dumpnode.c revision 4fd606d1f5abe38e1f42c38de1d2e895166bd0f4
#include <stdio.h>
#include <ctype.h>
#include "set.h"
#include "syn.h"
#include "hash.h"
#include "generic.h"
#ifdef __USE_PROTOS
void dumpset1(set s)
#else
void dumpset1(s)
set s;
#endif
{
if (set_nil(s)) {
fprintf(stderr,"{}");
} else {
s_fprT(stderr,s);
};
}
#ifdef __USE_PROTOS
void dumpset(set s)
#else
void dumpset(s)
set s;
#endif
{
dumpset1(s);
fprintf(stderr,"\n");
}
#ifdef __USE_PROTOS
int isEndRule(Node * p)
#else
int isEndRule(p)
Node * p;
#endif
{
int result=0;
if ( p->ntype == nJunction &&
( (Junction *) p)->jtype == EndRule) {
result=1;
};
return result;
}
#ifdef __USE_PROTOS
void dumppred1(int depth,Predicate *p)
#else
void dumppred1(depth,p)
int depth;
Predicate *p;
#endif
{
int i;
int k;
for (i=0; i<depth ; i++) {
fprintf(stderr," ");
};
if (p->expr == PRED_AND_LIST ||
p->expr == PRED_OR_LIST) {
fprintf(stderr," %s", (p->expr == NULL ? "null expr" : p->expr));
if (p->inverted) fprintf(stderr," predicate inverted !");
if (p->redundant) {
fprintf(stderr," Redundant!");
};
if (p->isConst) fprintf(stderr," const %d !",p->constValue);
fprintf(stderr,"\n");
} else {
fprintf(stderr,"predicate k=%d",p->k);
k=set_int(p->completionSet);
if (k >= 0) {
fprintf(stderr," Incomplete Set=%d !",k);
};
k=set_int(p->completionTree);
if (k >= 0) {
fprintf(stderr," Incomplete Tree=%d !",k);
};
if (p->redundant) {
fprintf(stderr," Redundant!");
};
fprintf(stderr," \"%s\" (%x)", (p->expr == NULL ? "null expr" : p->expr) ,p);
if (p->source != NULL) {
fprintf(stderr,"line %d",p->source->line);
};
if (p->inverted) fprintf(stderr," predicate inverted !");
fprintf(stderr,"\n");
for (i=0; i<depth ; i++) {
fprintf(stderr," ");
};
fprintf(stderr,"scontext: ");
dumpset(p->scontext[1]);
for (i=0; i<depth ; i++) {
fprintf(stderr," ");
};
fprintf(stderr,"tcontext: ");
preorder(p->tcontext);
fprintf(stderr,"\n");
};
fprintf(stderr,"\n");
if (p->down != NULL) {
dumppred1(depth+1,p->down);
};
if (p->right != NULL) {
dumppred1(depth,p->right);
};
}
#ifdef __USE_PROTOS
void dumppred(Predicate *p)
#else
void dumppred(p)
Predicate *p;
#endif
{
fprintf(stderr,"---------------------------------\n");
dumppred1(0,p);
fprintf(stderr,"\n");
}
#ifdef __USE_PROTOS
void dumppredtree(Predicate *p)
#else
void dumppredtree(p)
Predicate *p;
#endif
{
fprintf(stderr,"predicate k=%d \"%s\" line %d\n",p->k,p->expr,p->source->line);
dumpset(p->scontext[1]);
}
#ifdef __USE_PROTOS
void dumppredexpr(Predicate *p)
#else
void dumppredexpr(p)
Predicate *p;
#endif
{
fprintf(stderr," pred expr \"%s\"\n",p->expr);
}
#ifdef __USE_PROTOS
void dt(Tree *t)
#else
void dt(t)
Tree *t;
#endif
{
MR_dumpTreeF(stderr,0,t,5);
}
#ifdef __USE_PROTOS
void d(Node * p)
#else
void d(p)
Node * p;
#endif
{
Junction *j;
RuleRefNode *r;
TokNode *t;
ActionNode *a;
if (p==NULL) {
fprintf(stderr,"dumpNode: Node is NULL");
return;
};
switch (p->ntype) {
case nJunction :
j = (Junction *) p;
fprintf(stderr, "Junction (#%d in rule %s line %d) ",j->seq,j->rname,j->line);
if (j->guess) fprintf(stderr,"guess block ");
switch (j->jtype ) {
case aSubBlk :
fprintf(stderr,"aSubBlk");
break;
case aOptBlk :
fprintf(stderr,"aOptBlk");
break;
case aLoopBegin :
fprintf(stderr,"aLoopBeginBlk");
break;
case aLoopBlk :
fprintf(stderr,"aLoopBlk");
break;
case aPlusBlk :
fprintf(stderr,"aPlusBlk");
break;
case EndBlk :
fprintf(stderr,"EndBlk");
break;
case RuleBlk :
fprintf(stderr,"RuleBlk");
break;
case Generic :
fprintf(stderr,"Generic");
break;
case EndRule :
fprintf(stderr,"EndRule");
break;
};
if (j->halt) fprintf(stderr," halt!");
if (j->p1) fprintf(stderr," p1 valid");
if (j->p2) {
if (j->p2->ntype == nJunction) {
fprintf(stderr," (p2=#%d)",( (Junction *) j->p2)->seq);
} else {
fprintf(stderr," (p2 valid)");
};
};
if (j->ignore) fprintf(stderr, " ignore/plus-block-bypass");
if (j->fset != NULL && set_deg(*j->fset) != 0) {
fprintf(stderr,"\nfset:\n");
dumpset(*j->fset);
};
if (j->ftree != NULL) {
fprintf(stderr,"\nftree:\n");
preorder(j->ftree);
};
fprintf(stderr,"\n");
break;
case nRuleRef :
r = (RuleRefNode *) p;
fprintf(stderr, "RuleRefNode (in rule %s line %d) to rule %s\n", r->rname,r->line,r->text);
break;
case nToken :
t = (TokNode *) p;
fprintf(stderr, "TokNode (in rule %s line %d) token %s\n",t->rname,t->line,TerminalString(t->token));
break;
case nAction :
a =(ActionNode *) p;
if (a->is_predicate) {
fprintf(stderr, "Predicate (in rule %s line %d) %s",a->rname,a->line,a->action);
if (a->inverted) fprintf(stderr," action inverted !");
if (a->guardpred != NULL) {
fprintf(stderr," guarded");
dumppredexpr(a->guardpred);
if (a->ampersandPred) {
fprintf(stderr," \"&&\" style");
} else {
fprintf(stderr," \"=>\" style");
};
};
if (a->predEntry != NULL) fprintf(stderr," predEntry \"%s\" ",a->predEntry->str);
fprintf(stderr,"\n");
} else if (a->init_action) {
fprintf(stderr, "Init-Action (in rule %s line %d) %s\n",a->rname,a->line,a->action);
} else {
fprintf(stderr, "Action (in rule %s line %d) %s\n",a->rname,a->line,a->action);
};
break;
};
}
#ifdef __USE_PROTOS
Node * dp1(Node * p)
#else
Node * dp1(p)
Node * p;
#endif
{
Node *result=NULL;
if (p->ntype == nJunction) {
result=( (Junction *) p )->p1;
d(result);
} else {
fprintf(stderr,"dp1: Not a Junction node");
};
return result;
}
#ifdef __USE_PROTOS
Node * dp2(Node * p)
#else
Node * dp2(p)
Node * p;
#endif
{
Node *result=NULL;
if (p->ntype == nJunction) {
result=( (Junction *) p )->p2;
d(result);
} else {
fprintf(stderr,"dp2: Not a Junction node");
};
return result;
}
#ifdef __USE_PROTOS
Node * dn(Node * p)
#else
Node * dn(p)
Node * p;
#endif
{
Node *result=NULL;
if (p->ntype == nRuleRef) {
result=( (RuleRefNode *)p )->next;
} else if (p->ntype == nAction) {
result=( (ActionNode *)p )->next;
} else if (p->ntype == nToken) {
result=( (TokNode *)p )->next;
} else {
fprintf(stderr,"No next field: Neither a RuleRefNode, ActionNode, nor TokNode");
};
if (result != NULL) d(result);
return result;
}
#ifdef __USE_PROTOS
void df(Node * p)
#else
void df(p)
Node * p;
#endif
{
int count=0;
Node *next;
fprintf(stderr,"\n#%d ",++count);
d(p);
for (next=p; next != NULL && !isEndRule(next) ; ) {
fprintf(stderr,"#%d ",++count);
if (next->ntype == nJunction) {
next=dp1(next);
} else {
next=dn(next);
};
};
}
#ifdef __USE_PROTOS
Node * dfn(Node * p,int target)
#else
Node * dfn(p,target)
Node * p;
int target;
#endif
{
Node *result=NULL;
int count=0;
Node *next;
fprintf(stderr,"#%d ",++count);
d(p);
for (next=p; next != NULL && !isEndRule(next) ; ) {
fprintf(stderr,"#%d ",++count);
if (next->ntype == nJunction) {
next=dp1(next);
} else {
next=dn(next);
};
if (count == target) {
result=next;
break;
};
};
return result;
}
static int findnodeMatch;
#ifdef __USE_PROTOS
Junction *findnode1(Node *n)
#else
Junction *findnode1(n)
Node *n;
#endif
{
Node *next;
Junction *j;
Junction *match;
if (n == NULL) return NULL;
if (n->ntype == nJunction) {
j=(Junction *) n;
if (j->seq == findnodeMatch) return j;
if (j->jtype == EndRule) return NULL;
if (j->jtype != RuleBlk && j->jtype != EndBlk) {
if (j->p2 != NULL && !j->ignore) {
match=findnode1(j->p2);
if (match != NULL) return match;
};
};
};
next=MR_advance(n);
return findnode1(next);
}
#ifdef __USE_PROTOS
Junction *findnode(int match)
#else
Junction *findnode(match)
int match;
#endif
{
Junction *j;
Junction *result=NULL;
findnodeMatch=match;
for (j=SynDiag; j != NULL; j=(Junction *)j->p2) {
require (j->ntype == nJunction && j->jtype == RuleBlk,"Not a rule block");
result=findnode1( (Node *) j);
if (result != NULL) break;
};
if (result != NULL) {
d( (Node *) result);
};
return result;
}