->s, writefds)) {
/*
* Check for non-blocking, still-connecting sockets
*/
if (so->so_state & SS_ISFCONNECTING) {
/* Connected */
so->so_state &= ~SS_ISFCONNECTING;
ret = send(so->s, (const char *)&ret, 0, 0);
if (ret < 0) {
/* XXXXX Must fix, zero bytes is a NOP */
if (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINPROGRESS || errno == ENOTCONN)
continue;
/* else failed */
so->so_state = SS_NOFDREF;
}
/* else so->so_state &= ~SS_ISFCONNECTING; */
/*
* Continue tcp_input
*/
tcp_input(pData, (struct mbuf *)NULL, sizeof(struct ip), so);
/* continue; */
} else
ret = sowrite(pData, so);
/*
* XXXXX If we wrote something (a lot), there
* could be a need for a window update.
* In the worst case, the remote will send
* a window probe to get things going again
*/
}
/*
* Probe a still-connecting, non-blocking socket
* to check if it's still alive
*/
#ifdef PROBE_CONN
if (so->so_state & SS_ISFCONNECTING) {
ret = recv(so->s, (char *)&ret, 0,0);
if (ret < 0) {
/* XXX */
if (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINPROGRESS || errno == ENOTCONN)
continue; /* Still connecting, continue */
/* else failed */
so->so_state = SS_NOFDREF;
/* tcp_input will take care of it */
} else {
ret = send(so->s, &ret, 0,0);
if (ret < 0) {
/* XXX */
if (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINPROGRESS || errno == ENOTCONN)
continue;
/* else failed */
so->so_state = SS_NOFDREF;
} else
so->so_state &= ~SS_ISFCONNECTING;
}
tcp_input((struct mbuf *)NULL, sizeof(struct ip),so);
} /* SS_ISFCONNECTING */
#endif
}
/*
* Now UDP sockets.
* Incoming packets are sent straight away, they're not buffered.
* Incoming UDP data isn't buffered either.
*/
for (so = udb.so_next; so != &udb; so = so_next) {
so_next = so->so_next;
if (so->s != -1 && FD_ISSET(so->s, readfds)) {
sorecvfrom(pData, so);
}
}
}
/*
* See if we can start outputting
*/
if (if_queued && link_up)
if_start(pData);
}
#define ETH_ALEN 6
#define ETH_HLEN 14
#define ETH_P_IP 0x0800 /* Internet Protocol packet */
#define ETH_P_ARP 0x0806 /* Address Resolution packet */
#define ARPOP_REQUEST 1 /* ARP request */
#define ARPOP_REPLY 2 /* ARP reply */
struct ethhdr
{
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
unsigned char h_source[ETH_ALEN]; /* source ether addr */
unsigned short h_proto; /* packet type ID field */
};
struct arphdr
{
unsigned short ar_hrd; /* format of hardware address */
unsigned short ar_pro; /* format of protocol address */
unsigned char ar_hln; /* length of hardware address */
unsigned char ar_pln; /* length of protocol address */
unsigned short ar_op; /* ARP opcode (command) */
/*
* Ethernet looks like this : This bit is variable sized however...
*/
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
unsigned char ar_sip[4]; /* sender IP address */
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
unsigned char ar_tip[4]; /* target IP address */
};
static
void arp_input(PNATState pData, const uint8_t *pkt, int pkt_len)
{
struct ethhdr *eh = (struct ethhdr *)pkt;
struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN);
uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)];
struct ethhdr *reh = (struct ethhdr *)arp_reply;
struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN);
int ar_op;
struct ex_list *ex_ptr;
ar_op = ntohs(ah->ar_op);
switch(ar_op) {
case ARPOP_REQUEST:
if (!memcmp(ah->ar_tip, &special_addr, 3)) {
if (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS)
goto arp_ok;
for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
if (ex_ptr->ex_addr == ah->ar_tip[3])
goto arp_ok;
}
return;
arp_ok:
/* XXX: make an ARP request to have the client address */
memcpy(client_ethaddr, eh->h_source, ETH_ALEN);
/* ARP request for alias/dns mac address */
memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1);
reh->h_source[5] = ah->ar_tip[3];
reh->h_proto = htons(ETH_P_ARP);
rah->ar_hrd = htons(1);
rah->ar_pro = htons(ETH_P_IP);
rah->ar_hln = ETH_ALEN;
rah->ar_pln = 4;
rah->ar_op = htons(ARPOP_REPLY);
memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
memcpy(rah->ar_sip, ah->ar_tip, 4);
memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
memcpy(rah->ar_tip, ah->ar_sip, 4);
slirp_output(pData->pvUser, arp_reply, sizeof(arp_reply));
}
break;
default:
break;
}
}
void slirp_input(PNATState pData, const uint8_t *pkt, int pkt_len)
{
struct mbuf *m;
int proto;
if (pkt_len < ETH_HLEN)
return;
proto = ntohs(*(uint16_t *)(pkt + 12));
switch(proto) {
case ETH_P_ARP:
arp_input(pData, pkt, pkt_len);
break;
case ETH_P_IP:
/* Update time. Important if the network is very quiet, as otherwise
* the first outgoing connection gets an incorrect timestamp. */
updtime(pData);
m = m_get(pData);
if (!m)
return;
/* Note: we add to align the IP header */
if (M_FREEROOM(m) < pkt_len + 2) {
m_inc(m, pkt_len + 2);
}
m->m_len = pkt_len + 2;
memcpy(m->m_data + 2, pkt, pkt_len);
m->m_data += 2 + ETH_HLEN;
m->m_len -= 2 + ETH_HLEN;
ip_input(pData, m);
break;
default:
break;
}
}
/* output the IP packet to the ethernet device */
void if_encap(PNATState pData, const uint8_t *ip_data, int ip_data_len)
{
uint8_t buf[1600];
struct ethhdr *eh = (struct ethhdr *)buf;
if (ip_data_len + ETH_HLEN > sizeof(buf))
return;
memcpy(eh->h_dest, client_ethaddr, ETH_ALEN);
memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1);
/* XXX: not correct */
eh->h_source[5] = CTL_ALIAS;
eh->h_proto = htons(ETH_P_IP);
memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len);
slirp_output(pData->pvUser, buf, ip_data_len + ETH_HLEN);
}
int slirp_redir(PNATState pData, int is_udp, int host_port,
struct in_addr guest_addr, int guest_port)
{
if (is_udp) {
if (!udp_listen(pData, htons(host_port), guest_addr.s_addr,
htons(guest_port), 0))
return -1;
} else {
if (!solisten(pData, htons(host_port), guest_addr.s_addr,
htons(guest_port), 0))
return -1;
}
return 0;
}
int slirp_add_exec(PNATState pData, int do_pty, const char *args, int addr_low_byte,
int guest_port)
{
return add_exec(&exec_list, do_pty, (char *)args,
addr_low_byte, htons(guest_port));
}