MakeAlternativeSource.cpp revision 54a2dc8050116a473e8644b8d096dd99fcee1ec5
/* $Id$ */
/** @file
* MakeAlternative - Generate an Alternative BIOS Source that requires less tools.
*/
/*
* Copyright (C) 2012 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <iprt/asm.h>
#include <iprt/buildconfig.h>
#include <iprt/ctype.h>
#include <iprt/dbg.h>
#include <iprt/file.h>
#include <iprt/getopt.h>
#include <iprt/initterm.h>
#include <iprt/list.h>
#include <iprt/mem.h>
#include <iprt/message.h>
#include <iprt/string.h>
#include <iprt/stream.h>
#include <iprt/x86.h>
#include <VBox/dis.h>
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* A BIOS segment.
*/
typedef struct BIOSSEG
{
char szName[32];
char szClass[32];
char szGroup[32];
RTFAR16 Address;
uint32_t uFlatAddr;
uint32_t cb;
} BIOSSEG;
/** Pointer to a BIOS segment. */
typedef BIOSSEG *PBIOSSEG;
/**
* A BIOS object file.
*/
typedef struct BIOSOBJFILE
{
RTLISTNODE Node;
char *pszSource;
char *pszObject;
} BIOSOBJFILE;
/** A BIOS object file. */
typedef BIOSOBJFILE *PBIOSOBJFILE;
/**
* Pointer to a BIOS map parser handle.
*/
typedef struct BIOSMAP
{
/** The stream pointer. */
PRTSTREAM hStrm;
/** The file name. */
const char *pszMapFile;
/** Set when EOF has been reached. */
bool fEof;
/** The current line number (0 based).*/
uint32_t iLine;
/** The length of the current line. */
uint32_t cch;
/** The offset of the first non-white character on the line. */
uint32_t offNW;
/** The line buffer. */
char szLine[16384];
} BIOSMAP;
/** Pointer to a BIOS map parser handle. */
typedef BIOSMAP *PBIOSMAP;
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** The verbosity level.*/
static unsigned g_cVerbose = 1 /*0*/;
/** Pointer to the BIOS image. */
static uint8_t const *g_pbImg;
/** The size of the BIOS image. */
static size_t g_cbImg;
/** Debug module for the map file. */
static RTDBGMOD g_hMapMod = NIL_RTDBGMOD;
/** The number of BIOS segments found in the map file. */
static uint32_t g_cSegs = 0;
/** Array of BIOS segments from the map file. */
static BIOSSEG g_aSegs[32];
/** List of BIOSOBJFILE. */
static RTLISTANCHOR g_ObjList;
/** The output stream. */
static PRTSTREAM g_hStrmOutput = NULL;
/** The type of BIOS we're working on. */
static enum BIOSTYPE
{
kBiosType_System = 0,
kBiosType_Vga
} g_enmBiosType = kBiosType_System;
/** The flat ROM base address. */
static uint32_t g_uBiosFlatBase = 0xf0000;
static bool outputPrintfV(const char *pszFormat, va_list va)
{
int rc = RTStrmPrintfV(g_hStrmOutput, pszFormat, va);
if (RT_FAILURE(rc))
{
RTMsgError("Output error: %Rrc\n", rc);
return false;
}
return true;
}
static bool outputPrintf(const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
bool fRc = outputPrintfV(pszFormat, va);
va_end(va);
return fRc;
}
/**
* Opens the output file for writing.
*
* @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg.
* @param pszOutput Path to the output file.
*/
static RTEXITCODE OpenOutputFile(const char *pszOutput)
{
if (!pszOutput)
g_hStrmOutput = g_pStdOut;
else
{
int rc = RTStrmOpen(pszOutput, "w", &g_hStrmOutput);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "Failed to open output file '%s': %Rrc", pszOutput, rc);
}
return RTEXITCODE_SUCCESS;
}
/**
* Displays a disassembly error and returns @c false.
*
* @returns @c false.
* @param pszFormat The error format string.
* @param ... Format argument.
*/
static bool disError(const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
RTMsgErrorV(pszFormat, va);
va_end(va);
return false;
}
/**
* Output the disassembly file header.
*
* @returns @c true on success,
*/
static bool disFileHeader(void)
{
bool fRc;
fRc = outputPrintf("; $Id$ \n"
";; @file\n"
"; Auto Generated source file. Do not edit.\n"
";\n"
);
if (!fRc)
return fRc;
/*
* List the header of each source file, up to and including the
* copyright notice.
*/
PBIOSOBJFILE pObjFile;
RTListForEach(&g_ObjList, pObjFile, BIOSOBJFILE, Node)
{
PRTSTREAM hStrm;
int rc = RTStrmOpen(pObjFile->pszSource, "r", &hStrm);
if (RT_SUCCESS(rc))
{
fRc = outputPrintf("\n"
";\n"
"; Source file: %Rbn\n"
";\n"
, pObjFile->pszSource);
uint32_t iLine = 0;
bool fSeenCopyright = false;
char szLine[4096];
while ((rc = RTStrmGetLine(hStrm, szLine, sizeof(szLine))) == VINF_SUCCESS)
{
iLine++;
/* Check if we're done. */
char *psz = RTStrStrip(szLine);
if ( fSeenCopyright
&& ( (psz[0] == '*' && psz[1] == '/')
|| psz[0] == '\0') )
break;
/* Strip comment suffix. */
size_t cch = strlen(psz);
if (cch >= 2 && psz[cch - 1] == '/' && psz[cch - 2] == '*')
{
psz[cch - 2] = '\0';
RTStrStripR(psz);
}
/* Skip line prefix. */
if (psz[0] == '/' && psz[1] == '*')
psz += 2;
else if (psz[0] == '*')
psz += 1;
else
while (*psz == ';')
psz++;
if (RT_C_IS_SPACE(*psz))
psz++;
/* Skip the doxygen file tag line. */
if (!strcmp(psz, "* @file") || !strcmp(psz, "@file"))
continue;
/* Detect copyright section. */
if ( !fSeenCopyright
&& ( strstr(psz, "Copyright")
|| strstr(psz, "copyright")) )
fSeenCopyright = true;
fRc = outputPrintf("; %s\n", psz) && fRc;
}
RTStrmClose(hStrm);
if (rc != VINF_SUCCESS)
return disError("Error reading '%s': rc=%Rrc iLine=%u", pObjFile->pszSource, rc, iLine);
}
}
/*
* Set the org.
*/
fRc = outputPrintf("\n"
"\n"
"\n"
) && fRc;
return fRc;
}
/**
* Checks if a byte sequence could be a string litteral.
*
* @returns @c true if it is, @c false if it isn't.
* @param uFlatAddr The address of the byte sequence.
* @param cb The length of the sequence.
*/
static bool disIsString(uint32_t uFlatAddr, uint32_t cb)
{
if (cb < 6)
return false;
uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase];
while (cb > 0)
{
if ( !RT_C_IS_PRINT(*pb)
&& *pb != '\r'
&& *pb != '\n'
&& *pb != '\t')
{
if (*pb == '\0')
{
do
{
pb++;
cb--;
} while (cb > 0 && *pb == '\0');
return cb == 0;
}
return false;
}
pb++;
cb--;
}
return true;
}
/**
* Checks if a dword could be a far 16:16 BIOS address.
*
* @returns @c true if it is, @c false if it isn't.
* @param uFlatAddr The address of the dword.
*/
static bool disIsFarBiosAddr(uint32_t uFlatAddr)
{
uint16_t const *pu16 = (uint16_t const *)&g_pbImg[uFlatAddr - g_uBiosFlatBase];
if (pu16[1] < 0xf000)
return false;
if (pu16[1] > 0xfff0)
return false;
uint32_t uFlatAddr2 = (uint32_t)(pu16[1] << 4) | pu16[0];
if (uFlatAddr2 >= g_uBiosFlatBase + g_cbImg)
return false;
return true;
}
static bool disByteData(uint32_t uFlatAddr, uint32_t cb)
{
uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase];
size_t cbOnLine = 0;
while (cb-- > 0)
{
bool fRc;
if (cbOnLine >= 16)
{
fRc = outputPrintf("\n"
" db 0%02xh", *pb);
cbOnLine = 1;
}
else if (!cbOnLine)
{
fRc = outputPrintf(" db 0%02xh", *pb);
cbOnLine = 1;
}
else
{
fRc = outputPrintf(", 0%02xh", *pb);
cbOnLine++;
}
if (!fRc)
return false;
pb++;
}
return outputPrintf("\n");
}
static bool disWordData(uint32_t uFlatAddr, uint32_t cb)
{
if (cb & 1)
return disError("disWordData expects word aligned size: cb=%#x uFlatAddr=%#x", uFlatAddr, cb);
uint16_t const *pu16 = (uint16_t const *)&g_pbImg[uFlatAddr - g_uBiosFlatBase];
size_t cbOnLine = 0;
while (cb > 0)
{
bool fRc;
if (cbOnLine >= 16)
{
fRc = outputPrintf("\n"
" dw 0%04xh", *pu16);
cbOnLine = 2;
}
else if (!cbOnLine)
{
fRc = outputPrintf(" dw 0%04xh", *pu16);
cbOnLine = 2;
}
else
{
fRc = outputPrintf(", 0%04xh", *pu16);
cbOnLine += 2;
}
if (!fRc)
return false;
pu16++;
cb -= 2;
}
return outputPrintf("\n");
}
static bool disDWordData(uint32_t uFlatAddr, uint32_t cb)
{
if (cb & 3)
return disError("disWordData expects dword aligned size: cb=%#x uFlatAddr=%#x", uFlatAddr, cb);
uint32_t const *pu32 = (uint32_t const *)&g_pbImg[uFlatAddr - g_uBiosFlatBase];
size_t cbOnLine = 0;
while (cb > 0)
{
bool fRc;
if (cbOnLine >= 16)
{
fRc = outputPrintf("\n"
" dd 0%08xh", *pu32);
cbOnLine = 4;
}
else if (!cbOnLine)
{
fRc = outputPrintf(" dd 0%08xh", *pu32);
cbOnLine = 4;
}
else
{
fRc = outputPrintf(", 0%08xh", *pu32);
cbOnLine += 4;
}
if (!fRc)
return false;
pu32++;
cb -= 4;
}
return outputPrintf("\n");
}
static bool disStringData(uint32_t uFlatAddr, uint32_t cb)
{
uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase];
uint32_t cchOnLine = 0;
while (cb > 0)
{
/* Line endings and beginnings. */
if (cchOnLine >= 72)
{
if (!outputPrintf("\n"))
return false;
cchOnLine = 0;
}
if ( !cchOnLine
&& !outputPrintf(" db "))
return false;
/* See how many printable character we've got. */
uint32_t cchPrintable = 0;
while ( cchPrintable < cb
&& RT_C_IS_PRINT(pb[cchPrintable])
&& pb[cchPrintable] != '\'')
cchPrintable++;
bool fRc = true;
if (cchPrintable)
{
if (cchPrintable + cchOnLine > 72)
cchPrintable = 72 - cchOnLine;
if (cchOnLine)
{
fRc = outputPrintf(", '%.*s'", cchPrintable, pb);
cchOnLine += 4 + cchPrintable;
}
else
{
fRc = outputPrintf("'%.*s'", cchPrintable, pb);
cchOnLine += 2 + cchPrintable;
}
pb += cchPrintable;
cb -= cchPrintable;
}
else
{
if (cchOnLine)
{
fRc = outputPrintf(", 0%02xh", *pb);
cchOnLine += 6;
}
else
{
fRc = outputPrintf("0%02xh", *pb);
cchOnLine += 4;
}
pb++;
cb--;
}
if (!fRc)
return false;
}
return outputPrintf("\n");
}
/**
* For dumping a portion of a string table.
*
* @returns @c true on success, @c false on failure.
* @param uFlatAddr The start address.
* @param cb The size of the string table.
*/
static bool disStringsData(uint32_t uFlatAddr, uint32_t cb)
{
uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase];
uint32_t cchOnLine = 0;
uint8_t bPrev = 255;
while (cb > 0)
{
/* Line endings and beginnings. */
if ( cchOnLine >= 72
|| (bPrev == '\0' && *pb != '\0'))
{
if (!outputPrintf("\n"))
return false;
cchOnLine = 0;
}
if ( !cchOnLine
&& !outputPrintf(" db "))
return false;
/* See how many printable character we've got. */
uint32_t cchPrintable = 0;
while ( cchPrintable < cb
&& RT_C_IS_PRINT(pb[cchPrintable])
&& pb[cchPrintable] != '\'')
cchPrintable++;
bool fRc = true;
if (cchPrintable)
{
if (cchPrintable + cchOnLine > 72)
cchPrintable = 72 - cchOnLine;
if (cchOnLine)
{
fRc = outputPrintf(", '%.*s'", cchPrintable, pb);
cchOnLine += 4 + cchPrintable;
}
else
{
fRc = outputPrintf("'%.*s'", cchPrintable, pb);
cchOnLine += 2 + cchPrintable;
}
pb += cchPrintable;
cb -= cchPrintable;
}
else
{
if (cchOnLine)
{
fRc = outputPrintf(", 0%02xh", *pb);
cchOnLine += 6;
}
else
{
fRc = outputPrintf("0%02xh", *pb);
cchOnLine += 4;
}
pb++;
cb--;
}
if (!fRc)
return false;
bPrev = pb[-1];
}
return outputPrintf("\n");
}
/**
* Minds the gap between two segments.
*
* Gaps should generally be zero filled.
*
* @returns @c true on success, @c false on failure.
* @param uFlatAddr The address of the gap.
* @param cbPadding The size of the gap.
*/
static bool disCopySegmentGap(uint32_t uFlatAddr, uint32_t cbPadding)
{
if (g_cVerbose > 0)
outputPrintf("\n"
" ; Padding %#x bytes at %#x\n", cbPadding, uFlatAddr);
uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase];
if (!ASMMemIsAll8(pb, cbPadding, 0))
return outputPrintf(" times %u db 0\n", cbPadding);
return disByteData(uFlatAddr, cbPadding);
}
/**
* Worker for disGetNextSymbol that only does the looking up, no RTDBSYMBOL::cb
* calc.
*
* @param uFlatAddr The address to start searching at.
* @param cbMax The size of the search range.
* @param poff Where to return the offset between the symbol
* and @a uFlatAddr.
* @param pSym Where to return the symbol data.
*/
static void disGetNextSymbolWorker(uint32_t uFlatAddr, uint32_t cbMax, uint32_t *poff, PRTDBGSYMBOL pSym)
{
RTINTPTR off = 0;
int rc = RTDbgModSymbolByAddr(g_hMapMod, RTDBGSEGIDX_RVA, uFlatAddr, RTDBGSYMADDR_FLAGS_GREATER_OR_EQUAL, &off, pSym);
if (RT_SUCCESS(rc))
{
/* negative offset, indicates beyond. */
if (off <= 0)
{
*poff = (uint32_t)-off;
return;
}
outputPrintf(" ; !! RTDbgModSymbolByAddr(,,%#x,,) -> off=%RTptr cb=%RTptr uValue=%RTptr '%s'\n",
uFlatAddr, off, pSym->cb, pSym->Value, pSym->szName);
}
else if (rc != VERR_SYMBOL_NOT_FOUND)
outputPrintf(" ; !! RTDbgModSymbolByAddr(,,%#x,,) -> %Rrc\n", uFlatAddr, rc);
RTStrPrintf(pSym->szName, sizeof(pSym->szName), "_dummy_addr_%#x", uFlatAddr + cbMax);
pSym->Value = uFlatAddr + cbMax;
pSym->cb = 0;
pSym->offSeg = uFlatAddr + cbMax;
pSym->iSeg = RTDBGSEGIDX_RVA;
pSym->iOrdinal = 0;
pSym->fFlags = 0;
*poff = cbMax;
}
/**
* Gets the symbol at or after the given address.
*
* If there are no symbols in the specified range, @a pSym and @a poff will be
* set up to indicate a symbol at the first byte after the range.
*
* @param uFlatAddr The address to start searching at.
* @param cbMax The size of the search range.
* @param poff Where to return the offset between the symbol
* and @a uFlatAddr.
* @param pSym Where to return the symbol data.
*/
static void disGetNextSymbol(uint32_t uFlatAddr, uint32_t cbMax, uint32_t *poff, PRTDBGSYMBOL pSym)
{
disGetNextSymbolWorker(uFlatAddr, cbMax, poff, pSym);
if ( *poff < cbMax
&& pSym->cb == 0)
{
if (*poff + 1 < cbMax)
{
uint32_t off2;
RTDBGSYMBOL Sym2;
disGetNextSymbolWorker(uFlatAddr + *poff + 1, cbMax - *poff - 1, &off2, &Sym2);
pSym->cb = off2 + 1;
}
else
pSym->cb = 1;
}
if (pSym->cb > cbMax - *poff)
pSym->cb = cbMax - *poff;
if (g_cVerbose > 1)
outputPrintf(" ; disGetNextSymbol %#x LB %#x -> off=%#x cb=%RTptr uValue=%RTptr '%s'\n",
uFlatAddr, cbMax, *poff, pSym->cb, pSym->Value, pSym->szName);
}
/**
* For dealing with the const segment (string constants).
*
* @returns @c true on success, @c false on failure.
* @param iSeg The segment.
*/
static bool disConstSegment(uint32_t iSeg)
{
uint32_t uFlatAddr = g_aSegs[iSeg].uFlatAddr;
uint32_t cb = g_aSegs[iSeg].cb;
while (cb > 0)
{
uint32_t off;
RTDBGSYMBOL Sym;
disGetNextSymbol(uFlatAddr, cb, &off, &Sym);
if (off > 0)
{
if (!disStringsData(uFlatAddr, off))
return false;
cb -= off;
uFlatAddr += off;
off = 0;
if (!cb)
break;
}
bool fRc;
if (off == 0)
{
size_t cchName = strlen(Sym.szName);
fRc = outputPrintf("%s: %*s; %#x LB %#x\n", Sym.szName, cchName < 41 - 2 ? cchName - 41 - 2 : 0, "", uFlatAddr, Sym.cb);
if (!fRc)
return false;
fRc = disStringsData(uFlatAddr, Sym.cb);
uFlatAddr += Sym.cb;
cb -= Sym.cb;
}
else
{
fRc = disStringsData(uFlatAddr, Sym.cb);
uFlatAddr += cb;
cb = 0;
}
if (!fRc)
return false;
}
return true;
}
static bool disDataSegment(uint32_t iSeg)
{
uint32_t uFlatAddr = g_aSegs[iSeg].uFlatAddr;
uint32_t cb = g_aSegs[iSeg].cb;
while (cb > 0)
{
uint32_t off;
RTDBGSYMBOL Sym;
disGetNextSymbol(uFlatAddr, cb, &off, &Sym);
if (off > 0)
{
if (!disByteData(uFlatAddr, off))
return false;
cb -= off;
uFlatAddr += off;
off = 0;
if (!cb)
break;
}
bool fRc;
if (off == 0)
{
size_t cchName = strlen(Sym.szName);
fRc = outputPrintf("%s: %*s; %#x LB %#x\n", Sym.szName, cchName < 41 - 2 ? cchName - 41 - 2 : 0, "", uFlatAddr, Sym.cb);
if (!fRc)
return false;
if (Sym.cb == 2)
fRc = disWordData(uFlatAddr, 2);
//else if (Sym.cb == 4 && disIsFarBiosAddr(uFlatAddr))
// fRc = disDWordData(uFlatAddr, 4);
else if (Sym.cb == 4)
fRc = disDWordData(uFlatAddr, 4);
else if (disIsString(uFlatAddr, Sym.cb))
fRc = disStringData(uFlatAddr, Sym.cb);
else
fRc = disByteData(uFlatAddr, Sym.cb);
uFlatAddr += Sym.cb;
cb -= Sym.cb;
}
else
{
fRc = disByteData(uFlatAddr, cb);
uFlatAddr += cb;
cb = 0;
}
if (!fRc)
return false;
}
return true;
}
static bool disIsCodeAndAdjustSize(uint32_t uFlatAddr, PRTDBGSYMBOL pSym, PBIOSSEG pSeg)
{
switch (g_enmBiosType)
{
/*
* This is for the PC BIOS.
*/
case kBiosType_System:
if (!strcmp(pSeg->szName, "BIOSSEG"))
{
if ( !strcmp(pSym->szName, "rom_fdpt")
|| !strcmp(pSym->szName, "pmbios_gdt")
|| !strcmp(pSym->szName, "pmbios_gdt_desc")
|| !strcmp(pSym->szName, "_pmode_IDT")
|| !strcmp(pSym->szName, "_rmode_IDT")
|| !strncmp(pSym->szName, RT_STR_TUPLE("font"))
|| !strcmp(pSym->szName, "bios_string")
|| !strcmp(pSym->szName, "vector_table")
|| !strcmp(pSym->szName, "pci_routing_table_structure")
|| !strcmp(pSym->szName, "_pci_routing_table")
)
return false;
}
if (!strcmp(pSym->szName, "cpu_reset"))
pSym->cb = RT_MIN(pSym->cb, 5);
else if (!strcmp(pSym->szName, "pci_init_end"))
pSym->cb = RT_MIN(pSym->cb, 3);
break;
/*
* This is for the VGA BIOS.
*/
case kBiosType_Vga:
break;
}
return true;
}
static bool disIs16BitCode(const char *pszSymbol)
{
return true;
}
/**
* Deals with instructions that YASM will assemble differently than WASM/WCC.
*/
static size_t disHandleYasmDifferences(PDISCPUSTATE pCpuState, uint32_t uFlatAddr, uint32_t cbInstr,
char *pszBuf, size_t cbBuf, size_t cchUsed)
{
bool fDifferent = DISFormatYasmIsOddEncoding(pCpuState);
uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase];
/*
* Disassembler bugs.
*/
/** @todo Group 1a and 11 seems to be disassembled incorrectly when
* modrm.reg != 0. Those encodings should be invalid AFAICT. */
if ( ( pCpuState->bOpCode == 0x8f /* group 1a */
|| pCpuState->bOpCode == 0xc7 /* group 11 */
|| pCpuState->bOpCode == 0xc6 /* group 11 - not verified */
)
&& pCpuState->ModRM.Bits.Reg != 0)
fDifferent = true;
/*
* Check these out and consider adding them to DISFormatYasmIsOddEncoding.
*/
else if ( pb[0] == 0xf3
&& pb[1] == 0x66
&& pb[2] == 0x6d)
fDifferent = true; /* rep insd - prefix switched. */
else if ( pb[0] == 0xc6
&& pb[1] == 0xc5
&& pb[2] == 0xba)
fDifferent = true; /* mov ch, 0bah - yasm uses a short sequence: 0xb5 0xba. */
/*
* 32-bit retf.
*/
else if ( pb[0] == 0x66
&& pb[1] == 0xcb)
fDifferent = true;
/*
* Handle different stuff.
*/
if (fDifferent)
{
disByteData(uFlatAddr, cbInstr); /* lazy bird. */
if (cchUsed + 2 < cbBuf)
{
memmove(pszBuf + 2, pszBuf, cchUsed + 1); /* include terminating \0 */
cchUsed += 2;
}
pszBuf[0] = ';';
pszBuf[1] = ' ';
}
return cchUsed;
}
/**
* @callback_method_impl{FNDISREADBYTES}
*
* @remarks @a uSrcAddr is the flat address.
*/
static DECLCALLBACK(int) disReadOpcodeBytes(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
{
RTUINTPTR offBios = pDis->uInstrAddr + offInstr - g_uBiosFlatBase;
size_t cbToRead = cbMaxRead;
if (offBios + cbToRead > g_cbImg)
{
if (offBios >= g_cbImg)
cbToRead = 0;
else
cbToRead = g_cbImg - offBios;
}
memcpy(&pDis->abInstr[offInstr], &g_pbImg[offBios], cbToRead);
pDis->cbCachedInstr = (uint8_t)(offInstr + cbToRead);
return VINF_SUCCESS;
}
/**
* Disassembles code.
*
* @returns @c true on success, @c false on failure.
* @param uFlatAddr The address where the code starts.
* @param cb The amount of code to disassemble.
* @param fIs16Bit Is is 16-bit (@c true) or 32-bit (@c false).
*/
static bool disCode(uint32_t uFlatAddr, uint32_t cb, bool fIs16Bit)
{
uint8_t const *pb = &g_pbImg[uFlatAddr - g_uBiosFlatBase];
while (cb > 0)
{
/* Trailing zero padding detection. */
if ( *pb == '\0'
&& ASMMemIsAll8(pb, RT_MIN(cb, 8), 0) == NULL)
{
void *pv = ASMMemIsAll8(pb, cb, 0);
uint32_t cbZeros = pv ? (uint32_t)((uint8_t const *)pv - pb) : cb;
if (!outputPrintf(" times %#x db 0\n", cbZeros))
return false;
cb -= cbZeros;
pb += cbZeros;
uFlatAddr += cbZeros;
if ( cb == 2
&& pb[0] == 'X'
&& pb[1] == 'M')
return disStringData(uFlatAddr, cb);
}
/* Work arounds for switch tables and such (disas assertions). */
else if ( 0
#if 0
|| ( pb[0] == 0x11 /* int13_cdemu switch */
&& pb[1] == 0xda
&& pb[2] == 0x05
&& pb[3] == 0xff
&& pb[4] == 0xff
)
#endif
|| ( pb[0] == 0xb0
&& pb[1] == 0x58
&& pb[2] == 0xc8
&& pb[3] == 0x58
&& pb[4] == 0xc8
&& pb[5] == 0x58
)
|| ( pb[0] == 0x50
&& pb[1] == 0x4e
&& pb[2] == 0x49
&& pb[3] == 0x48
&& pb[4] == 0x47
&& pb[5] == 0x46
)
|| ( pb[0] == 0x29
&& pb[1] == 0x65
&& pb[2] == 0x4b
&& pb[3] == 0x65
&& pb[4] == 0x6e
&& pb[5] == 0x65
)
|| ( pb[0] == 0xc9 /* _pci16_function switch */
&& pb[1] == 0x8d
&& pb[2] == 0xe3
&& pb[3] == 0x8d
&& pb[4] == 0xf6
&& pb[5] == 0x8d
)
|| ( pb[0] == 0xa3 /* _int1a_function switch */
&& pb[1] == 0x67
&& pb[2] == 0xca
&& pb[3] == 0x67
&& pb[4] == 0xef
&& pb[5] == 0x67
)
|| ( pb[0] == 0x0b /* _ahci_init byte table */
&& pb[1] == 0x05
&& pb[2] == 0x04
&& pb[3] == 0x03
&& pb[4] == 0x02
&& pb[5] == 0x01
)
|| ( pb[0] == 0x8c /* bytes after apm_out_str_ */
&& pb[1] == 0x2f
&& pb[2] == 0x8d
&& pb[3] == 0xbb
&& pb[4] == 0x8c
&& pb[5] == 0x2f)
|| 0
)
return disByteData(uFlatAddr, cb);
else
{
unsigned cbInstr;
DISCPUSTATE CpuState;
int rc = DISInstrWithReader(uFlatAddr, fIs16Bit ? DISCPUMODE_16BIT : DISCPUMODE_32BIT,
disReadOpcodeBytes, NULL, &CpuState, &cbInstr);
if ( RT_SUCCESS(rc)
&& cbInstr <= cb
&& CpuState.pCurInstr
&& CpuState.pCurInstr->uOpcode != OP_INVALID)
{
char szTmp[4096];
size_t cch = DISFormatYasmEx(&CpuState, szTmp, sizeof(szTmp),
DIS_FMT_FLAGS_STRICT
| DIS_FMT_FLAGS_BYTES_RIGHT | DIS_FMT_FLAGS_BYTES_COMMENT | DIS_FMT_FLAGS_BYTES_SPACED,
NULL, NULL);
cch = disHandleYasmDifferences(&CpuState, uFlatAddr, cbInstr, szTmp, sizeof(szTmp), cch);
Assert(cch < sizeof(szTmp));
if (g_cVerbose > 1)
{
while (cch < 72)
szTmp[cch++] = ' ';
RTStrPrintf(&szTmp[cch], sizeof(szTmp) - cch, "; %#x", uFlatAddr);
}
if (!outputPrintf(" %s\n", szTmp))
return false;
cb -= cbInstr;
pb += cbInstr;
uFlatAddr += cbInstr;
}
else
{
if (!disByteData(uFlatAddr, 1))
return false;
cb--;
pb++;
uFlatAddr++;
}
}
}
return true;
}
static bool disCodeSegment(uint32_t iSeg)
{
uint32_t uFlatAddr = g_aSegs[iSeg].uFlatAddr;
uint32_t cb = g_aSegs[iSeg].cb;
while (cb > 0)
{
uint32_t off;
RTDBGSYMBOL Sym;
disGetNextSymbol(uFlatAddr, cb, &off, &Sym);
if (off > 0)
{
if (!disByteData(uFlatAddr, off))
return false;
cb -= off;
uFlatAddr += off;
off = 0;
if (!cb)
break;
}
bool fRc;
if (off == 0)
{
size_t cchName = strlen(Sym.szName);
fRc = outputPrintf("%s: %*s; %#x LB %#x\n", Sym.szName, cchName < 41 - 2 ? cchName - 41 - 2 : 0, "", uFlatAddr, Sym.cb);
if (!fRc)
return false;
if (disIsCodeAndAdjustSize(uFlatAddr, &Sym, &g_aSegs[iSeg]))
fRc = disCode(uFlatAddr, Sym.cb, disIs16BitCode(Sym.szName));
else
fRc = disByteData(uFlatAddr, Sym.cb);
uFlatAddr += Sym.cb;
cb -= Sym.cb;
}
else
{
fRc = disByteData(uFlatAddr, cb);
uFlatAddr += cb;
cb = 0;
}
if (!fRc)
return false;
}
return true;
}
static RTEXITCODE DisassembleBiosImage(void)
{
if (!disFileHeader())
return RTEXITCODE_FAILURE;
/*
* Work the image segment by segment.
*/
bool fRc = true;
uint32_t uFlatAddr = g_uBiosFlatBase;
for (uint32_t iSeg = 0; iSeg < g_cSegs && fRc; iSeg++)
{
/* Is there a gap between the segments? */
if (uFlatAddr < g_aSegs[iSeg].uFlatAddr)
{
fRc = disCopySegmentGap(uFlatAddr, g_aSegs[iSeg].uFlatAddr - uFlatAddr);
if (!fRc)
break;
uFlatAddr = g_aSegs[iSeg].uFlatAddr;
}
else if (uFlatAddr > g_aSegs[iSeg].uFlatAddr)
return RTMsgErrorExit(RTEXITCODE_FAILURE, "Overlapping segments: %u and %u; uFlatAddr=%#x\n", iSeg - 1, iSeg, uFlatAddr);
/* Disassemble the segment. */
fRc = outputPrintf("\n"
"section %s progbits vstart=%#x align=1 ; size=%#x class=%s group=%s\n",
g_aSegs[iSeg].szName, g_aSegs[iSeg].uFlatAddr - g_uBiosFlatBase,
g_aSegs[iSeg].cb, g_aSegs[iSeg].szClass, g_aSegs[iSeg].szGroup);
if (!fRc)
return RTEXITCODE_FAILURE;
if (!strcmp(g_aSegs[iSeg].szName, "CONST"))
fRc = disConstSegment(iSeg);
else if (!strcmp(g_aSegs[iSeg].szClass, "DATA"))
fRc = disDataSegment(iSeg);
else
fRc = disCodeSegment(iSeg);
/* Advance. */
uFlatAddr += g_aSegs[iSeg].cb;
}
/* Final gap. */
if (uFlatAddr < g_uBiosFlatBase + g_cbImg)
fRc = disCopySegmentGap(uFlatAddr, (uint32_t)(g_uBiosFlatBase + g_cbImg - uFlatAddr));
else if (uFlatAddr > g_uBiosFlatBase + g_cbImg)
return RTMsgErrorExit(RTEXITCODE_FAILURE, "Last segment spills beyond 1MB; uFlatAddr=%#x\n", uFlatAddr);
if (!fRc)
return RTEXITCODE_FAILURE;
return RTEXITCODE_SUCCESS;
}
/**
* Parses the symbol file for the BIOS.
*
* This is in ELF/DWARF format.
*
* @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg.
* @param pszBiosSym Path to the sym file.
*/
static RTEXITCODE ParseSymFile(const char *pszBiosSym)
{
#if 1
/** @todo use RTDbg* later. (Just checking for existance currently.) */
PRTSTREAM hStrm;
int rc = RTStrmOpen(pszBiosSym, "rb", &hStrm);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "Error opening '%s': %Rrc", pszBiosSym, rc);
RTStrmClose(hStrm);
#else
RTDBGMOD hDbgMod;
int rc = RTDbgModCreateFromImage(&hDbgMod, pszBiosSym, "VBoxBios", 0 /*fFlags*/);
RTMsgInfo("RTDbgModCreateFromImage -> %Rrc\n", rc);
#endif
return RTEXITCODE_SUCCESS;
}
/**
* Display an error with the mapfile name and current line, return false.
*
* @returns @c false.
* @param pMap The map file handle.
* @param pszFormat The format string.
* @param ... Format arguments.
*/
static bool mapError(PBIOSMAP pMap, const char *pszFormat, ...)
{
va_list va;
va_start(va, pszFormat);
RTMsgError("%s:%d: %N", pMap->pszMapFile, pMap->iLine, pszFormat, va);
va_end(va);
return false;
}
/**
* Reads a line from the file.
*
* @returns @c true on success, @c false + msg on failure, @c false on eof.
* @param pMap The map file handle.
*/
static bool mapReadLine(PBIOSMAP pMap)
{
int rc = RTStrmGetLine(pMap->hStrm, pMap->szLine, sizeof(pMap->szLine));
if (RT_FAILURE(rc))
{
if (rc == VERR_EOF)
{
pMap->fEof = true;
pMap->cch = 0;
pMap->offNW = 0;
pMap->szLine[0] = '\0';
}
else
RTMsgError("%s:%d: Read error %Rrc", pMap->pszMapFile, pMap->iLine + 1, rc);
return false;
}
pMap->iLine++;
pMap->cch = (uint32_t)strlen(pMap->szLine);
/* Check out leading white space. */
if (!RT_C_IS_SPACE(pMap->szLine[0]))
pMap->offNW = 0;
else
{
uint32_t off = 1;
while (RT_C_IS_SPACE(pMap->szLine[off]))
off++;
pMap->offNW = off;
}
return true;
}
/**
* Checks if it is an empty line.
* @returns @c true if empty, @c false if not.
* @param pMap The map file handle.
*/
static bool mapIsEmptyLine(PBIOSMAP pMap)
{
Assert(pMap->offNW <= pMap->cch);
return pMap->offNW == pMap->cch;
}
/**
* Reads ahead in the map file until a non-empty line or EOF is encountered.
*
* @returns @c true on success, @c false + msg on failure, @c false on eof.
* @param pMap The map file handle.
*/
static bool mapSkipEmptyLines(PBIOSMAP pMap)
{
for (;;)
{
if (!mapReadLine(pMap))
return false;
if (pMap->offNW < pMap->cch)
return true;
}
}
/**
* Reads ahead in the map file until an empty line or EOF is encountered.
*
* @returns @c true on success, @c false + msg on failure, @c false on eof.
* @param pMap The map file handle.
*/
static bool mapSkipNonEmptyLines(PBIOSMAP pMap)
{
for (;;)
{
if (!mapReadLine(pMap))
return false;
if (pMap->offNW == pMap->cch)
return true;
}
}
/**
* Strips the current line.
*
* The string length may change.
*
* @returns Pointer to the first non-space character.
* @param pMap The map file handle.
* @param pcch Where to return the length of the unstripped
* part. Optional.
*/
static char *mapStripCurrentLine(PBIOSMAP pMap, size_t *pcch)
{
char *psz = &pMap->szLine[pMap->offNW];
char *pszEnd = &pMap->szLine[pMap->cch];
while ( (uintptr_t)pszEnd > (uintptr_t)psz
&& RT_C_IS_SPACE(pszEnd[-1]))
{
*--pszEnd = '\0';
pMap->cch--;
}
if (pcch)
*pcch = pszEnd - psz;
return psz;
}
/**
* Reads a line from the file and right strips it.
*
* @returns Pointer to szLine on success, @c NULL + msg on failure, @c NULL on
* EOF.
* @param pMap The map file handle.
* @param pcch Where to return the length of the unstripped
* part. Optional.
*/
static char *mapReadLineStripRight(PBIOSMAP pMap, size_t *pcch)
{
if (!mapReadLine(pMap))
return NULL;
mapStripCurrentLine(pMap, NULL);
if (pcch)
*pcch = pMap->cch;
return pMap->szLine;
}
/**
* mapReadLine() + mapStripCurrentLine().
*
* @returns Pointer to the first non-space character in the new line. NULL on
* read error (bitched already) or end of file.
* @param pMap The map file handle.
* @param pcch Where to return the length of the unstripped
* part. Optional.
*/
static char *mapReadLineStrip(PBIOSMAP pMap, size_t *pcch)
{
if (!mapReadLine(pMap))
return NULL;
return mapStripCurrentLine(pMap, pcch);
}
/**
* Parses a word, copying it into the supplied buffer, and skipping any spaces
* following it.
*
* @returns @c true on success, @c false on failure.
* @param ppszCursor Pointer to the cursor variable.
* @param pszBuf The output buffer.
* @param cbBuf The size of the output buffer.
*/
static bool mapParseWord(char **ppszCursor, char *pszBuf, size_t cbBuf)
{
/* Check that we start on a non-blank. */
char *pszStart = *ppszCursor;
if (!*pszStart || RT_C_IS_SPACE(*pszStart))
return false;
/* Find the end of the word. */
char *psz = pszStart + 1;
while (*psz && !RT_C_IS_SPACE(*psz))
psz++;
/* Copy it. */
size_t cchWord = (uintptr_t)psz - (uintptr_t)pszStart;
if (cchWord >= cbBuf)
return false;
memcpy(pszBuf, pszStart, cchWord);
pszBuf[cchWord] = '\0';
/* Skip blanks following it. */
while (RT_C_IS_SPACE(*psz))
psz++;
*ppszCursor = psz;
return true;
}
/**
* Parses an 16:16 address.
*
* @returns @c true on success, @c false on failure.
* @param ppszCursor Pointer to the cursor variable.
* @param pAddr Where to return the address.
*/
static bool mapParseAddress(char **ppszCursor, PRTFAR16 pAddr)
{
char szWord[32];
if (!mapParseWord(ppszCursor, szWord, sizeof(szWord)))
return false;
size_t cchWord = strlen(szWord);
/* An address is at least 16:16 format. It may be 16:32. It may also be flagged. */
size_t cchAddr = 4 + 1 + 4;
if (cchWord < cchAddr)
return false;
if ( !RT_C_IS_XDIGIT(szWord[0])
|| !RT_C_IS_XDIGIT(szWord[1])
|| !RT_C_IS_XDIGIT(szWord[2])
|| !RT_C_IS_XDIGIT(szWord[3])
|| szWord[4] != ':'
|| !RT_C_IS_XDIGIT(szWord[5])
|| !RT_C_IS_XDIGIT(szWord[6])
|| !RT_C_IS_XDIGIT(szWord[7])
|| !RT_C_IS_XDIGIT(szWord[8])
)
return false;
if ( cchWord > cchAddr
&& RT_C_IS_XDIGIT(szWord[9])
&& RT_C_IS_XDIGIT(szWord[10])
&& RT_C_IS_XDIGIT(szWord[11])
&& RT_C_IS_XDIGIT(szWord[12]))
cchAddr += 4;
/* Drop flag if present. */
if (cchWord > cchAddr)
{
if (RT_C_IS_XDIGIT(szWord[cchAddr]))
return false;
szWord[cchAddr] = '\0';
cchWord = cchAddr;
}
/* Convert it. */
szWord[4] = '\0';
int rc1 = RTStrToUInt16Full(szWord, 16, &pAddr->sel);
if (rc1 != VINF_SUCCESS)
return false;
int rc2 = RTStrToUInt16Full(szWord + 5, 16, &pAddr->off);
if (rc2 != VINF_SUCCESS)
return false;
return true;
}
/**
* Parses a size.
*
* @returns @c true on success, @c false on failure.
* @param ppszCursor Pointer to the cursor variable.
* @param pcb Where to return the size.
*/
static bool mapParseSize(char **ppszCursor, uint32_t *pcb)
{
char szWord[32];
if (!mapParseWord(ppszCursor, szWord, sizeof(szWord)))
return false;
size_t cchWord = strlen(szWord);
if (cchWord != 8)
return false;
int rc = RTStrToUInt32Full(szWord, 16, pcb);
if (rc != VINF_SUCCESS)
return false;
return true;
}
/**
* Parses a section box and the following column header.
*
* @returns @c true on success, @c false + msg on failure, @c false on eof.
* @param pMap Map file handle.
* @param pszSectionNm The expected section name.
* @param cColumns The number of columns.
* @param ... The column names.
*/
static bool mapSkipThruColumnHeadings(PBIOSMAP pMap, const char *pszSectionNm, uint32_t cColumns, ...)
{
if ( mapIsEmptyLine(pMap)
&& !mapSkipEmptyLines(pMap))
return false;
/* +------------+ */
size_t cch;
char *psz = mapStripCurrentLine(pMap, &cch);
if (!psz)
return false;
if ( psz[0] != '+'
|| psz[1] != '-'
|| psz[2] != '-'
|| psz[3] != '-'
|| psz[cch - 4] != '-'
|| psz[cch - 3] != '-'
|| psz[cch - 2] != '-'
|| psz[cch - 1] != '+'
)
{
RTMsgError("%s:%d: Expected section box: +-----...", pMap->pszMapFile, pMap->iLine);
return false;
}
/* | pszSectionNm | */
psz = mapReadLineStrip(pMap, &cch);
if (!psz)
return false;
size_t cchSectionNm = strlen(pszSectionNm);
if ( psz[0] != '|'
|| psz[1] != ' '
|| psz[2] != ' '
|| psz[3] != ' '
|| psz[cch - 4] != ' '
|| psz[cch - 3] != ' '
|| psz[cch - 2] != ' '
|| psz[cch - 1] != '|'
|| cch != 1 + 3 + cchSectionNm + 3 + 1
|| strncmp(&psz[4], pszSectionNm, cchSectionNm)
)
{
RTMsgError("%s:%d: Expected section box: | %s |", pMap->pszMapFile, pMap->iLine, pszSectionNm);
return false;
}
/* +------------+ */
psz = mapReadLineStrip(pMap, &cch);
if (!psz)
return false;
if ( psz[0] != '+'
|| psz[1] != '-'
|| psz[2] != '-'
|| psz[3] != '-'
|| psz[cch - 4] != '-'
|| psz[cch - 3] != '-'
|| psz[cch - 2] != '-'
|| psz[cch - 1] != '+'
)
{
RTMsgError("%s:%d: Expected section box: +-----...", pMap->pszMapFile, pMap->iLine);
return false;
}
/* There may be a few lines describing the table notation now, surrounded by blank lines. */
do
{
psz = mapReadLineStripRight(pMap, &cch);
if (!psz)
return false;
} while ( *psz == '\0'
|| ( !RT_C_IS_SPACE(psz[0])
&& RT_C_IS_SPACE(psz[1])
&& psz[2] == '='
&& RT_C_IS_SPACE(psz[3]))
);
/* Should have the column heading now. */
va_list va;
va_start(va, cColumns);
for (uint32_t i = 0; i < cColumns; i++)
{
const char *pszColumn = va_arg(va, const char *);
size_t cchColumn = strlen(pszColumn);
if ( strncmp(psz, pszColumn, cchColumn)
|| ( psz[cchColumn] != '\0'
&& !RT_C_IS_SPACE(psz[cchColumn])))
{
va_end(va);
RTMsgError("%s:%d: Expected column '%s' found '%s'", pMap->pszMapFile, pMap->iLine, pszColumn, psz);
return false;
}
psz += cchColumn;
while (RT_C_IS_SPACE(*psz))
psz++;
}
va_end(va);
/* The next line is the underlining. */
psz = mapReadLineStripRight(pMap, &cch);
if (!psz)
return false;
if (*psz != '=' || psz[cch - 1] != '=')
{
RTMsgError("%s:%d: Expected column header underlining", pMap->pszMapFile, pMap->iLine);
return false;
}
/* Skip one blank line. */
psz = mapReadLineStripRight(pMap, &cch);
if (!psz)
return false;
if (*psz)
{
RTMsgError("%s:%d: Expected blank line beneath the column headers", pMap->pszMapFile, pMap->iLine);
return false;
}
return true;
}
/**
* Parses a segment list.
*
* @returns @c true on success, @c false + msg on failure, @c false on eof.
* @param pMap The map file handle.
*/
static bool mapParseSegments(PBIOSMAP pMap)
{
for (;;)
{
if (!mapReadLineStripRight(pMap, NULL))
return false;
/* The end? The line should be empty. Expectes segment name to not
start with a space. */
if (!pMap->szLine[0] || RT_C_IS_SPACE(pMap->szLine[0]))
{
if (!pMap->szLine[0])
return true;
RTMsgError("%s:%u: Malformed segment line", pMap->pszMapFile, pMap->iLine);
return false;
}
/* Parse the segment line. */
uint32_t iSeg = g_cSegs;
if (iSeg >= RT_ELEMENTS(g_aSegs))
{
RTMsgError("%s:%u: Too many segments", pMap->pszMapFile, pMap->iLine);
return false;
}
char *psz = pMap->szLine;
if (!mapParseWord(&psz, g_aSegs[iSeg].szName, sizeof(g_aSegs[iSeg].szName)))
RTMsgError("%s:%u: Segment name parser error", pMap->pszMapFile, pMap->iLine);
else if (!mapParseWord(&psz, g_aSegs[iSeg].szClass, sizeof(g_aSegs[iSeg].szClass)))
RTMsgError("%s:%u: Segment class parser error", pMap->pszMapFile, pMap->iLine);
else if (!mapParseWord(&psz, g_aSegs[iSeg].szGroup, sizeof(g_aSegs[iSeg].szGroup)))
RTMsgError("%s:%u: Segment group parser error", pMap->pszMapFile, pMap->iLine);
else if (!mapParseAddress(&psz, &g_aSegs[iSeg].Address))
RTMsgError("%s:%u: Segment address parser error", pMap->pszMapFile, pMap->iLine);
else if (!mapParseSize(&psz, &g_aSegs[iSeg].cb))
RTMsgError("%s:%u: Segment size parser error", pMap->pszMapFile, pMap->iLine);
else
{
g_aSegs[iSeg].uFlatAddr = ((uint32_t)g_aSegs[iSeg].Address.sel << 4) + g_aSegs[iSeg].Address.off;
g_cSegs++;
if (g_cVerbose > 2)
RTStrmPrintf(g_pStdErr, "read segment at %08x / %04x:%04x LB %04x %s / %s / %s\n",
g_aSegs[iSeg].uFlatAddr,
g_aSegs[iSeg].Address.sel,
g_aSegs[iSeg].Address.off,
g_aSegs[iSeg].cb,
g_aSegs[iSeg].szName,
g_aSegs[iSeg].szClass,
g_aSegs[iSeg].szGroup);
while (RT_C_IS_SPACE(*psz))
psz++;
if (!*psz)
continue;
RTMsgError("%s:%u: Junk at end of line", pMap->pszMapFile, pMap->iLine);
}
return false;
}
}
/**
* Sorts the segment array by flat address and adds them to the debug module.
*
* @returns @c true on success, @c false + msg on failure, @c false on eof.
*/
static bool mapSortAndAddSegments(void)
{
for (uint32_t i = 0; i < g_cSegs; i++)
{
for (uint32_t j = i + 1; j < g_cSegs; j++)
if (g_aSegs[j].uFlatAddr < g_aSegs[i].uFlatAddr)
{
BIOSSEG Tmp = g_aSegs[i];
g_aSegs[i] = g_aSegs[j];
g_aSegs[j] = Tmp;
}
if (g_cVerbose > 0)
RTStrmPrintf(g_pStdErr, "segment at %08x / %04x:%04x LB %04x %s / %s / %s\n",
g_aSegs[i].uFlatAddr,
g_aSegs[i].Address.sel,
g_aSegs[i].Address.off,
g_aSegs[i].cb,
g_aSegs[i].szName,
g_aSegs[i].szClass,
g_aSegs[i].szGroup);
RTDBGSEGIDX idx = i;
int rc = RTDbgModSegmentAdd(g_hMapMod, g_aSegs[i].uFlatAddr, g_aSegs[i].cb, g_aSegs[i].szName, 0 /*fFlags*/, &idx);
if (RT_FAILURE(rc))
{
RTMsgError("RTDbgModSegmentAdd failed on %s: %Rrc", g_aSegs[i].szName);
return false;
}
}
return true;
}
/**
* Parses a segment list.
*
* @returns @c true on success, @c false + msg on failure, @c false on eof.
* @param pMap The map file handle.
*/
static bool mapParseSymbols(PBIOSMAP pMap)
{
for (;;)
{
if (!mapReadLineStripRight(pMap, NULL))
return false;
/* The end? The line should be empty. Expectes segment name to not
start with a space. */
if (!pMap->szLine[0] || RT_C_IS_SPACE(pMap->szLine[0]))
{
if (!pMap->szLine[0])
return true;
return mapError(pMap, "Malformed symbol line");
}
if (!strncmp(pMap->szLine, RT_STR_TUPLE("Module: ")))
{
/* Parse the module line. */
size_t offObj = sizeof("Module: ") - 1;
while (RT_C_IS_SPACE(pMap->szLine[offObj]))
offObj++;
size_t offSrc = offObj;
char ch;
while ((ch = pMap->szLine[offSrc]) != '(' && ch != '\0')
offSrc++;
size_t cchObj = offSrc - offObj;
offSrc++;
size_t cchSrc = offSrc;
while ((ch = pMap->szLine[cchSrc]) != ')' && ch != '\0')
cchSrc++;
cchSrc -= offSrc;
if (ch != ')')
return mapError(pMap, "Symbol/Module line parse error");
PBIOSOBJFILE pObjFile = (PBIOSOBJFILE)RTMemAllocZ(sizeof(*pObjFile) + cchSrc + cchObj + 2);
if (!pObjFile)
return mapError(pMap, "Out of memory");
char *psz = (char *)(pObjFile + 1);
pObjFile->pszObject = psz;
memcpy(psz, &pMap->szLine[offObj], cchObj);
psz += cchObj;
*psz++ = '\0';
pObjFile->pszSource = psz;
memcpy(psz, &pMap->szLine[offSrc], cchSrc);
psz[cchSrc] = '\0';
RTListAppend(&g_ObjList, &pObjFile->Node);
}
else
{
/* Parse the segment line. */
RTFAR16 Addr;
char *psz = pMap->szLine;
if (!mapParseAddress(&psz, &Addr))
return mapError(pMap, "Symbol address parser error");
char szName[4096];
if (!mapParseWord(&psz, szName, sizeof(szName)))
return mapError(pMap, "Symbol name parser error");
uint32_t uFlatAddr = ((uint32_t)Addr.sel << 4) + Addr.off;
if (uFlatAddr != 0)
{
int rc = RTDbgModSymbolAdd(g_hMapMod, szName, RTDBGSEGIDX_RVA, uFlatAddr, 0 /*cb*/, 0 /*fFlags*/, NULL);
if (RT_FAILURE(rc) && rc != VERR_DBG_ADDRESS_CONFLICT)
{
/* HACK ALERT! For dealing with lables at segment size. */ /** @todo fix end labels. */
rc = RTDbgModSymbolAdd(g_hMapMod, szName, RTDBGSEGIDX_RVA, uFlatAddr - 1, 0 /*cb*/, 0 /*fFlags*/, NULL);
if (RT_FAILURE(rc) && rc != VERR_DBG_ADDRESS_CONFLICT)
return mapError(pMap, "RTDbgModSymbolAdd failed: %Rrc", rc);
}
if (g_cVerbose > 2)
RTStrmPrintf(g_pStdErr, "read symbol - %08x %s\n", uFlatAddr, szName);
while (RT_C_IS_SPACE(*psz))
psz++;
if (*psz)
return mapError(pMap, "Junk at end of line");
}
}
}
}
/**
* Parses the given map file.
*
* @returns RTEXITCODE_SUCCESS and lots of globals, or RTEXITCODE_FAILURE and a
* error message.
* @param pMap The map file handle.
*/
static RTEXITCODE mapParseFile(PBIOSMAP pMap)
{
int rc = RTDbgModCreate(&g_hMapMod, "VBoxBios", 0 /*cbSeg*/, 0 /*fFlags*/);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTDbgModCreate failed: %Rrc", rc);
/*
* Read the header.
*/
if (!mapReadLine(pMap))
return RTEXITCODE_FAILURE;
if (strncmp(pMap->szLine, RT_STR_TUPLE("Open Watcom Linker Version")))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "Unexpected map-file header: '%s'", pMap->szLine);
if ( !mapSkipNonEmptyLines(pMap)
|| !mapSkipEmptyLines(pMap))
return RTEXITCODE_FAILURE;
/*
* Skip groups.
*/
if (!mapSkipThruColumnHeadings(pMap, "Groups", 3, "Group", "Address", "Size", NULL))
return RTEXITCODE_FAILURE;
if (!mapSkipNonEmptyLines(pMap))
return RTEXITCODE_FAILURE;
/*
* Parse segments.
*/
if (!mapSkipThruColumnHeadings(pMap, "Segments", 5, "Segment", "Class", "Group", "Address", "Size"))
return RTEXITCODE_FAILURE;
if (!mapParseSegments(pMap))
return RTEXITCODE_FAILURE;
if (!mapSortAndAddSegments())
return RTEXITCODE_FAILURE;
/*
* Parse symbols.
*/
if (!mapSkipThruColumnHeadings(pMap, "Memory Map", 2, "Address", "Symbol"))
return RTEXITCODE_FAILURE;
if (!mapParseSymbols(pMap))
return RTEXITCODE_FAILURE;
/* Ignore the rest of the file. */
return RTEXITCODE_SUCCESS;
}
/**
* Parses the linker map file for the BIOS.
*
* This is generated by the Watcom linker.
*
* @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg.
* @param pszBiosMap Path to the map file.
*/
static RTEXITCODE ParseMapFile(const char *pszBiosMap)
{
BIOSMAP Map;
Map.pszMapFile = pszBiosMap;
Map.hStrm = NULL;
Map.iLine = 0;
Map.fEof = false;
Map.cch = 0;
Map.offNW = 0;
int rc = RTStrmOpen(pszBiosMap, "r", &Map.hStrm);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "Error opening '%s': %Rrc", pszBiosMap, rc);
RTEXITCODE rcExit = mapParseFile(&Map);
RTStrmClose(Map.hStrm);
return rcExit;
}
/**
* Reads the BIOS image into memory (g_pbImg and g_cbImg).
*
* @returns RTEXITCODE_SUCCESS or RTEXITCODE_FAILURE+msg.
* @param pszBiosImg Path to the image file.
*/
static RTEXITCODE ReadBiosImage(const char *pszBiosImg)
{
void *pvImg;
size_t cbImg;
int rc = RTFileReadAll(pszBiosImg, &pvImg, &cbImg);
if (RT_FAILURE(rc))
return RTMsgErrorExit(RTEXITCODE_FAILURE, "Error reading '%s': %Rrc", pszBiosImg, rc);
size_t cbImgExpect;
switch (g_enmBiosType)
{
case kBiosType_System: cbImgExpect = _64K; break;
case kBiosType_Vga: cbImgExpect = _32K; break;
default: cbImgExpect = 0; break;
}
if (cbImg != cbImgExpect)
{
RTFileReadAllFree(pvImg, cbImg);
return RTMsgErrorExit(RTEXITCODE_FAILURE, "The BIOS image %u bytes intead of %u bytes", cbImg, cbImgExpect);
}
g_pbImg = (uint8_t *)pvImg;
g_cbImg = cbImg;
return RTEXITCODE_SUCCESS;
}
int main(int argc, char **argv)
{
int rc = RTR3InitExe(argc, &argv, 0);
if (RT_FAILURE(rc))
return RTMsgInitFailure(rc);
RTListInit(&g_ObjList);
/*
* Option config.
*/
static RTGETOPTDEF const s_aOpts[] =
{
{ "--bios-image", 'i', RTGETOPT_REQ_STRING },
{ "--bios-map", 'm', RTGETOPT_REQ_STRING },
{ "--bios-sym", 's', RTGETOPT_REQ_STRING },
{ "--bios-type", 't', RTGETOPT_REQ_STRING },
{ "--output", 'o', RTGETOPT_REQ_STRING },
{ "--verbose", 'v', RTGETOPT_REQ_NOTHING },
{ "--quiet", 'q', RTGETOPT_REQ_NOTHING },
};
const char *pszBiosMap = NULL;
const char *pszBiosSym = NULL;
const char *pszBiosImg = NULL;
const char *pszOutput = NULL;
RTGETOPTUNION ValueUnion;
RTGETOPTSTATE GetOptState;
rc = RTGetOptInit(&GetOptState, argc, argv, &s_aOpts[0], RT_ELEMENTS(s_aOpts), 1, RTGETOPTINIT_FLAGS_OPTS_FIRST);
AssertReleaseRCReturn(rc, RTEXITCODE_FAILURE);
/*
* Process the options.
*/
while ((rc = RTGetOpt(&GetOptState, &ValueUnion)) != 0)
{
switch (rc)
{
case 'i':
if (pszBiosImg)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-image is given more than once");
pszBiosImg = ValueUnion.psz;
break;
case 'm':
if (pszBiosMap)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-map is given more than once");
pszBiosMap = ValueUnion.psz;
break;
case 's':
if (pszBiosSym)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-sym is given more than once");
pszBiosSym = ValueUnion.psz;
break;
case 'o':
if (pszOutput)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--output is given more than once");
pszOutput = ValueUnion.psz;
break;
case 't':
if (!strcmp(ValueUnion.psz, "system"))
{
g_enmBiosType = kBiosType_System;
g_uBiosFlatBase = 0xf0000;
}
else if (!strcmp(ValueUnion.psz, "vga"))
{
g_enmBiosType = kBiosType_Vga;
g_uBiosFlatBase = 0xc0000;
}
else
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Unknown bios type '%s'", ValueUnion.psz);
break;
case 'v':
g_cVerbose++;
break;
case 'q':
g_cVerbose = 0;
break;
case 'H':
RTPrintf("usage: %Rbn --bios-image <file.img> --bios-map <file.map> [--output <file.asm>]\n",
argv[0]);
return RTEXITCODE_SUCCESS;
case 'V':
{
/* The following is assuming that svn does it's job here. */
RTPrintf("r%u\n", RTBldCfgRevision());
return RTEXITCODE_SUCCESS;
}
default:
return RTGetOptPrintError(rc, &ValueUnion);
}
}
/*
* Got it all?
*/
if (!pszBiosImg)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-image is required");
if (!pszBiosMap)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-map is required");
if (!pszBiosSym)
return RTMsgErrorExit(RTEXITCODE_SYNTAX, "--bios-sym is required");
/*
* Do the job.
*/
RTEXITCODE rcExit;
rcExit = ReadBiosImage(pszBiosImg);
if (rcExit == RTEXITCODE_SUCCESS)
rcExit = ParseMapFile(pszBiosMap);
if (rcExit == RTEXITCODE_SUCCESS)
rcExit = ParseSymFile(pszBiosSym);
if (rcExit == RTEXITCODE_SUCCESS)
rcExit = OpenOutputFile(pszOutput);
if (rcExit == RTEXITCODE_SUCCESS)
rcExit = DisassembleBiosImage();
return rcExit;
}