DevIchIntelHDA.cpp revision f5e53763b0a581b0299e98028c6c52192eb06785
/* $Id$ */
/** @file
* DevIchIntelHD - VBox ICH Intel HD Audio Controller.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_DEV_AUDIO
#include <VBox/vmm/pdmdev.h>
#include <iprt/assert.h>
#include <iprt/uuid.h>
#include <iprt/string.h>
#include <iprt/mem.h>
#include <iprt/asm.h>
#include <iprt/asm-math.h>
#include "VBoxDD.h"
extern "C" {
#include "audio.h"
}
#include "DevCodec.h"
#define VBOX_WITH_INTEL_HDA
#if defined(VBOX_WITH_HP_HDA)
/* HP Pavilion dv4t-1300 */
# define HDA_PCI_VENDOR_ID 0x103c
# define HDA_PCI_DEICE_ID 0x30f7
#elif defined(VBOX_WITH_INTEL_HDA)
/* Intel HDA controller */
# define HDA_PCI_VENDOR_ID 0x8086
# define HDA_PCI_DEICE_ID 0x2668
#elif defined(VBOX_WITH_NVIDIA_HDA)
/* nVidia HDA controller */
# define HDA_PCI_VENDOR_ID 0x10de
# define HDA_PCI_DEICE_ID 0x0ac0
#else
# error "Please specify your HDA device vendor/device IDs"
#endif
#define HDA_SSM_VERSION 1
PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb);
PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb);
static DECLCALLBACK(void) hdaReset (PPDMDEVINS pDevIns);
/* Registers */
#define HDA_REG_IND_NAME(x) ICH6_HDA_REG_##x
#define HDA_REG_FIELD_NAME(reg, x) ICH6_HDA_##reg##_##x
#define HDA_REG_FIELD_MASK(reg, x) ICH6_HDA_##reg##_##x##_MASK
#define HDA_REG_FIELD_FLAG_MASK(reg, x) RT_BIT(ICH6_HDA_##reg##_##x##_SHIFT)
#define HDA_REG_FIELD_SHIFT(reg, x) ICH6_HDA_##reg##_##x##_SHIFT
#define HDA_REG_IND(pState, x) ((pState)->au32Regs[(x)])
#define HDA_REG(pState, x) (HDA_REG_IND((pState), HDA_REG_IND_NAME(x)))
#define HDA_REG_VALUE(pState, reg, val) (HDA_REG((pState),reg) & (((HDA_REG_FIELD_MASK(reg, val))) << (HDA_REG_FIELD_SHIFT(reg, val))))
#define HDA_REG_FLAG_VALUE(pState, reg, val) (HDA_REG((pState),reg) & (((HDA_REG_FIELD_FLAG_MASK(reg, val)))))
#define HDA_REG_SVALUE(pState, reg, val) (HDA_REG_VALUE(pState, reg, val) >> (HDA_REG_FIELD_SHIFT(reg, val)))
#define ICH6_HDA_REG_GCAP 0 /* range 0x00-0x01*/
#define GCAP(pState) (HDA_REG((pState), GCAP))
/* GCAP HDASpec 3.3.2 This macro compact following information about HDA
* oss (15:12) - number of output streams supported
* iss (11:8) - number of input streams supported
* bss (7:3) - number of bidirection streams suppoted
* bds (2:1) - number of serial data out signals supported
* b64sup (0) - 64 bit addressing supported.
*/
#define HDA_MAKE_GCAP(oss, iss, bss, bds, b64sup) \
( (((oss) & 0xF) << 12) \
| (((iss) & 0xF) << 8) \
| (((bss) & 0x1F) << 3) \
| (((bds) & 0x3) << 2) \
| ((b64sup) & 1))
#define ICH6_HDA_REG_VMIN 1 /* range 0x02 */
#define VMIN(pState) (HDA_REG((pState), VMIN))
#define ICH6_HDA_REG_VMAJ 2 /* range 0x03 */
#define VMAJ(pState) (HDA_REG((pState), VMAJ))
#define ICH6_HDA_REG_OUTPAY 3 /* range 0x04-0x05 */
#define OUTPAY(pState) (HDA_REG((pState), OUTPAY))
#define ICH6_HDA_REG_INPAY 4 /* range 0x06-0x07 */
#define INPAY(pState) (HDA_REG((pState), INPAY))
#define ICH6_HDA_REG_GCTL (5)
#define ICH6_HDA_GCTL_RST_SHIFT (0)
#define ICH6_HDA_GCTL_FSH_SHIFT (1)
#define ICH6_HDA_GCTL_UR_SHIFT (8)
#define GCTL(pState) (HDA_REG((pState), GCTL))
#define ICH6_HDA_REG_WAKEEN 6 /* 0x0C */
#define WAKEEN(pState) (HDA_REG((pState), WAKEEN))
#define ICH6_HDA_REG_STATESTS 7 /* range 0x0E */
#define STATESTS(pState) (HDA_REG((pState), STATESTS))
#define ICH6_HDA_STATES_SCSF 0x7
#define ICH6_HDA_REG_GSTS 8 /* range 0x10-0x11*/
#define ICH6_HDA_GSTS_FSH_SHIFT (1)
#define GSTS(pState) (HDA_REG(pState, GSTS))
#define ICH6_HDA_REG_INTCTL 9 /* 0x20 */
#define ICH6_HDA_INTCTL_GIE_SHIFT 31
#define ICH6_HDA_INTCTL_CIE_SHIFT 30
#define ICH6_HDA_INTCTL_S0_SHIFT (0)
#define ICH6_HDA_INTCTL_S1_SHIFT (1)
#define ICH6_HDA_INTCTL_S2_SHIFT (2)
#define ICH6_HDA_INTCTL_S3_SHIFT (3)
#define ICH6_HDA_INTCTL_S4_SHIFT (4)
#define ICH6_HDA_INTCTL_S5_SHIFT (5)
#define ICH6_HDA_INTCTL_S6_SHIFT (6)
#define ICH6_HDA_INTCTL_S7_SHIFT (7)
#define INTCTL(pState) (HDA_REG((pState), INTCTL))
#define INTCTL_GIE(pState) (HDA_REG_FLAG_VALUE(pState, INTCTL, GIE))
#define INTCTL_CIE(pState) (HDA_REG_FLAG_VALUE(pState, INTCTL, CIE))
#define INTCTL_SX(pState, X) (HDA_REG_FLAG_VALUE((pState), INTCTL, S##X))
#define INTCTL_SALL(pState) (INTCTL((pState)) & 0xFF)
/* Note: The HDA specification defines a SSYNC register at offset 0x38. The
* ICH6/ICH9 datahseet defines SSYNC at offset 0x34. The Linux HDA driver matches
* the datasheet.
*/
#define ICH6_HDA_REG_SSYNC 12 /* 0x34 */
#define SSYNC(pState) (HDA_REG((pState), SSYNC))
#define ICH6_HDA_REG_INTSTS 10 /* 0x24 */
#define ICH6_HDA_INTSTS_GIS_SHIFT (31)
#define ICH6_HDA_INTSTS_CIS_SHIFT (30)
#define ICH6_HDA_INTSTS_S0_SHIFT (0)
#define ICH6_HDA_INTSTS_S1_SHIFT (1)
#define ICH6_HDA_INTSTS_S2_SHIFT (2)
#define ICH6_HDA_INTSTS_S3_SHIFT (3)
#define ICH6_HDA_INTSTS_S4_SHIFT (4)
#define ICH6_HDA_INTSTS_S5_SHIFT (5)
#define ICH6_HDA_INTSTS_S6_SHIFT (6)
#define ICH6_HDA_INTSTS_S7_SHIFT (7)
#define ICH6_HDA_INTSTS_S_MASK(num) RT_BIT(HDA_REG_FIELD_SHIFT(S##num))
#define INTSTS(pState) (HDA_REG((pState), INTSTS))
#define INTSTS_GIS(pState) (HDA_REG_FLAG_VALUE((pState), INTSTS, GIS)
#define INTSTS_CIS(pState) (HDA_REG_FLAG_VALUE((pState), INTSTS, CIS)
#define INTSTS_SX(pState, X) (HDA_REG_FLAG_VALUE(pState), INTSTS, S##X)
#define INTSTS_SANY(pState) (INTSTS((pState)) & 0xFF)
#define ICH6_HDA_REG_CORBLBASE 13 /* 0x40 */
#define CORBLBASE(pState) (HDA_REG((pState), CORBLBASE))
#define ICH6_HDA_REG_CORBUBASE 14 /* 0x44 */
#define CORBUBASE(pState) (HDA_REG((pState), CORBUBASE))
#define ICH6_HDA_REG_CORBWP 15 /* 48 */
#define ICH6_HDA_REG_CORBRP 16 /* 4A */
#define ICH6_HDA_CORBRP_RST_SHIFT 15
#define ICH6_HDA_CORBRP_WP_SHIFT 0
#define ICH6_HDA_CORBRP_WP_MASK 0xFF
#define CORBRP(pState) (HDA_REG(pState, CORBRP))
#define CORBWP(pState) (HDA_REG(pState, CORBWP))
#define ICH6_HDA_REG_CORBCTL 17 /* 0x4C */
#define ICH6_HDA_CORBCTL_DMA_SHIFT (1)
#define ICH6_HDA_CORBCTL_CMEIE_SHIFT (0)
#define CORBCTL(pState) (HDA_REG(pState, CORBCTL))
#define ICH6_HDA_REG_CORBSTS 18 /* 0x4D */
#define CORBSTS(pState) (HDA_REG(pState, CORBSTS))
#define ICH6_HDA_CORBSTS_CMEI_SHIFT (0)
#define ICH6_HDA_REG_CORBSIZE 19 /* 0x4E */
#define ICH6_HDA_CORBSIZE_SZ_CAP 0xF0
#define ICH6_HDA_CORBSIZE_SZ 0x3
#define CORBSIZE_SZ(pState) (HDA_REG(pState, ICH6_HDA_REG_CORBSIZE) & ICH6_HDA_CORBSIZE_SZ)
#define CORBSIZE_SZ_CAP(pState) (HDA_REG(pState, ICH6_HDA_REG_CORBSIZE) & ICH6_HDA_CORBSIZE_SZ_CAP)
/* till ich 10 sizes of CORB and RIRB are hardcoded to 256 in real hw */
#define ICH6_HDA_REG_RIRLBASE 20 /* 0x50 */
#define RIRLBASE(pState) (HDA_REG((pState), RIRLBASE))
#define ICH6_HDA_REG_RIRUBASE 21 /* 0x54 */
#define RIRUBASE(pState) (HDA_REG((pState), RIRUBASE))
#define ICH6_HDA_REG_RIRBWP 22 /* 0x58 */
#define ICH6_HDA_RIRBWP_RST_SHIFT (15)
#define ICH6_HDA_RIRBWP_WP_MASK 0xFF
#define RIRBWP(pState) (HDA_REG(pState, RIRBWP))
#define ICH6_HDA_REG_RINTCNT 23 /* 0x5A */
#define RINTCNT(pState) (HDA_REG((pState), RINTCNT))
#define RINTCNT_N(pState) (RINTCNT((pState)) & 0xff)
#define ICH6_HDA_REG_RIRBCTL 24 /* 0x5C */
#define ICH6_HDA_RIRBCTL_RIC_SHIFT (0)
#define ICH6_HDA_RIRBCTL_DMA_SHIFT (1)
#define ICH6_HDA_ROI_DMA_SHIFT (2)
#define RIRBCTL(pState) (HDA_REG((pState), RIRBCTL))
#define RIRBCTL_RIRB_RIC(pState) (HDA_REG_FLAG_VALUE(pState, RIRBCTL, RIC))
#define RIRBCTL_RIRB_DMA(pState) (HDA_REG_FLAG_VALUE((pState), RIRBCTL, DMA)
#define RIRBCTL_ROI(pState) (HDA_REG_FLAG_VALUE((pState), RIRBCTL, ROI))
#define ICH6_HDA_REG_RIRBSTS 25 /* 0x5D */
#define ICH6_HDA_RIRBSTS_RINTFL_SHIFT (0)
#define ICH6_HDA_RIRBSTS_RIRBOIS_SHIFT (2)
#define RIRBSTS(pState) (HDA_REG(pState, RIRBSTS))
#define RIRBSTS_RINTFL(pState) (HDA_REG_FLAG_VALUE(pState, RIRBSTS, RINTFL))
#define RIRBSTS_RIRBOIS(pState) (HDA_REG_FLAG_VALUE(pState, RIRBSTS, RIRBOIS))
#define ICH6_HDA_REG_RIRBSIZE 26 /* 0x5E */
#define ICH6_HDA_RIRBSIZE_SZ_CAP 0xF0
#define ICH6_HDA_RIRBSIZE_SZ 0x3
#define RIRBSIZE_SZ(pState) (HDA_REG(pState, ICH6_HDA_REG_RIRBSIZE) & ICH6_HDA_RIRBSIZE_SZ)
#define RIRBSIZE_SZ_CAP(pState) (HDA_REG(pState, ICH6_HDA_REG_RIRBSIZE) & ICH6_HDA_RIRBSIZE_SZ_CAP)
#define ICH6_HDA_REG_IC 27 /* 0x60 */
#define IC(pState) (HDA_REG(pState, IC))
#define ICH6_HDA_REG_IR 28 /* 0x64 */
#define IR(pState) (HDA_REG(pState, IR))
#define ICH6_HDA_REG_IRS 29 /* 0x68 */
#define ICH6_HDA_IRS_ICB_SHIFT (0)
#define ICH6_HDA_IRS_IRV_SHIFT (1)
#define IRS(pState) (HDA_REG(pState, IRS))
#define IRS_ICB(pState) (HDA_REG_FLAG_VALUE(pState, IRS, ICB))
#define IRS_IRV(pState) (HDA_REG_FLAG_VALUE(pState, IRS, IRV))
#define ICH6_HDA_REG_DPLBASE 30 /* 0x70 */
#define DPLBASE(pState) (HDA_REG((pState), DPLBASE))
#define ICH6_HDA_REG_DPUBASE 31 /* 0x74 */
#define DPUBASE(pState) (HDA_REG((pState), DPUBASE))
#define DPBASE_ENABLED 1
#define DPBASE_ADDR_MASK (~0x7f)
#define HDA_STREAM_REG_DEF(name, num) (ICH6_HDA_REG_SD##num##name)
#define HDA_STREAM_REG(pState, name, num) (HDA_REG((pState), N_(HDA_STREAM_REG_DEF(name, num))))
/* Note: sdnum here _MUST_ be stream reg number [0,7] */
#define HDA_STREAM_REG2(pState, name, sdnum) (HDA_REG_IND((pState), ICH6_HDA_REG_SD0##name + (sdnum) * 10))
#define ICH6_HDA_REG_SD0CTL 32 /* 0x80 */
#define ICH6_HDA_REG_SD1CTL (HDA_STREAM_REG_DEF(CTL, 0) + 10) /* 0xA0 */
#define ICH6_HDA_REG_SD2CTL (HDA_STREAM_REG_DEF(CTL, 0) + 20) /* 0xC0 */
#define ICH6_HDA_REG_SD3CTL (HDA_STREAM_REG_DEF(CTL, 0) + 30) /* 0xE0 */
#define ICH6_HDA_REG_SD4CTL (HDA_STREAM_REG_DEF(CTL, 0) + 40) /* 0x100 */
#define ICH6_HDA_REG_SD5CTL (HDA_STREAM_REG_DEF(CTL, 0) + 50) /* 0x120 */
#define ICH6_HDA_REG_SD6CTL (HDA_STREAM_REG_DEF(CTL, 0) + 60) /* 0x140 */
#define ICH6_HDA_REG_SD7CTL (HDA_STREAM_REG_DEF(CTL, 0) + 70) /* 0x160 */
#define SD(func, num) SD##num##func
#define SDCTL(pState, num) HDA_REG((pState), SD(CTL, num))
#define SDCTL_NUM(pState, num) ((SDCTL((pState), num) & HDA_REG_FIELD_MASK(SDCTL,NUM)) >> HDA_REG_FIELD_SHIFT(SDCTL, NUM))
#define ICH6_HDA_SDCTL_NUM_MASK (0xF)
#define ICH6_HDA_SDCTL_NUM_SHIFT (20)
#define ICH6_HDA_SDCTL_DEIE_SHIFT (4)
#define ICH6_HDA_SDCTL_FEIE_SHIFT (3)
#define ICH6_HDA_SDCTL_ICE_SHIFT (2)
#define ICH6_HDA_SDCTL_RUN_SHIFT (1)
#define ICH6_HDA_SDCTL_SRST_SHIFT (0)
#define ICH6_HDA_REG_SD0STS 33 /* 0x83 */
#define ICH6_HDA_REG_SD1STS (HDA_STREAM_REG_DEF(STS, 0) + 10) /* 0xA3 */
#define ICH6_HDA_REG_SD2STS (HDA_STREAM_REG_DEF(STS, 0) + 20) /* 0xC3 */
#define ICH6_HDA_REG_SD3STS (HDA_STREAM_REG_DEF(STS, 0) + 30) /* 0xE3 */
#define ICH6_HDA_REG_SD4STS (HDA_STREAM_REG_DEF(STS, 0) + 40) /* 0x103 */
#define ICH6_HDA_REG_SD5STS (HDA_STREAM_REG_DEF(STS, 0) + 50) /* 0x123 */
#define ICH6_HDA_REG_SD6STS (HDA_STREAM_REG_DEF(STS, 0) + 60) /* 0x143 */
#define ICH6_HDA_REG_SD7STS (HDA_STREAM_REG_DEF(STS, 0) + 70) /* 0x163 */
#define SDSTS(pState, num) HDA_REG((pState), SD(STS, num))
#define ICH6_HDA_SDSTS_FIFORDY_SHIFT (5)
#define ICH6_HDA_SDSTS_DE_SHIFT (4)
#define ICH6_HDA_SDSTS_FE_SHIFT (3)
#define ICH6_HDA_SDSTS_BCIS_SHIFT (2)
#define ICH6_HDA_REG_SD0LPIB 34 /* 0x84 */
#define ICH6_HDA_REG_SD1LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 10) /* 0xA4 */
#define ICH6_HDA_REG_SD2LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 20) /* 0xC4 */
#define ICH6_HDA_REG_SD3LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 30) /* 0xE4 */
#define ICH6_HDA_REG_SD4LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 40) /* 0x104 */
#define ICH6_HDA_REG_SD5LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 50) /* 0x124 */
#define ICH6_HDA_REG_SD6LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 60) /* 0x144 */
#define ICH6_HDA_REG_SD7LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 70) /* 0x164 */
#define SDLPIB(pState, num) HDA_REG((pState), SD(LPIB, num))
#define ICH6_HDA_REG_SD0CBL 35 /* 0x88 */
#define ICH6_HDA_REG_SD1CBL (HDA_STREAM_REG_DEF(CBL, 0) + 10) /* 0xA8 */
#define ICH6_HDA_REG_SD2CBL (HDA_STREAM_REG_DEF(CBL, 0) + 20) /* 0xC8 */
#define ICH6_HDA_REG_SD3CBL (HDA_STREAM_REG_DEF(CBL, 0) + 30) /* 0xE8 */
#define ICH6_HDA_REG_SD4CBL (HDA_STREAM_REG_DEF(CBL, 0) + 40) /* 0x108 */
#define ICH6_HDA_REG_SD5CBL (HDA_STREAM_REG_DEF(CBL, 0) + 50) /* 0x128 */
#define ICH6_HDA_REG_SD6CBL (HDA_STREAM_REG_DEF(CBL, 0) + 60) /* 0x148 */
#define ICH6_HDA_REG_SD7CBL (HDA_STREAM_REG_DEF(CBL, 0) + 70) /* 0x168 */
#define SDLCBL(pState, num) HDA_REG((pState), SD(CBL, num))
#define ICH6_HDA_REG_SD0LVI 36 /* 0x8C */
#define ICH6_HDA_REG_SD1LVI (HDA_STREAM_REG_DEF(LVI, 0) + 10) /* 0xAC */
#define ICH6_HDA_REG_SD2LVI (HDA_STREAM_REG_DEF(LVI, 0) + 20) /* 0xCC */
#define ICH6_HDA_REG_SD3LVI (HDA_STREAM_REG_DEF(LVI, 0) + 30) /* 0xEC */
#define ICH6_HDA_REG_SD4LVI (HDA_STREAM_REG_DEF(LVI, 0) + 40) /* 0x10C */
#define ICH6_HDA_REG_SD5LVI (HDA_STREAM_REG_DEF(LVI, 0) + 50) /* 0x12C */
#define ICH6_HDA_REG_SD6LVI (HDA_STREAM_REG_DEF(LVI, 0) + 60) /* 0x14C */
#define ICH6_HDA_REG_SD7LVI (HDA_STREAM_REG_DEF(LVI, 0) + 70) /* 0x16C */
#define SDLVI(pState, num) HDA_REG((pState), SD(LVI, num))
#define ICH6_HDA_REG_SD0FIFOW 37 /* 0x8E */
#define ICH6_HDA_REG_SD1FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 10) /* 0xAE */
#define ICH6_HDA_REG_SD2FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 20) /* 0xCE */
#define ICH6_HDA_REG_SD3FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 30) /* 0xEE */
#define ICH6_HDA_REG_SD4FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 40) /* 0x10E */
#define ICH6_HDA_REG_SD5FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 50) /* 0x12E */
#define ICH6_HDA_REG_SD6FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 60) /* 0x14E */
#define ICH6_HDA_REG_SD7FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 70) /* 0x16E */
/*
* ICH6 datasheet defined limits for FIFOW values (18.2.38)
*/
#define HDA_SDFIFOW_8B (0x2)
#define HDA_SDFIFOW_16B (0x3)
#define HDA_SDFIFOW_32B (0x4)
#define SDFIFOW(pState, num) HDA_REG((pState), SD(FIFOW, num))
#define ICH6_HDA_REG_SD0FIFOS 38 /* 0x90 */
#define ICH6_HDA_REG_SD1FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 10) /* 0xB0 */
#define ICH6_HDA_REG_SD2FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 20) /* 0xD0 */
#define ICH6_HDA_REG_SD3FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 30) /* 0xF0 */
#define ICH6_HDA_REG_SD4FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 40) /* 0x110 */
#define ICH6_HDA_REG_SD5FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 50) /* 0x130 */
#define ICH6_HDA_REG_SD6FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 60) /* 0x150 */
#define ICH6_HDA_REG_SD7FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 70) /* 0x170 */
/*
* ICH6 datasheet defines limits for FIFOS registers (18.2.39)
* formula: size - 1
* Other values not listed are not supported.
*/
#define HDA_SDONFIFO_16B (0xF) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_32B (0x1F) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_64B (0x3F) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_128B (0x7F) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_192B (0xBF) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_256B (0xFF) /* 20-, 24-bit Output Streams */
#define HDA_SDINFIFO_120B (0x77) /* 8-, 16-, 20-, 24-, 32-bit Input Streams */
#define HDA_SDINFIFO_160B (0x9F) /* 20-, 24-bit Input Streams Streams */
#define SDFIFOS(pState, num) HDA_REG((pState), SD(FIFOS, num))
#define ICH6_HDA_REG_SD0FMT 39 /* 0x92 */
#define ICH6_HDA_REG_SD1FMT (HDA_STREAM_REG_DEF(FMT, 0) + 10) /* 0xB2 */
#define ICH6_HDA_REG_SD2FMT (HDA_STREAM_REG_DEF(FMT, 0) + 20) /* 0xD2 */
#define ICH6_HDA_REG_SD3FMT (HDA_STREAM_REG_DEF(FMT, 0) + 30) /* 0xF2 */
#define ICH6_HDA_REG_SD4FMT (HDA_STREAM_REG_DEF(FMT, 0) + 40) /* 0x112 */
#define ICH6_HDA_REG_SD5FMT (HDA_STREAM_REG_DEF(FMT, 0) + 50) /* 0x132 */
#define ICH6_HDA_REG_SD6FMT (HDA_STREAM_REG_DEF(FMT, 0) + 60) /* 0x152 */
#define ICH6_HDA_REG_SD7FMT (HDA_STREAM_REG_DEF(FMT, 0) + 70) /* 0x172 */
#define SDFMT(pState, num) (HDA_REG((pState), SD(FMT, num)))
#define ICH6_HDA_SDFMT_BASE_RATE_SHIFT (14)
#define ICH6_HDA_SDFMT_MULT_SHIFT (11)
#define ICH6_HDA_SDFMT_MULT_MASK (0x7)
#define ICH6_HDA_SDFMT_DIV_SHIFT (8)
#define ICH6_HDA_SDFMT_DIV_MASK (0x7)
#define SDFMT_BASE_RATE(pState, num) ((SDFMT(pState, num) & HDA_REG_FIELD_FLAG_MASK(SDFMT, BASE_RATE)) >> HDA_REG_FIELD_SHIFT(SDFMT, BASE_RATE))
#define SDFMT_MULT(pState, num) ((SDFMT((pState), num) & HDA_REG_FIELD_MASK(SDFMT,MULT)) >> HDA_REG_FIELD_SHIFT(SDFMT, MULT))
#define SDFMT_DIV(pState, num) ((SDFMT((pState), num) & HDA_REG_FIELD_MASK(SDFMT,DIV)) >> HDA_REG_FIELD_SHIFT(SDFMT, DIV))
#define ICH6_HDA_REG_SD0BDPL 40 /* 0x98 */
#define ICH6_HDA_REG_SD1BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 10) /* 0xB8 */
#define ICH6_HDA_REG_SD2BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 20) /* 0xD8 */
#define ICH6_HDA_REG_SD3BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 30) /* 0xF8 */
#define ICH6_HDA_REG_SD4BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 40) /* 0x118 */
#define ICH6_HDA_REG_SD5BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 50) /* 0x138 */
#define ICH6_HDA_REG_SD6BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 60) /* 0x158 */
#define ICH6_HDA_REG_SD7BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 70) /* 0x178 */
#define SDBDPL(pState, num) HDA_REG((pState), SD(BDPL, num))
#define ICH6_HDA_REG_SD0BDPU 41 /* 0x9C */
#define ICH6_HDA_REG_SD1BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 10) /* 0xBC */
#define ICH6_HDA_REG_SD2BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 20) /* 0xDC */
#define ICH6_HDA_REG_SD3BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 30) /* 0xFC */
#define ICH6_HDA_REG_SD4BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 40) /* 0x11C */
#define ICH6_HDA_REG_SD5BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 50) /* 0x13C */
#define ICH6_HDA_REG_SD6BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 60) /* 0x15C */
#define ICH6_HDA_REG_SD7BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 70) /* 0x17C */
#define SDBDPU(pState, num) HDA_REG((pState), SD(BDPU, num))
/* Predicates */
typedef struct HDABDLEDESC
{
uint64_t u64BdleCviAddr;
uint32_t u32BdleMaxCvi;
uint32_t u32BdleCvi;
uint32_t u32BdleCviLen;
uint32_t u32BdleCviPos;
bool fBdleCviIoc;
uint32_t cbUnderFifoW;
uint8_t au8HdaBuffer[HDA_SDONFIFO_256B + 1];
} HDABDLEDESC, *PHDABDLEDESC;
typedef struct HDASTREAMTRANSFERDESC
{
uint64_t u64BaseDMA;
uint32_t u32Ctl;
uint32_t *pu32Sts;
uint8_t u8Strm;
uint32_t *pu32Lpib;
uint32_t u32Cbl;
uint32_t u32Fifos;
} HDASTREAMTRANSFERDESC, *PHDASTREAMTRANSFERDESC;
typedef struct INTELHDLinkState
{
/** Pointer to the device instance. */
PPDMDEVINSR3 pDevIns;
/** Pointer to the connector of the attached audio driver. */
PPDMIAUDIOCONNECTOR pDrv;
/** Pointer to the attached audio driver. */
PPDMIBASE pDrvBase;
/** The base interface for LUN\#0. */
PDMIBASE IBase;
RTGCPHYS addrMMReg;
uint32_t au32Regs[113];
HDABDLEDESC stInBdle;
HDABDLEDESC stOutBdle;
HDABDLEDESC stMicBdle;
/* Interrupt on completion */
bool fCviIoc;
uint64_t u64CORBBase;
uint64_t u64RIRBBase;
uint64_t u64DPBase;
/* pointer on CORB buf */
uint32_t *pu32CorbBuf;
/* size in bytes of CORB buf */
uint32_t cbCorbBuf;
/* pointer on RIRB buf */
uint64_t *pu64RirbBuf;
/* size in bytes of RIRB buf */
uint32_t cbRirbBuf;
/* indicates if HDA in reset. */
bool fInReset;
CODECState Codec;
uint8_t u8Counter;
uint64_t u64BaseTS;
} INTELHDLinkState, *PINTELHDLinkState;
#define ICH6_HDASTATE_2_DEVINS(pINTELHD) ((pINTELHD)->pDevIns)
#define PCIDEV_2_ICH6_HDASTATE(pPciDev) ((PCIINTELHDLinkState *)(pPciDev))
#define ISD0FMT_TO_AUDIO_SELECTOR(pState) (AUDIO_FORMAT_SELECTOR(&(pState)->Codec, In, \
SDFMT_BASE_RATE(pState, 0), SDFMT_MULT(pState, 0), SDFMT_DIV(pState, 0)))
#define OSD0FMT_TO_AUDIO_SELECTOR(pState) (AUDIO_FORMAT_SELECTOR(&(pState)->Codec, Out, \
SDFMT_BASE_RATE(pState, 4), SDFMT_MULT(pState, 4), SDFMT_DIV(pState, 4)))
typedef struct PCIINTELHDLinkState
{
PCIDevice dev;
INTELHDLinkState hda;
} PCIINTELHDLinkState;
DECLCALLBACK(int)hdaRegReadUnimplemented(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteUnimplemented(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegReadGCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteGCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegReadSTATESTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteSTATESTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegReadGCAP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegReadINTSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegReadWALCLK(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteINTSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegWriteCORBWP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegWriteCORBRP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteCORBCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteCORBSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteRIRBWP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegWriteRIRBSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteIRS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegReadIRS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteSDCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegReadSDCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteSDSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteSDLVI(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteSDFIFOW(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteSDFIFOS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteSDBDPL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteSDBDPU(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegWriteBase(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
DECLCALLBACK(int)hdaRegReadU32(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteU32(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegReadU24(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteU24(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegReadU16(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteU16(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
DECLCALLBACK(int)hdaRegReadU8(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
DECLCALLBACK(int)hdaRegWriteU8(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t pu32Value);
static inline void hdaInitTransferDescriptor(PINTELHDLinkState pState, PHDABDLEDESC pBdle, uint8_t u8Strm, PHDASTREAMTRANSFERDESC pStreamDesc);
static int hdaLookup(INTELHDLinkState* pState, uint32_t u32Offset);
static void hdaFetchBdle(INTELHDLinkState *pState, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc);
#ifdef LOG_ENABLED
static void dump_bd(INTELHDLinkState *pState, PHDABDLEDESC pBdle, uint64_t u64BaseDMA);
#endif
/* see 302349 p 6.2*/
const static struct stIchIntelHDRegMap
{
/** Register offset in the register space. */
uint32_t offset;
/** Size in bytes. Registers of size > 4 are in fact tables. */
uint32_t size;
/** Readable bits. */
uint32_t readable;
/** Writable bits. */
uint32_t writable;
/** Read callback. */
int (*pfnRead)(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value);
/** Write callback. */
int (*pfnWrite)(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value);
/** Abbreviated name. */
const char *abbrev;
/** Full name. */
const char *name;
} s_ichIntelHDRegMap[] =
{
/* offset size read mask write mask read callback write callback abbrev full name */
/*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- ------------------------------*/
{ 0x00000, 0x00002, 0x0000FFFB, 0x00000000, hdaRegReadGCAP , hdaRegWriteUnimplemented, "GCAP" , "Global Capabilities" },
{ 0x00002, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "VMIN" , "Minor Version" },
{ 0x00003, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "VMAJ" , "Major Version" },
{ 0x00004, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimplemented, "OUTPAY" , "Output Payload Capabilities" },
{ 0x00006, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimplemented, "INPAY" , "Input Payload Capabilities" },
{ 0x00008, 0x00004, 0x00000103, 0x00000103, hdaRegReadGCTL , hdaRegWriteGCTL , "GCTL" , "Global Control" },
{ 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, hdaRegReadU16 , hdaRegWriteU16 , "WAKEEN" , "Wake Enable" },
{ 0x0000e, 0x00002, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteSTATESTS , "STATESTS" , "State Change Status" },
{ 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, hdaRegReadUnimplemented, hdaRegWriteUnimplemented, "GSTS" , "Global Status" },
{ 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, hdaRegReadU32 , hdaRegWriteU32 , "INTCTL" , "Interrupt Control" },
{ 0x00024, 0x00004, 0xC00000FF, 0x00000000, hdaRegReadINTSTS , hdaRegWriteUnimplemented, "INTSTS" , "Interrupt Status" },
{ 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadWALCLK , hdaRegWriteUnimplemented, "WALCLK" , "Wall Clock Counter" },
//** @todo r=michaln: Doesn't the SSYNC register need to actually stop the stream(s)?
{ 0x00034, 0x00004, 0x000000FF, 0x000000FF, hdaRegReadU32 , hdaRegWriteU32 , "SSYNC" , "Stream Synchronization" },
{ 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , "CORBLBASE" , "CORB Lower Base Address" },
{ 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , "CORBUBASE" , "CORB Upper Base Address" },
{ 0x00048, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteCORBWP , "CORBWP" , "CORB Write Pointer" },
{ 0x0004A, 0x00002, 0x000000FF, 0x000080FF, hdaRegReadU8 , hdaRegWriteCORBRP , "CORBRP" , "CORB Read Pointer" },
{ 0x0004C, 0x00001, 0x00000003, 0x00000003, hdaRegReadU8 , hdaRegWriteCORBCTL , "CORBCTL" , "CORB Control" },
{ 0x0004D, 0x00001, 0x00000001, 0x00000001, hdaRegReadU8 , hdaRegWriteCORBSTS , "CORBSTS" , "CORB Status" },
{ 0x0004E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "CORBSIZE" , "CORB Size" },
{ 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , "RIRBLBASE" , "RIRB Lower Base Address" },
{ 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , "RIRBUBASE" , "RIRB Upper Base Address" },
{ 0x00058, 0x00002, 0x000000FF, 0x00008000, hdaRegReadU8, hdaRegWriteRIRBWP , "RIRBWP" , "RIRB Write Pointer" },
{ 0x0005A, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteU16 , "RINTCNT" , "Response Interrupt Count" },
{ 0x0005C, 0x00001, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteU8 , "RIRBCTL" , "RIRB Control" },
{ 0x0005D, 0x00001, 0x00000005, 0x00000005, hdaRegReadU8 , hdaRegWriteRIRBSTS , "RIRBSTS" , "RIRB Status" },
{ 0x0005E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "RIRBSIZE" , "RIRB Size" },
{ 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "IC" , "Immediate Command" },
{ 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteUnimplemented, "IR" , "Immediate Response" },
{ 0x00068, 0x00004, 0x00000002, 0x00000002, hdaRegReadIRS , hdaRegWriteIRS , "IRS" , "Immediate Command Status" },
{ 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, hdaRegReadU32 , hdaRegWriteBase , "DPLBASE" , "DMA Position Lower Base" },
{ 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , "DPUBASE" , "DMA Position Upper Base" },
{ 0x00080, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD0CTL" , "Input Stream Descriptor 0 (ICD0) Control" },
{ 0x00083, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD0STS" , "ISD0 Status" },
{ 0x00084, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD0LPIB" , "ISD0 Link Position In Buffer" },
{ 0x00088, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD0CBL" , "ISD0 Cyclic Buffer Length" },
{ 0x0008C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD0LVI" , "ISD0 Last Valid Index" },
{ 0x0008E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "ISD0FIFOW", "ISD0 FIFO Watermark" },
{ 0x00090, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD0FIFOS", "ISD0 FIFO Size" },
{ 0x00092, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "ISD0FMT" , "ISD0 Format" },
{ 0x00098, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD0BDPL" , "ISD0 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x0009C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD0BDPU" , "ISD0 Buffer Descriptor List Pointer-Upper Base Address" },
{ 0x000A0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD1CTL" , "Input Stream Descriptor 1 (ISD1) Control" },
{ 0x000A3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD1STS" , "ISD1 Status" },
{ 0x000A4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD1LPIB" , "ISD1 Link Position In Buffer" },
{ 0x000A8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD1CBL" , "ISD1 Cyclic Buffer Length" },
{ 0x000AC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD1LVI" , "ISD1 Last Valid Index" },
{ 0x000AE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "ISD1FIFOW", "ISD1 FIFO Watermark" },
{ 0x000B0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD1FIFOS", "ISD1 FIFO Size" },
{ 0x000B2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "ISD1FMT" , "ISD1 Format" },
{ 0x000B8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD1BDPL" , "ISD1 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x000BC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD1BDPU" , "ISD1 Buffer Descriptor List Pointer-Upper Base Address" },
{ 0x000C0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD2CTL" , "Input Stream Descriptor 2 (ISD2) Control" },
{ 0x000C3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD2STS" , "ISD2 Status" },
{ 0x000C4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD2LPIB" , "ISD2 Link Position In Buffer" },
{ 0x000C8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD2CBL" , "ISD2 Cyclic Buffer Length" },
{ 0x000CC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD2LVI" , "ISD2 Last Valid Index" },
{ 0x000CE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "ISD2FIFOW", "ISD2 FIFO Watermark" },
{ 0x000D0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD2FIFOS", "ISD2 FIFO Size" },
{ 0x000D2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "ISD2FMT" , "ISD2 Format" },
{ 0x000D8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD2BDPL" , "ISD2 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x000DC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD2BDPU" , "ISD2 Buffer Descriptor List Pointer-Upper Base Address" },
{ 0x000E0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD3CTL" , "Input Stream Descriptor 3 (ISD3) Control" },
{ 0x000E3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD3STS" , "ISD3 Status" },
{ 0x000E4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD3LPIB" , "ISD3 Link Position In Buffer" },
{ 0x000E8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD3CBL" , "ISD3 Cyclic Buffer Length" },
{ 0x000EC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD3LVI" , "ISD3 Last Valid Index" },
{ 0x000EE, 0x00002, 0x00000005, 0x00000005, hdaRegReadU16 , hdaRegWriteU16 , "ISD3FIFOW", "ISD3 FIFO Watermark" },
{ 0x000F0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD3FIFOS", "ISD3 FIFO Size" },
{ 0x000F2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "ISD3FMT" , "ISD3 Format" },
{ 0x000F8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD3BDPL" , "ISD3 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x000FC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD3BDPU" , "ISD3 Buffer Descriptor List Pointer-Upper Base Address" },
{ 0x00100, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadSDCTL , hdaRegWriteSDCTL , "OSD0CTL" , "Input Stream Descriptor 0 (OSD0) Control" },
{ 0x00103, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD0STS" , "OSD0 Status" },
{ 0x00104, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD0LPIB" , "OSD0 Link Position In Buffer" },
{ 0x00108, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD0CBL" , "OSD0 Cyclic Buffer Length" },
{ 0x0010C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD0LVI" , "OSD0 Last Valid Index" },
{ 0x0010E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD0FIFOW", "OSD0 FIFO Watermark" },
{ 0x00110, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD0FIFOS", "OSD0 FIFO Size" },
{ 0x00112, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "OSD0FMT" , "OSD0 Format" },
{ 0x00118, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD0BDPL" , "OSD0 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x0011C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD0BDPU" , "OSD0 Buffer Descriptor List Pointer-Upper Base Address" },
{ 0x00120, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "OSD1CTL" , "Input Stream Descriptor 0 (OSD1) Control" },
{ 0x00123, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD1STS" , "OSD1 Status" },
{ 0x00124, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD1LPIB" , "OSD1 Link Position In Buffer" },
{ 0x00128, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD1CBL" , "OSD1 Cyclic Buffer Length" },
{ 0x0012C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD1LVI" , "OSD1 Last Valid Index" },
{ 0x0012E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD1FIFOW", "OSD1 FIFO Watermark" },
{ 0x00130, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD1FIFOS", "OSD1 FIFO Size" },
{ 0x00132, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "OSD1FMT" , "OSD1 Format" },
{ 0x00138, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD1BDPL" , "OSD1 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x0013C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD1BDPU" , "OSD1 Buffer Descriptor List Pointer-Upper Base Address" },
{ 0x00140, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "OSD2CTL" , "Input Stream Descriptor 0 (OSD2) Control" },
{ 0x00143, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD2STS" , "OSD2 Status" },
{ 0x00144, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD2LPIB" , "OSD2 Link Position In Buffer" },
{ 0x00148, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD2CBL" , "OSD2 Cyclic Buffer Length" },
{ 0x0014C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD2LVI" , "OSD2 Last Valid Index" },
{ 0x0014E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD2FIFOW", "OSD2 FIFO Watermark" },
{ 0x00150, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD2FIFOS", "OSD2 FIFO Size" },
{ 0x00152, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "OSD2FMT" , "OSD2 Format" },
{ 0x00158, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD2BDPL" , "OSD2 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x0015C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD2BDPU" , "OSD2 Buffer Descriptor List Pointer-Upper Base Address" },
{ 0x00160, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "OSD3CTL" , "Input Stream Descriptor 0 (OSD3) Control" },
{ 0x00163, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD3STS" , "OSD3 Status" },
{ 0x00164, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD3LPIB" , "OSD3 Link Position In Buffer" },
{ 0x00168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD3CBL" , "OSD3 Cyclic Buffer Length" },
{ 0x0016C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD3LVI" , "OSD3 Last Valid Index" },
{ 0x0016E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD3FIFOW", "OSD3 FIFO Watermark" },
{ 0x00170, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD3FIFOS", "OSD3 FIFO Size" },
{ 0x00172, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteU16 , "OSD3FMT" , "OSD3 Format" },
{ 0x00178, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD3BDPL" , "OSD3 Buffer Descriptor List Pointer-Lower Base Address" },
{ 0x0017C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD3BDPU" , "OSD3 Buffer Descriptor List Pointer-Upper Base Address" },
};
static void inline hdaUpdatePosBuf(INTELHDLinkState *pState, PHDASTREAMTRANSFERDESC pStreamDesc)
{
if (pState->u64DPBase & DPBASE_ENABLED)
PDMDevHlpPhysWrite(ICH6_HDASTATE_2_DEVINS(pState),
(pState->u64DPBase & DPBASE_ADDR_MASK) + pStreamDesc->u8Strm*8, pStreamDesc->pu32Lpib, sizeof(uint32_t));
}
static uint32_t inline hdaFifoWToSz(INTELHDLinkState *pState, PHDASTREAMTRANSFERDESC pStreamDesc)
{
#if 0
switch(HDA_STREAM_REG2(pState, FIFOW, pStreamDesc->u8Strm))
{
case HDA_SDFIFOW_8B: return 8;
case HDA_SDFIFOW_16B: return 16;
case HDA_SDFIFOW_32B: return 32;
default:
AssertMsgFailed(("hda: unsupported value (%x) in SDFIFOW(,%d)\n", HDA_REG_IND(pState, pStreamDesc->u8Strm), pStreamDesc->u8Strm));
}
#endif
return 0;
}
static int hdaProcessInterrupt(INTELHDLinkState* pState)
{
#define IS_INTERRUPT_OCCURED_AND_ENABLED(pState, num) \
( INTCTL_SX((pState), num) \
&& (SDSTS(pState, num) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)))
bool fIrq = false;
if ( INTCTL_CIE(pState)
&& ( RIRBSTS_RINTFL(pState)
|| RIRBSTS_RIRBOIS(pState)
|| (STATESTS(pState) & WAKEEN(pState))))
fIrq = true;
if ( IS_INTERRUPT_OCCURED_AND_ENABLED(pState, 0)
|| IS_INTERRUPT_OCCURED_AND_ENABLED(pState, 4))
fIrq = true;
if (INTCTL_GIE(pState))
{
Log(("hda: irq %s\n", fIrq ? "asserted" : "deasserted"));
PDMDevHlpPCISetIrq(ICH6_HDASTATE_2_DEVINS(pState), 0 , fIrq);
}
return VINF_SUCCESS;
}
static int hdaLookup(INTELHDLinkState* pState, uint32_t u32Offset)
{
int index = 0;
//** @todo r=michaln: A linear search of an array with over 100 elements is very inefficient.
for (;index < (int)(sizeof(s_ichIntelHDRegMap)/sizeof(s_ichIntelHDRegMap[0])); ++index)
{
if ( u32Offset >= s_ichIntelHDRegMap[index].offset
&& u32Offset < s_ichIntelHDRegMap[index].offset + s_ichIntelHDRegMap[index].size)
{
return index;
}
}
/* Aliases HDA spec 3.3.45 */
switch(u32Offset)
{
case 0x2084:
return HDA_REG_IND_NAME(SD0LPIB);
case 0x20A4:
return HDA_REG_IND_NAME(SD1LPIB);
case 0x20C4:
return HDA_REG_IND_NAME(SD2LPIB);
case 0x20E4:
return HDA_REG_IND_NAME(SD3LPIB);
case 0x2104:
return HDA_REG_IND_NAME(SD4LPIB);
case 0x2124:
return HDA_REG_IND_NAME(SD5LPIB);
case 0x2144:
return HDA_REG_IND_NAME(SD6LPIB);
case 0x2164:
return HDA_REG_IND_NAME(SD7LPIB);
}
return -1;
}
static int hdaCmdSync(INTELHDLinkState *pState, bool fLocal)
{
int rc = VINF_SUCCESS;
if (fLocal)
{
Assert((HDA_REG_FLAG_VALUE(pState, CORBCTL, DMA)));
rc = PDMDevHlpPhysRead(ICH6_HDASTATE_2_DEVINS(pState), pState->u64CORBBase, pState->pu32CorbBuf, pState->cbCorbBuf);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
#ifdef DEBUG_CMD_BUFFER
uint8_t i = 0;
do
{
Log(("hda: corb%02x: ", i));
uint8_t j = 0;
do
{
const char *prefix;
if ((i + j) == CORBRP(pState))
prefix = "[R]";
else if ((i + j) == CORBWP(pState))
prefix = "[W]";
else
prefix = " "; /* three spaces */
Log(("%s%08x", prefix, pState->pu32CorbBuf[i + j]));
j++;
} while (j < 8);
Log(("\n"));
i += 8;
} while(i != 0);
#endif
}
else
{
Assert((HDA_REG_FLAG_VALUE(pState, RIRBCTL, DMA)));
rc = PDMDevHlpPhysWrite(ICH6_HDASTATE_2_DEVINS(pState), pState->u64RIRBBase, pState->pu64RirbBuf, pState->cbRirbBuf);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
#ifdef DEBUG_CMD_BUFFER
uint8_t i = 0;
do {
Log(("hda: rirb%02x: ", i));
uint8_t j = 0;
do {
const char *prefix;
if ((i + j) == RIRBWP(pState))
prefix = "[W]";
else
prefix = " ";
Log((" %s%016lx", prefix, pState->pu64RirbBuf[i + j]));
} while (++j < 8);
Log(("\n"));
i += 8;
} while (i != 0);
#endif
}
return rc;
}
static int hdaCORBCmdProcess(INTELHDLinkState *pState)
{
int rc;
uint8_t corbRp;
uint8_t corbWp;
uint8_t rirbWp;
PFNCODECVERBPROCESSOR pfn = (PFNCODECVERBPROCESSOR)NULL;
rc = hdaCmdSync(pState, true);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
corbRp = CORBRP(pState);
corbWp = CORBWP(pState);
rirbWp = RIRBWP(pState);
Assert((corbWp != corbRp));
Log(("hda: CORB(RP:%x, WP:%x) RIRBWP:%x\n", CORBRP(pState), CORBWP(pState), RIRBWP(pState)));
while (corbRp != corbWp)
{
uint32_t cmd;
uint64_t resp;
corbRp++;
cmd = pState->pu32CorbBuf[corbRp];
rc = (pState)->Codec.pfnLookup(&pState->Codec, cmd, &pfn);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
Assert(pfn);
(rirbWp)++;
rc = pfn(&pState->Codec, cmd, &resp);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
Log(("hda: verb:%08x->%016lx\n", cmd, resp));
if ( (resp & CODEC_RESPONSE_UNSOLICITED)
&& !HDA_REG_FLAG_VALUE(pState, GCTL, UR))
{
Log(("hda: unexpected unsolicited response.\n"));
pState->au32Regs[ICH6_HDA_REG_CORBRP] = corbRp;
return rc;
}
pState->pu64RirbBuf[rirbWp] = resp;
pState->u8Counter++;
if (pState->u8Counter == RINTCNT_N(pState))
break;
}
pState->au32Regs[ICH6_HDA_REG_CORBRP] = corbRp;
pState->au32Regs[ICH6_HDA_REG_RIRBWP] = rirbWp;
rc = hdaCmdSync(pState, false);
Log(("hda: CORB(RP:%x, WP:%x) RIRBWP:%x\n", CORBRP(pState), CORBWP(pState), RIRBWP(pState)));
if (RIRBCTL_RIRB_RIC(pState))
{
RIRBSTS((pState)) |= HDA_REG_FIELD_FLAG_MASK(RIRBSTS,RINTFL);
pState->u8Counter = 0;
rc = hdaProcessInterrupt(pState);
}
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
return rc;
}
static void hdaStreamReset(INTELHDLinkState *pState, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint8_t u8Strm)
{
Log(("hda: reset of stream (%d) started\n", u8Strm));
Assert(( pState
&& pBdle
&& pStreamDesc
&& u8Strm <= 7));
memset(pBdle, 0, sizeof(HDABDLEDESC));
*pStreamDesc->pu32Lpib = 0;
*pStreamDesc->pu32Sts = 0;
/* According to ICH6 datasheet, 0x40000 is default value for stream descriptor register 23:20
* bits are reserved for stream number 18.2.33, resets SDnCTL except SRCT bit */
HDA_STREAM_REG2(pState, CTL, u8Strm) = 0x40000 | (HDA_STREAM_REG2(pState, CTL, u8Strm) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST));
/* ICH6 defines default values (0x77 for input and 0xBF for output descriptors) of FIFO size. 18.2.39 */
HDA_STREAM_REG2(pState, FIFOS, u8Strm) = u8Strm < 4 ? HDA_SDINFIFO_120B : HDA_SDONFIFO_192B;
HDA_STREAM_REG2(pState, FIFOW, u8Strm) = u8Strm < 4 ? HDA_SDFIFOW_8B : HDA_SDFIFOW_32B;
HDA_STREAM_REG2(pState, CBL, u8Strm) = 0;
HDA_STREAM_REG2(pState, LVI, u8Strm) = 0;
HDA_STREAM_REG2(pState, FMT, u8Strm) = 0;
HDA_STREAM_REG2(pState, BDPU, u8Strm) = 0;
HDA_STREAM_REG2(pState, BDPL, u8Strm) = 0;
Log(("hda: reset of stream (%d) finished\n", u8Strm));
}
DECLCALLBACK(int)hdaRegReadUnimplemented(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
*pu32Value = 0;
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteUnimplemented(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
return VINF_SUCCESS;
}
/* U8 */
DECLCALLBACK(int)hdaRegReadU8(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
Assert(((pState->au32Regs[index] & s_ichIntelHDRegMap[index].readable) & 0xffffff00) == 0);
return hdaRegReadU32(pState, offset, index, pu32Value);
}
DECLCALLBACK(int)hdaRegWriteU8(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
Assert(((u32Value & 0xffffff00) == 0));
return hdaRegWriteU32(pState, offset, index, u32Value);
}
/* U16 */
DECLCALLBACK(int)hdaRegReadU16(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
Assert(((pState->au32Regs[index] & s_ichIntelHDRegMap[index].readable) & 0xffff0000) == 0);
return hdaRegReadU32(pState, offset, index, pu32Value);
}
DECLCALLBACK(int)hdaRegWriteU16(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
Assert(((u32Value & 0xffff0000) == 0));
return hdaRegWriteU32(pState, offset, index, u32Value);
}
/* U24 */
DECLCALLBACK(int)hdaRegReadU24(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
Assert(((pState->au32Regs[index] & s_ichIntelHDRegMap[index].readable) & 0xff000000) == 0);
return hdaRegReadU32(pState, offset, index, pu32Value);
}
DECLCALLBACK(int)hdaRegWriteU24(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
Assert(((u32Value & 0xff000000) == 0));
return hdaRegWriteU32(pState, offset, index, u32Value);
}
/* U32 */
DECLCALLBACK(int)hdaRegReadU32(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
*pu32Value = pState->au32Regs[index] & s_ichIntelHDRegMap[index].readable;
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteU32(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
pState->au32Regs[index] = (u32Value & s_ichIntelHDRegMap[index].writable)
| (pState->au32Regs[index] & ~s_ichIntelHDRegMap[index].writable);
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegReadGCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
return hdaRegReadU32(pState, offset, index, pu32Value);
}
DECLCALLBACK(int)hdaRegWriteGCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, RST))
{
/* exit reset state */
GCTL(pState) |= HDA_REG_FIELD_FLAG_MASK(GCTL, RST);
pState->fInReset = false;
}
else
{
/* enter reset state*/
if ( HDA_REG_FLAG_VALUE(pState, CORBCTL, DMA)
|| HDA_REG_FLAG_VALUE(pState, RIRBCTL, DMA))
{
Log(("hda: HDA enters in reset with DMA(RIRB:%s, CORB:%s)\n",
HDA_REG_FLAG_VALUE(pState, CORBCTL, DMA) ? "on" : "off",
HDA_REG_FLAG_VALUE(pState, RIRBCTL, DMA) ? "on" : "off"));
}
hdaReset(ICH6_HDASTATE_2_DEVINS(pState));
GCTL(pState) &= ~HDA_REG_FIELD_FLAG_MASK(GCTL, RST);
pState->fInReset = true;
}
if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, FSH))
{
/* Flush: GSTS:1 set, see 6.2.6*/
GSTS(pState) |= HDA_REG_FIELD_FLAG_MASK(GSTS, FSH); /* set the flush state */
/* DPLBASE and DPUBASE, should be initialized with initial value (see 6.2.6)*/
}
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteSTATESTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
uint32_t v = pState->au32Regs[index];
uint32_t nv = u32Value & ICH6_HDA_STATES_SCSF;
pState->au32Regs[index] &= ~(v & nv); /* write of 1 clears corresponding bit */
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegReadINTSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
uint32_t v = 0;
if ( RIRBSTS_RIRBOIS(pState)
|| RIRBSTS_RINTFL(pState)
|| HDA_REG_FLAG_VALUE(pState, CORBSTS, CMEI)
|| STATESTS(pState))
v |= RT_BIT(30);
#define HDA_IS_STREAM_EVENT(pState, stream) \
( (SDSTS((pState),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)) \
|| (SDSTS((pState),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)) \
|| (SDSTS((pState),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)))
#define MARK_STREAM(pState, stream, v) do {(v) |= HDA_IS_STREAM_EVENT((pState),stream) ? RT_BIT((stream)) : 0;}while(0)
MARK_STREAM(pState, 0, v);
MARK_STREAM(pState, 1, v);
MARK_STREAM(pState, 2, v);
MARK_STREAM(pState, 3, v);
MARK_STREAM(pState, 4, v);
MARK_STREAM(pState, 5, v);
MARK_STREAM(pState, 6, v);
MARK_STREAM(pState, 7, v);
v |= v ? RT_BIT(31) : 0;
*pu32Value = v;
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegReadWALCLK(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
/* HDA spec (1a): 3.3.16 WALCLK counter ticks with 24Mhz bitclock rate. */
*pu32Value = (uint32_t)ASMMultU64ByU32DivByU32(PDMDevHlpTMTimeVirtGetNano(ICH6_HDASTATE_2_DEVINS(pState)) - pState->u64BaseTS, 24, 1000);
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegReadGCAP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
return hdaRegReadU16(pState, offset, index, pu32Value);
}
DECLCALLBACK(int)hdaRegWriteCORBRP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
if (u32Value & HDA_REG_FIELD_FLAG_MASK(CORBRP, RST))
CORBRP(pState) = 0;
else
return hdaRegWriteU8(pState, offset, index, u32Value);
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteCORBCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
int rc = hdaRegWriteU8(pState, offset, index, u32Value);
AssertRC(rc);
if ( CORBWP(pState) != CORBRP(pState)
&& HDA_REG_FLAG_VALUE(pState, CORBCTL, DMA) != 0)
return hdaCORBCmdProcess(pState);
return rc;
}
DECLCALLBACK(int)hdaRegWriteCORBSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
uint32_t v = CORBSTS(pState);
CORBSTS(pState) &= ~(v & u32Value);
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteCORBWP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
int rc;
rc = hdaRegWriteU16(pState, offset, index, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
if (CORBWP(pState) == CORBRP(pState))
return VINF_SUCCESS;
if (!HDA_REG_FLAG_VALUE(pState, CORBCTL, DMA))
return VINF_SUCCESS;
rc = hdaCORBCmdProcess(pState);
return rc;
}
DECLCALLBACK(int)hdaRegReadSDCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
return hdaRegReadU24(pState, offset, index, pu32Value);
}
DECLCALLBACK(int)hdaRegWriteSDCTL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
bool fRun = RT_BOOL((u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)));
bool fInRun = RT_BOOL((HDA_REG_IND(pState, index) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)));
bool fReset = RT_BOOL((u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)));
bool fInReset = RT_BOOL((HDA_REG_IND(pState, index) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)));
int rc = VINF_SUCCESS;
if (fInReset)
{
/* Assert!!! Guest is resetting HDA's stream, we're expecting guest will mark stream as exit
* from reset
*/
Assert((!fReset));
Log(("hda: guest initiate exit of stream reset.\n"));
goto done;
}
else if (fReset)
{
/*
* Assert!!! ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset.
*/
uint8_t u8Strm = 0;
PHDABDLEDESC pBdle = NULL;
HDASTREAMTRANSFERDESC stStreamDesc;
Assert((!fInRun && !fRun));
switch (index)
{
case ICH6_HDA_REG_SD0CTL:
u8Strm = 0;
pBdle = &pState->stInBdle;
break;
case ICH6_HDA_REG_SD4CTL:
u8Strm = 4;
pBdle = &pState->stOutBdle;
break;
default:
Log(("hda: changing SRST bit on non-attached stream\n"));
goto done;
}
Log(("hda: guest initiate enter to stream reset.\n"));
hdaInitTransferDescriptor(pState, pBdle, u8Strm, &stStreamDesc);
hdaStreamReset(pState, pBdle, &stStreamDesc, u8Strm);
goto done;
}
/* we enter here to change DMA states only */
if ( (fInRun && !fRun)
|| (fRun && !fInRun))
{
Assert((!fReset && !fInReset));
switch (index)
{
case ICH6_HDA_REG_SD0CTL:
AUD_set_active_in(ISD0FMT_TO_AUDIO_SELECTOR(pState), fRun);
break;
case ICH6_HDA_REG_SD4CTL:
AUD_set_active_out(OSD0FMT_TO_AUDIO_SELECTOR(pState), fRun);
break;
default:
Log(("hda: changing RUN bit on non-attached stream\n"));
goto done;
}
}
done:
rc = hdaRegWriteU24(pState, offset, index, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, VINF_SUCCESS);
return rc;
}
DECLCALLBACK(int)hdaRegWriteSDSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
uint32_t v = HDA_REG_IND(pState, index);
v &= ~(u32Value & v);
HDA_REG_IND(pState, index) = v;
hdaProcessInterrupt(pState);
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteSDLVI(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
int rc = hdaRegWriteU32(pState, offset, index, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, VINF_SUCCESS);
return rc;
}
DECLCALLBACK(int)hdaRegWriteSDFIFOW(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
switch (u32Value)
{
case HDA_SDFIFOW_8B:
case HDA_SDFIFOW_16B:
case HDA_SDFIFOW_32B:
return hdaRegWriteU16(pState, offset, index, u32Value);
default:
Log(("hda: Attempt to store unsupported value(%x) in SDFIFOW\n", u32Value));
return hdaRegWriteU16(pState, offset, index, HDA_SDFIFOW_32B);
}
return VINF_SUCCESS;
}
/*
* Note this method could be called for changing value on Output Streams only (ICH6 datacheet 18.2.39)
*
*/
DECLCALLBACK(int)hdaRegWriteSDFIFOS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
switch (index)
{
/* SDInFIFOS is RO, n=0-3 */
case ICH6_HDA_REG_SD0FIFOS:
case ICH6_HDA_REG_SD1FIFOS:
case ICH6_HDA_REG_SD2FIFOS:
case ICH6_HDA_REG_SD3FIFOS:
Log(("hda: Guest tries change value of FIFO size of Input Stream\n"));
return VINF_SUCCESS;
case ICH6_HDA_REG_SD4FIFOS:
case ICH6_HDA_REG_SD5FIFOS:
case ICH6_HDA_REG_SD6FIFOS:
case ICH6_HDA_REG_SD7FIFOS:
switch(u32Value)
{
case HDA_SDONFIFO_16B:
case HDA_SDONFIFO_32B:
case HDA_SDONFIFO_64B:
case HDA_SDONFIFO_128B:
case HDA_SDONFIFO_192B:
return hdaRegWriteU16(pState, offset, index, u32Value);
case HDA_SDONFIFO_256B:
Log(("hda: 256 bit is unsupported, HDA is switched into 192B mode\n"));
default:
return hdaRegWriteU16(pState, offset, index, HDA_SDONFIFO_192B);
}
return VINF_SUCCESS;
default:
AssertMsgFailed(("Something wierd happens with register lookup routine"));
}
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteSDBDPL(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
int rc = hdaRegWriteU32(pState, offset, index, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, VINF_SUCCESS);
return rc;
}
DECLCALLBACK(int)hdaRegWriteSDBDPU(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
int rc = hdaRegWriteU32(pState, offset, index, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, VINF_SUCCESS);
return rc;
}
DECLCALLBACK(int)hdaRegReadIRS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t *pu32Value)
{
int rc = VINF_SUCCESS;
/* regarding 3.4.3 we should mark IRS as busy in case CORB is active */
if ( CORBWP(pState) != CORBRP(pState)
|| HDA_REG_FLAG_VALUE(pState, CORBCTL, DMA))
IRS(pState) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */
rc = hdaRegReadU32(pState, offset, index, pu32Value);
return rc;
}
DECLCALLBACK(int)hdaRegWriteIRS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
int rc = VINF_SUCCESS;
uint64_t resp;
PFNCODECVERBPROCESSOR pfn = (PFNCODECVERBPROCESSOR)NULL;
/*
* if guest set ICB bit of IRS register HDA should process verb in IC register and
* writes response in IR register and set IRV (valid in case of success) bit of IRS register.
*/
if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, ICB)
&& !IRS_ICB(pState))
{
uint32_t cmd = IC(pState);
if (CORBWP(pState) != CORBRP(pState))
{
/*
* 3.4.3 defines behaviour of immediate Command status register.
*/
LogRel(("hda: guest has tried process immediate verb (%x) with active CORB\n", cmd));
return rc;
}
IRS(pState) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */
Log(("hda: IC:%x\n", cmd));
rc = pState->Codec.pfnLookup(&pState->Codec, cmd, &pfn);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
rc = pfn(&pState->Codec, cmd, &resp);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
IR(pState) = (uint32_t)resp;
Log(("hda: IR:%x\n", IR(pState)));
IRS(pState) = HDA_REG_FIELD_FLAG_MASK(IRS, IRV); /* result is ready */
IRS(pState) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy is clear */
return rc;
}
/*
* when guest's read the response it should clean the IRV bit of the IRS register.
*/
if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, IRV)
&& IRS_IRV(pState))
IRS(pState) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, IRV);
return rc;
}
DECLCALLBACK(int)hdaRegWriteRIRBWP(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
if (u32Value & HDA_REG_FIELD_FLAG_MASK(RIRBWP, RST))
{
RIRBWP(pState) = 0;
}
/*The rest of bits are O, see 6.2.22 */
return VINF_SUCCESS;
}
DECLCALLBACK(int)hdaRegWriteBase(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
int rc = hdaRegWriteU32(pState, offset, index, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
switch(index)
{
case ICH6_HDA_REG_CORBLBASE:
pState->u64CORBBase &= 0xFFFFFFFF00000000ULL;
pState->u64CORBBase |= pState->au32Regs[index];
break;
case ICH6_HDA_REG_CORBUBASE:
pState->u64CORBBase &= 0x00000000FFFFFFFFULL;
pState->u64CORBBase |= ((uint64_t)pState->au32Regs[index] << 32);
break;
case ICH6_HDA_REG_RIRLBASE:
pState->u64RIRBBase &= 0xFFFFFFFF00000000ULL;
pState->u64RIRBBase |= pState->au32Regs[index];
break;
case ICH6_HDA_REG_RIRUBASE:
pState->u64RIRBBase &= 0x00000000FFFFFFFFULL;
pState->u64RIRBBase |= ((uint64_t)pState->au32Regs[index] << 32);
break;
case ICH6_HDA_REG_DPLBASE:
/* @todo: first bit has special meaning */
pState->u64DPBase &= 0xFFFFFFFF00000000ULL;
pState->u64DPBase |= pState->au32Regs[index];
break;
case ICH6_HDA_REG_DPUBASE:
pState->u64DPBase &= 0x00000000FFFFFFFFULL;
pState->u64DPBase |= ((uint64_t)pState->au32Regs[index] << 32);
break;
default:
AssertMsgFailed(("Invalid index"));
}
Log(("hda: CORB base:%llx RIRB base: %llx DP base: %llx\n", pState->u64CORBBase, pState->u64RIRBBase, pState->u64DPBase));
return rc;
}
DECLCALLBACK(int)hdaRegWriteRIRBSTS(INTELHDLinkState* pState, uint32_t offset, uint32_t index, uint32_t u32Value)
{
uint8_t v = RIRBSTS(pState);
RIRBSTS(pState) &= ~(v & u32Value);
return hdaProcessInterrupt(pState);
}
#ifdef LOG_ENABLED
static void dump_bd(INTELHDLinkState *pState, PHDABDLEDESC pBdle, uint64_t u64BaseDMA)
{
#if 0
uint64_t addr;
uint32_t len;
uint32_t ioc;
uint8_t bdle[16];
uint32_t counter;
uint32_t i;
uint32_t sum = 0;
Assert(pBdle && pBdle->u32BdleMaxCvi);
for (i = 0; i <= pBdle->u32BdleMaxCvi; ++i)
{
PDMDevHlpPhysRead(ICH6_HDASTATE_2_DEVINS(pState), u64BaseDMA + i*16, bdle, 16);
addr = *(uint64_t *)bdle;
len = *(uint32_t *)&bdle[8];
ioc = *(uint32_t *)&bdle[12];
Log(("hda: %s bdle[%d] a:%llx, len:%d, ioc:%d\n", (i == pBdle->u32BdleCvi? "[C]": " "), i, addr, len, ioc & 0x1));
sum += len;
}
Log(("hda: sum: %d\n", sum));
for (i = 0; i < 8; ++i)
{
PDMDevHlpPhysRead(ICH6_HDASTATE_2_DEVINS(pState), (pState->u64DPBase & DPBASE_ADDR_MASK) + i*8, &counter, sizeof(&counter));
Log(("hda: %s stream[%d] counter=%x\n", i == SDCTL_NUM(pState, 4) || i == SDCTL_NUM(pState, 0)? "[C]": " ",
i , counter));
}
#endif
}
#endif
static void hdaFetchBdle(INTELHDLinkState *pState, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc)
{
uint8_t bdle[16];
Assert(( pStreamDesc->u64BaseDMA
&& pBdle
&& pBdle->u32BdleMaxCvi));
PDMDevHlpPhysRead(ICH6_HDASTATE_2_DEVINS(pState), pStreamDesc->u64BaseDMA + pBdle->u32BdleCvi*16, bdle, 16);
pBdle->u64BdleCviAddr = *(uint64_t *)bdle;
pBdle->u32BdleCviLen = *(uint32_t *)&bdle[8];
pBdle->fBdleCviIoc = (*(uint32_t *)&bdle[12]) & 0x1;
#ifdef LOG_ENABLED
dump_bd(pState, pBdle, pStreamDesc->u64BaseDMA);
#endif
}
static inline uint32_t hdaCalculateTransferBufferLength(PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t u32SoundBackendBufferBytesAvail, uint32_t u32CblLimit)
{
uint32_t cb2Copy;
/*
* Amounts of bytes depends on current position in buffer (u32BdleCviLen-u32BdleCviPos)
*/
Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos)); /* sanity */
cb2Copy = pBdle->u32BdleCviLen - pBdle->u32BdleCviPos;
/*
* we may increase the counter in range of [0, FIFOS + 1]
*/
cb2Copy = RT_MIN(cb2Copy, pStreamDesc->u32Fifos + 1);
Assert((u32SoundBackendBufferBytesAvail > 0));
/* sanity check to avoid overriding sound backend buffer */
cb2Copy = RT_MIN(cb2Copy, u32SoundBackendBufferBytesAvail);
cb2Copy = RT_MIN(cb2Copy, u32CblLimit);
if (cb2Copy <= pBdle->cbUnderFifoW)
return 0;
cb2Copy -= pBdle->cbUnderFifoW; /* forcely reserve amount of ureported bytes to copy */
return cb2Copy;
}
static inline void hdaBackendWriteTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied, uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity)
{
Log(("hda:hdaBackendWriteTransferReported: cbArranged2Copy: %d, cbCopied: %d, pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n",
cbArranged2Copy, cbCopied, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0));
Assert((cbCopied));
Assert((pu32BackendBufferCapacity && *pu32BackendBufferCapacity));
/* Assertion!!! It was copied less than cbUnderFifoW
* Probably we need to move the buffer, but it rather hard to imagine situation
* why it may happen.
*/
Assert((cbCopied == pBdle->cbUnderFifoW + cbArranged2Copy)); /* we assume that we write whole buffer including not reported bytes */
if ( pBdle->cbUnderFifoW
&& pBdle->cbUnderFifoW <= cbCopied)
Log(("hda:hdaBackendWriteTransferReported: CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
pBdle->cbUnderFifoW -= RT_MIN(pBdle->cbUnderFifoW, cbCopied);
Assert((!pBdle->cbUnderFifoW)); /* Assert!!! Assumption failed */
/* We always increment position on DMA buffer counter because we're always reading to intermediate buffer */
pBdle->u32BdleCviPos += cbArranged2Copy;
Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos && *pu32BackendBufferCapacity >= cbCopied)); /* sanity */
/* We reports all bytes (including unreported previously) */
*pu32DMACursor += cbCopied;
/* reducing backend counter on amount of bytes we copied to backend */
*pu32BackendBufferCapacity -= cbCopied;
Log(("hda:hdaBackendWriteTransferReported: CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n",
pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, *pu32DMACursor, *pu32BackendBufferCapacity));
}
static inline void hdaBackendReadTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied, uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity)
{
Assert((cbCopied, cbArranged2Copy));
*pu32BackendBufferCapacity -= cbCopied;
pBdle->u32BdleCviPos += cbCopied;
Log(("hda:hdaBackendReadTransferReported: CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
*pu32DMACursor += cbCopied + pBdle->cbUnderFifoW;
pBdle->cbUnderFifoW = 0;
Log(("hda:hdaBackendReadTransferReported: CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n",
pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0));
}
static inline void hdaBackendTransferUnreported(INTELHDLinkState *pState, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t cbCopied, uint32_t *pu32BackendBufferCapacity)
{
Log(("hda:hdaBackendTransferUnreported: CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
pBdle->u32BdleCviPos += cbCopied;
pBdle->cbUnderFifoW += cbCopied;
/* In case of read transaction we're always coping from backend buffer */
if (pu32BackendBufferCapacity)
*pu32BackendBufferCapacity -= cbCopied;
Log(("hda:hdaBackendTransferUnreported: CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
Assert((pBdle->cbUnderFifoW <= hdaFifoWToSz(pState, pStreamDesc)));
}
static inline bool hdaIsTransferCountersOverlapped(PINTELHDLinkState pState, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc)
{
bool fOnBufferEdge = ( *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl
|| pBdle->u32BdleCviPos == pBdle->u32BdleCviLen);
Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl));
if (*pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl)
*pStreamDesc->pu32Lpib -= pStreamDesc->u32Cbl;
hdaUpdatePosBuf(pState, pStreamDesc);
/* don't touch BdleCvi counter on uninitialized descriptor */
if ( pBdle->u32BdleCviPos
&& pBdle->u32BdleCviPos == pBdle->u32BdleCviLen)
{
pBdle->u32BdleCviPos = 0;
pBdle->u32BdleCvi++;
if (pBdle->u32BdleCvi == pBdle->u32BdleMaxCvi + 1)
pBdle->u32BdleCvi = 0;
}
return fOnBufferEdge;
}
static inline void hdaStreamCounterUpdate(PINTELHDLinkState pState, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t cbInc)
{
/*
* if we're under FIFO Watermark it's expected that HDA doesn't fetch anything.
* (ICH6 datasheet 18.2.38)
*/
if (!pBdle->cbUnderFifoW)
{
*pStreamDesc->pu32Lpib += cbInc;
/*
* Assert. Overlapping of buffer counter shouldn't happen.
*/
Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl));
hdaUpdatePosBuf(pState, pStreamDesc);
}
}
static inline bool hdaDoNextTransferCycle(PINTELHDLinkState pState, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc)
{
bool fDoNextTransferLoop = true;
if ( pBdle->u32BdleCviPos == pBdle->u32BdleCviLen
|| *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl)
{
if ( !pBdle->cbUnderFifoW
&& pBdle->fBdleCviIoc)
{
/*
* @todo - more carefully investigate BCIS flag.
* Speech synthesis works fine on Mac Guest if this bit isn't set
* but in general sound quality becomes lesser.
*/
*pStreamDesc->pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS);
/*
* we should generate the interrupt if ICE bit of SDCTL register is set.
*/
if (pStreamDesc->u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE))
hdaProcessInterrupt(pState);
}
fDoNextTransferLoop = false;
}
return fDoNextTransferLoop;
}
/*
* hdaReadAudio - copies samples from Qemu Sound back-end to DMA.
* Note: this function writes immediately to DMA buffer, but "reports bytes" when all conditions meet (FIFOW)
*/
static uint32_t hdaReadAudio(INTELHDLinkState *pState, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t *pu32Avail, bool *fStop, uint32_t u32CblLimit)
{
PHDABDLEDESC pBdle = &pState->stInBdle;
uint32_t cbTransfered = 0;
uint32_t cb2Copy = 0;
uint32_t cbBackendCopy = 0;
Log(("hda:ra: CVI(pos:%d, len:%d)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pu32Avail, u32CblLimit);
if (!cb2Copy)
{
/* if we enter here we can't report "unreported bits" */
*fStop = true;
goto done;
}
/*
* read from backend input line to last ureported position or at the begining.
*/
cbBackendCopy = AUD_read (ISD0FMT_TO_AUDIO_SELECTOR(pState), pBdle->au8HdaBuffer, cb2Copy);
/*
* write on the HDA DMA
*/
PDMDevHlpPhysWrite(ICH6_HDASTATE_2_DEVINS(pState), pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos, pBdle->au8HdaBuffer, cbBackendCopy);
/* Don't see reasons why cb2Copy could differ from cbBackendCopy */
Assert((cbBackendCopy == cb2Copy && (*pu32Avail) >= cb2Copy)); /* sanity */
if (pBdle->cbUnderFifoW + cbBackendCopy > hdaFifoWToSz(pState, 0))
hdaBackendReadTransferReported(pBdle, cb2Copy, cbBackendCopy, &cbTransfered, pu32Avail);
else
{
hdaBackendTransferUnreported(pState, pBdle, pStreamDesc, cbBackendCopy, pu32Avail);
*fStop = true;
}
done:
Assert((cbTransfered <= (SDFIFOS(pState, 0) + 1)));
Log(("hda:ra: CVI(pos:%d, len:%d) cbTransfered: %d\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransfered));
return cbTransfered;
}
static uint32_t hdaWriteAudio(INTELHDLinkState *pState, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t *pu32Avail, bool *fStop, uint32_t u32CblLimit)
{
PHDABDLEDESC pBdle = &pState->stOutBdle;
uint32_t cbTransfered = 0;
uint32_t cb2Copy = 0; /* local byte counter (on local buffer) */
uint32_t cbBackendCopy = 0; /* local byte counter, how many bytes copied to backend */
Log(("hda:wa: CVI(cvi:%d, pos:%d, len:%d)\n", pBdle->u32BdleCvi, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pu32Avail, u32CblLimit);
/*
* Copy from DMA to the corresponding hdaBuffer (if there exists some bytes from the previous not reported transfer we write to ''pBdle->cbUnderFifoW'' offset)
*/
if (!cb2Copy)
{
*fStop = true;
goto done;
}
PDMDevHlpPhysRead(ICH6_HDASTATE_2_DEVINS(pState), pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos, pBdle->au8HdaBuffer + pBdle->cbUnderFifoW, cb2Copy);
/*
* Write to audio backend. we should be sure whether we have enought bytes to copy to Audio backend.
*/
if (cb2Copy + pBdle->cbUnderFifoW >= hdaFifoWToSz(pState, pStreamDesc))
{
/*
* We feed backend with new portion of fetched samples including not reported.
*/
cbBackendCopy = AUD_write (OSD0FMT_TO_AUDIO_SELECTOR(pState), pBdle->au8HdaBuffer, cb2Copy + pBdle->cbUnderFifoW);
hdaBackendWriteTransferReported(pBdle, cb2Copy, cbBackendCopy, &cbTransfered, pu32Avail);
}
else
{
/* Not enough bytes to be processed and reported, check luck on next enterence */
hdaBackendTransferUnreported(pState, pBdle, pStreamDesc, cb2Copy, NULL);
*fStop = true;
}
done:
Assert((cbTransfered <= (SDFIFOS(pState, 4) + 1)));
Log(("hda:wa: CVI(pos:%d, len:%d, cbTransfered:%d)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransfered));
return cbTransfered;
}
DECLCALLBACK(int) hdaCodecReset(CODECState *pCodecState)
{
INTELHDLinkState *pState = (INTELHDLinkState *)pCodecState->pHDAState;
return VINF_SUCCESS;
}
static inline void hdaInitTransferDescriptor(PINTELHDLinkState pState, PHDABDLEDESC pBdle, uint8_t u8Strm, PHDASTREAMTRANSFERDESC pStreamDesc)
{
Assert(( pState
&& pBdle
&& pStreamDesc
&& u8Strm <= 7));
memset(pStreamDesc, 0, sizeof(HDASTREAMTRANSFERDESC));
pStreamDesc->u8Strm = u8Strm;
pStreamDesc->u32Ctl = HDA_STREAM_REG2(pState, CTL, u8Strm);
pStreamDesc->u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG2(pState, BDPL, u8Strm),
HDA_STREAM_REG2(pState, BDPU, u8Strm));
pStreamDesc->pu32Lpib = &HDA_STREAM_REG2(pState, LPIB, u8Strm);
pStreamDesc->pu32Sts = &HDA_STREAM_REG2(pState, STS, u8Strm);
pStreamDesc->u32Cbl = HDA_STREAM_REG2(pState, CBL, u8Strm);
pStreamDesc->u32Fifos = HDA_STREAM_REG2(pState, FIFOS, u8Strm);
pBdle->u32BdleMaxCvi = HDA_STREAM_REG2(pState, LVI, u8Strm);
#ifdef LOG_ENABLED
if ( pBdle
&& pBdle->u32BdleMaxCvi)
{
Log(("Initialization of transfer descriptor:\n"));
dump_bd(pState, pBdle, pStreamDesc->u64BaseDMA);
}
#endif
}
DECLCALLBACK(void) hdaTransfer(CODECState *pCodecState, ENMSOUNDSOURCE src, int avail)
{
bool fStop = false;
uint8_t u8Strm = 0;
PHDABDLEDESC pBdle = NULL;
INTELHDLinkState *pState = (INTELHDLinkState *)pCodecState->pHDAState;
HDASTREAMTRANSFERDESC stStreamDesc;
uint32_t nBytes;
switch (src)
{
case PO_INDEX:
{
u8Strm = 4;
pBdle = &pState->stOutBdle;
break;
}
case PI_INDEX:
{
u8Strm = 0;
pBdle = &pState->stInBdle;
break;
}
default:
return;
}
hdaInitTransferDescriptor(pState, pBdle, u8Strm, &stStreamDesc);
while( avail && !fStop)
{
Assert ( (stStreamDesc.u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN))
&& avail
&& stStreamDesc.u64BaseDMA);
/* Fetch the Buffer Descriptor Entry (BDE). */
if (hdaIsTransferCountersOverlapped(pState, pBdle, &stStreamDesc))
hdaFetchBdle(pState, pBdle, &stStreamDesc);
*stStreamDesc.pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY);
Assert((avail >= 0 && (stStreamDesc.u32Cbl >= (*stStreamDesc.pu32Lpib)))); /* sanity */
uint32_t u32CblLimit = stStreamDesc.u32Cbl - (*stStreamDesc.pu32Lpib);
Assert((u32CblLimit > hdaFifoWToSz(pState, &stStreamDesc)));
Log(("hda: CBL=%d, LPIB=%d\n", stStreamDesc.u32Cbl, *stStreamDesc.pu32Lpib));
switch (src)
{
case PO_INDEX:
nBytes = hdaWriteAudio(pState, &stStreamDesc, (uint32_t *)&avail, &fStop, u32CblLimit);
break;
case PI_INDEX:
nBytes = hdaReadAudio(pState, &stStreamDesc, (uint32_t *)&avail, &fStop, u32CblLimit);
break;
default:
nBytes = 0;
fStop = true;
AssertMsgFailed(("Unsupported"));
}
Assert(nBytes <= (stStreamDesc.u32Fifos + 1));
*stStreamDesc.pu32Sts &= ~HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY);
/* Process end of buffer condition. */
hdaStreamCounterUpdate(pState, pBdle, &stStreamDesc, nBytes);
fStop = !fStop ? !hdaDoNextTransferCycle(pState, pBdle, &stStreamDesc) : fStop;
}
}
/**
* Handle register read operation.
*
* Looks up and calls appropriate handler.
*
* @note: while implementation was detected so called "forgotten" or "hole" registers
* which description is missed in RPM, datasheet or spec.
*
* @returns VBox status code.
*
* @param pState The device state structure.
* @param uOffset Register offset in memory-mapped frame.
* @param pv Where to fetch the value.
* @param cb Number of bytes to write.
* @thread EMT
*/
PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
{
int rc = VINF_SUCCESS;
PCIINTELHDLinkState *pThis = PDMINS_2_DATA(pDevIns, PCIINTELHDLinkState *);
uint32_t u32Offset = GCPhysAddr - pThis->hda.addrMMReg;
int index = hdaLookup(&pThis->hda, u32Offset);
if (pThis->hda.fInReset && index != ICH6_HDA_REG_GCTL)
Log(("hda: access to registers except GCTL is blocked while reset\n"));
if ( index == -1
|| cb > 4)
LogRel(("hda: Invalid read access @0x%x(of bytes:%d)\n", u32Offset, cb));
if (index != -1)
{
uint32_t mask = 0;
uint32_t shift = (u32Offset - s_ichIntelHDRegMap[index].offset) % sizeof(uint32_t) * 8;
uint32_t v = 0;
switch(cb)
{
case 1: mask = 0x000000ff; break;
case 2: mask = 0x0000ffff; break;
case 3: mask = 0x00ffffff; break;
case 4: mask = 0xffffffff; break;
}
mask <<= shift;
rc = s_ichIntelHDRegMap[index].pfnRead(&pThis->hda, u32Offset, index, &v);
*(uint32_t *)pv = (v & mask) >> shift;
Log(("hda: read %s[%x/%x]\n", s_ichIntelHDRegMap[index].abbrev, v, *(uint32_t *)pv));
return rc;
}
*(uint32_t *)pv = 0xFF;
Log(("hda: hole at %X is accessed for read\n", u32Offset));
return rc;
}
/**
* Handle register write operation.
*
* Looks up and calls appropriate handler.
*
* @returns VBox status code.
*
* @param pState The device state structure.
* @param uOffset Register offset in memory-mapped frame.
* @param pv Where to fetch the value.
* @param cb Number of bytes to write.
* @thread EMT
*/
PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
{
int rc = VINF_SUCCESS;
PCIINTELHDLinkState *pThis = PDMINS_2_DATA(pDevIns, PCIINTELHDLinkState *);
uint32_t u32Offset = GCPhysAddr - pThis->hda.addrMMReg;
int index = hdaLookup(&pThis->hda, u32Offset);
if (pThis->hda.fInReset && index != ICH6_HDA_REG_GCTL)
Log(("hda: access to registers except GCTL is blocked while reset\n"));
if ( index == -1
|| cb > 4)
LogRel(("hda: Invalid write access @0x%x(of bytes:%d)\n", u32Offset, cb));
if (index != -1)
{
uint32_t v = pThis->hda.au32Regs[index];
uint32_t mask = 0;
uint32_t shift = (u32Offset - s_ichIntelHDRegMap[index].offset) % sizeof(uint32_t) * 8;
switch(cb)
{
case 1: mask = 0xffffff00; break;
case 2: mask = 0xffff0000; break;
case 3: mask = 0xff000000; break;
case 4: mask = 0x00000000; break;
}
mask <<= shift;
*(uint32_t *)pv = ((v & mask) | (*(uint32_t *)pv & ~mask)) >> shift;
rc = s_ichIntelHDRegMap[index].pfnWrite(&pThis->hda, u32Offset, index, *(uint32_t *)pv);
Log(("hda: write %s:(%x) %x => %x\n", s_ichIntelHDRegMap[index].abbrev, *(uint32_t *)pv, v, pThis->hda.au32Regs[index]));
return rc;
}
Log(("hda: hole at %X is accessed for write\n", u32Offset));
return rc;
}
/**
* Callback function for mapping a PCI I/O region.
*
* @return VBox status code.
* @param pPciDev Pointer to PCI device.
* Use pPciDev->pDevIns to get the device instance.
* @param iRegion The region number.
* @param GCPhysAddress Physical address of the region.
* If iType is PCI_ADDRESS_SPACE_IO, this is an
* I/O port, else it's a physical address.
* This address is *NOT* relative
* to pci_mem_base like earlier!
* @param enmType One of the PCI_ADDRESS_SPACE_* values.
*/
static DECLCALLBACK(int) hdaMap (PPCIDEVICE pPciDev, int iRegion,
RTGCPHYS GCPhysAddress, uint32_t cb,
PCIADDRESSSPACE enmType)
{
int rc;
PPDMDEVINS pDevIns = pPciDev->pDevIns;
RTIOPORT Port = (RTIOPORT)GCPhysAddress;
PCIINTELHDLinkState *pThis = PCIDEV_2_ICH6_HDASTATE(pPciDev);
Assert(enmType == PCI_ADDRESS_SPACE_MEM);
rc = PDMDevHlpMMIORegister(pPciDev->pDevIns, GCPhysAddress, cb, 0,
hdaMMIOWrite, hdaMMIORead, NULL, "ICH6_HDA");
if (RT_FAILURE(rc))
return rc;
pThis->hda.addrMMReg = GCPhysAddress;
return VINF_SUCCESS;
}
/**
* Saves a state of the HDA device.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSMHandle The handle to save the state to.
*/
static DECLCALLBACK(int) hdaSaveExec (PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle)
{
PCIINTELHDLinkState *pThis = PDMINS_2_DATA(pDevIns, PCIINTELHDLinkState *);
/* Save Codec nodes states */
codecSaveState(&pThis->hda.Codec, pSSMHandle);
/* Save MMIO registers */
SSMR3PutMem (pSSMHandle, pThis->hda.au32Regs, sizeof (pThis->hda.au32Regs));
/* Save HDA dma counters */
SSMR3PutMem (pSSMHandle, &pThis->hda.stOutBdle, sizeof (HDABDLEDESC));
SSMR3PutMem (pSSMHandle, &pThis->hda.stMicBdle, sizeof (HDABDLEDESC));
SSMR3PutMem (pSSMHandle, &pThis->hda.stInBdle, sizeof (HDABDLEDESC));
return VINF_SUCCESS;
}
/**
* Loads a saved HDA device state.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param pSSMHandle The handle to the saved state.
* @param uVersion The data unit version number.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) hdaLoadExec (PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle,
uint32_t uVersion, uint32_t uPass)
{
PCIINTELHDLinkState *pThis = PDMINS_2_DATA(pDevIns, PCIINTELHDLinkState *);
/* Load Codec nodes states */
AssertMsgReturn (uVersion == HDA_SSM_VERSION, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
Assert (uPass == SSM_PASS_FINAL); NOREF(uPass);
codecLoadState(&pThis->hda.Codec, pSSMHandle);
/* Load MMIO registers */
SSMR3GetMem (pSSMHandle, pThis->hda.au32Regs, sizeof (pThis->hda.au32Regs));
/* Load HDA dma counters */
SSMR3GetMem (pSSMHandle, &pThis->hda.stOutBdle, sizeof (HDABDLEDESC));
SSMR3GetMem (pSSMHandle, &pThis->hda.stMicBdle, sizeof (HDABDLEDESC));
SSMR3GetMem (pSSMHandle, &pThis->hda.stInBdle, sizeof (HDABDLEDESC));
AUD_set_active_in(ISD0FMT_TO_AUDIO_SELECTOR(&pThis->hda), SDCTL(&pThis->hda, 0) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
AUD_set_active_out(OSD0FMT_TO_AUDIO_SELECTOR(&pThis->hda), SDCTL(&pThis->hda, 4) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
pThis->hda.u64CORBBase = CORBLBASE(&pThis->hda);
pThis->hda.u64CORBBase |= ((uint64_t)CORBUBASE(&pThis->hda)) << 32;
pThis->hda.u64RIRBBase = RIRLBASE(&pThis->hda);
pThis->hda.u64RIRBBase |= ((uint64_t)RIRUBASE(&pThis->hda)) << 32;
pThis->hda.u64DPBase = DPLBASE(&pThis->hda);
pThis->hda.u64DPBase |= ((uint64_t)DPUBASE(&pThis->hda)) << 32;
return VINF_SUCCESS;
}
/**
* Reset notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*
* @remark The original sources didn't install a reset handler, but it seems to
* make sense to me so we'll do it.
*/
static DECLCALLBACK(void) hdaReset(PPDMDEVINS pDevIns)
{
PCIINTELHDLinkState *pThis = PDMINS_2_DATA(pDevIns, PCIINTELHDLinkState *);
GCAP(&pThis->hda) = HDA_MAKE_GCAP(4,4,0,0,1); /* see 6.2.1 */
VMIN(&pThis->hda) = 0x00; /* see 6.2.2 */
VMAJ(&pThis->hda) = 0x01; /* see 6.2.3 */
VMAJ(&pThis->hda) = 0x01; /* see 6.2.3 */
OUTPAY(&pThis->hda) = 0x003C; /* see 6.2.4 */
INPAY(&pThis->hda) = 0x001D; /* see 6.2.5 */
pThis->hda.au32Regs[ICH6_HDA_REG_CORBSIZE] = 0x42; /* see 6.2.1 */
pThis->hda.au32Regs[ICH6_HDA_REG_RIRBSIZE] = 0x42; /* see 6.2.1 */
CORBRP(&pThis->hda) = 0x0;
RIRBWP(&pThis->hda) = 0x0;
Log(("hda: inter HDA reset.\n"));
pThis->hda.cbCorbBuf = 256 * sizeof(uint32_t);
if (pThis->hda.pu32CorbBuf)
memset(pThis->hda.pu32CorbBuf, 0, pThis->hda.cbCorbBuf);
else
pThis->hda.pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->hda.cbCorbBuf);
pThis->hda.cbRirbBuf = 256 * sizeof(uint64_t);
if (pThis->hda.pu64RirbBuf)
memset(pThis->hda.pu64RirbBuf, 0, pThis->hda.cbRirbBuf);
else
pThis->hda.pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->hda.cbRirbBuf);
pThis->hda.u64BaseTS = PDMDevHlpTMTimeVirtGetNano(pDevIns);
HDABDLEDESC stEmptyBdle;
for(uint8_t u8Strm = 0; u8Strm < 8; ++u8Strm)
{
HDASTREAMTRANSFERDESC stStreamDesc;
PHDABDLEDESC pBdle = NULL;
if (u8Strm == 0)
pBdle = &pThis->hda.stInBdle;
else if(u8Strm == 4)
pBdle = &pThis->hda.stOutBdle;
else
{
memset(&stEmptyBdle, 0, sizeof(HDABDLEDESC));
pBdle = &stEmptyBdle;
}
hdaInitTransferDescriptor(&pThis->hda, pBdle, u8Strm, &stStreamDesc);
/* hdaStreamReset prevents changing SRST bit, so we zerro it here forcely. */
HDA_STREAM_REG2(&pThis->hda, CTL, u8Strm) = 0;
hdaStreamReset(&pThis->hda, pBdle, &stStreamDesc, u8Strm);
}
/* emulateion of codec "wake up" HDA spec (5.5.1 and 6.5)*/
STATESTS(&pThis->hda) = 0x1;
Log(("hda: reset finished\n"));
}
/**
* @interface_method_impl{PDMIBASE,pfnQueryInterface}
*/
static DECLCALLBACK(void *) hdaQueryInterface (struct PDMIBASE *pInterface,
const char *pszIID)
{
PCIINTELHDLinkState *pThis = RT_FROM_MEMBER(pInterface, PCIINTELHDLinkState, hda.IBase);
Assert(&pThis->hda.IBase == pInterface);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->hda.IBase);
return NULL;
}
//#define HDA_AS_PCI_EXPRESS
/**
* @interface_method_impl{PDMDEVREG,pfnConstruct}
*/
static DECLCALLBACK(int) hdaConstruct (PPDMDEVINS pDevIns, int iInstance,
PCFGMNODE pCfgHandle)
{
PCIINTELHDLinkState *pThis = PDMINS_2_DATA(pDevIns, PCIINTELHDLinkState *);
INTELHDLinkState *s = &pThis->hda;
int rc;
Assert(iInstance == 0);
PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
/*
* Validations.
*/
if (!CFGMR3AreValuesValid (pCfgHandle, "\0"))
return PDMDEV_SET_ERROR (pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
N_ ("Invalid configuration for the INTELHD device"));
// ** @todo r=michaln: This device may need R0/RC enabling, especially if guests
// poll some register(s).
/*
* Initialize data (most of it anyway).
*/
s->pDevIns = pDevIns;
/* IBase */
s->IBase.pfnQueryInterface = hdaQueryInterface;
/* PCI Device (the assertions will be removed later) */
PCIDevSetVendorId (&pThis->dev, HDA_PCI_VENDOR_ID); /* nVidia */
PCIDevSetDeviceId (&pThis->dev, HDA_PCI_DEICE_ID); /* HDA */
PCIDevSetCommand (&pThis->dev, 0x0000); /* 04 rw,ro - pcicmd. */
PCIDevSetStatus (&pThis->dev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */
PCIDevSetRevisionId (&pThis->dev, 0x01); /* 08 ro - rid. */
PCIDevSetClassProg (&pThis->dev, 0x00); /* 09 ro - pi. */
PCIDevSetClassSub (&pThis->dev, 0x03); /* 0a ro - scc; 03 == HDA. */
PCIDevSetClassBase (&pThis->dev, 0x04); /* 0b ro - bcc; 04 == multimedia. */
PCIDevSetHeaderType (&pThis->dev, 0x00); /* 0e ro - headtyp. */
PCIDevSetBaseAddress (&pThis->dev, 0, /* 10 rw - MMIO */
false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000);
PCIDevSetInterruptLine (&pThis->dev, 0x00); /* 3c rw. */
PCIDevSetInterruptPin (&pThis->dev, 0x01); /* 3d ro - INTA#. */
#if defined(HDA_AS_PCI_EXPRESS)
PCIDevSetCapabilityList (&pThis->dev, 0x80);
#elif defined(VBOX_WITH_MSI_DEVICES)
PCIDevSetCapabilityList (&pThis->dev, 0x60);
#else
PCIDevSetCapabilityList (&pThis->dev, 0x50); /* ICH6 datasheet 18.1.16 */
#endif
//** @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning
// of these values needs to be properly documented!
/* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
PCIDevSetByte(&pThis->dev, 0x40, 0x01);
/* Power Management */
PCIDevSetByte(&pThis->dev, 0x50 + 0, VBOX_PCI_CAP_ID_PM);
PCIDevSetByte(&pThis->dev, 0x50 + 1, 0x0); /* next */
PCIDevSetWord(&pThis->dev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ );
#ifdef HDA_AS_PCI_EXPRESS
/* PCI Express */
PCIDevSetByte (&pThis->dev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */
PCIDevSetByte (&pThis->dev, 0x80 + 1, 0x60); /* next */
/* Device flags */
PCIDevSetWord (&pThis->dev, 0x80 + 2,
/* version */ 0x1 |
/* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) |
/* MSI */ (100) << 9
);
/* Device capabilities */
PCIDevSetDWord (&pThis->dev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET);
/* Device control */
PCIDevSetWord (&pThis->dev, 0x80 + 8, 0);
/* Device status */
PCIDevSetWord (&pThis->dev, 0x80 + 10, 0);
/* Link caps */
PCIDevSetDWord (&pThis->dev, 0x80 + 12, 0);
/* Link control */
PCIDevSetWord (&pThis->dev, 0x80 + 16, 0);
/* Link status */
PCIDevSetWord (&pThis->dev, 0x80 + 18, 0);
/* Slot capabilities */
PCIDevSetDWord (&pThis->dev, 0x80 + 20, 0);
/* Slot control */
PCIDevSetWord (&pThis->dev, 0x80 + 24, 0);
/* Slot status */
PCIDevSetWord (&pThis->dev, 0x80 + 26, 0);
/* Root control */
PCIDevSetWord (&pThis->dev, 0x80 + 28, 0);
/* Root capabilities */
PCIDevSetWord (&pThis->dev, 0x80 + 30, 0);
/* Root status */
PCIDevSetDWord (&pThis->dev, 0x80 + 32, 0);
/* Device capabilities 2 */
PCIDevSetDWord (&pThis->dev, 0x80 + 36, 0);
/* Device control 2 */
PCIDevSetQWord (&pThis->dev, 0x80 + 40, 0);
/* Link control 2 */
PCIDevSetQWord (&pThis->dev, 0x80 + 48, 0);
/* Slot control 2 */
PCIDevSetWord (&pThis->dev, 0x80 + 56, 0);
#endif
/*
* Register the PCI device.
*/
rc = PDMDevHlpPCIRegister (pDevIns, &pThis->dev);
if (RT_FAILURE (rc))
return rc;
rc = PDMDevHlpPCIIORegionRegister (pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM,
hdaMap);
if (RT_FAILURE (rc))
return rc;
#ifdef VBOX_WITH_MSI_DEVICES
PDMMSIREG aMsiReg;
RT_ZERO(aMsiReg);
aMsiReg.cMsiVectors = 1;
aMsiReg.iMsiCapOffset = 0x60;
aMsiReg.iMsiNextOffset = 0x50;
rc = PDMDevHlpPCIRegisterMsi(pDevIns, &aMsiReg);
if (RT_FAILURE (rc))
{
LogRel(("Chipset cannot do MSI: %Rrc\n", rc));
PCIDevSetCapabilityList (&pThis->dev, 0x50);
}
#endif
rc = PDMDevHlpSSMRegister (pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaSaveExec, hdaLoadExec);
if (RT_FAILURE (rc))
return rc;
/*
* Attach driver.
*/
rc = PDMDevHlpDriverAttach (pDevIns, 0, &s->IBase,
&s->pDrvBase, "Audio Driver Port");
if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
Log (("hda: No attached driver!\n"));
else if (RT_FAILURE (rc))
{
AssertMsgFailed (("Failed to attach INTELHD LUN #0! rc=%Rrc\n", rc));
return rc;
}
pThis->hda.Codec.pHDAState = (void *)&pThis->hda;
rc = codecConstruct(&pThis->hda.Codec, /* ALC885_CODEC */ STAC9220_CODEC);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
/* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for
verb F20 should provide device/codec recognition. */
Assert(pThis->hda.Codec.u16VendorId);
Assert(pThis->hda.Codec.u16DeviceId);
PCIDevSetSubSystemVendorId (&pThis->dev, pThis->hda.Codec.u16VendorId); /* 2c ro - intel.) */
PCIDevSetSubSystemId (&pThis->dev, pThis->hda.Codec.u16DeviceId); /* 2e ro. */
hdaReset (pDevIns);
pThis->hda.Codec.id = 0;
pThis->hda.Codec.pfnTransfer = hdaTransfer;
pThis->hda.Codec.pfnReset = hdaCodecReset;
/*
* 18.2.6,7 defines that values of this registers might be cleared on power on/reset
* hdaReset shouldn't affects these registers.
*/
WAKEEN(&pThis->hda) = 0x0;
STATESTS(&pThis->hda) = 0x0;
return VINF_SUCCESS;
}
/**
* @interface_method_impl{PDMDEVREG,pfnDestruct}
*/
static DECLCALLBACK(int) hdaDestruct (PPDMDEVINS pDevIns)
{
PCIINTELHDLinkState *pThis = PDMINS_2_DATA(pDevIns, PCIINTELHDLinkState *);
int rc = codecDestruct(&pThis->hda.Codec);
AssertRC(rc);
if (pThis->hda.pu32CorbBuf)
RTMemFree(pThis->hda.pu32CorbBuf);
if (pThis->hda.pu64RirbBuf)
RTMemFree(pThis->hda.pu64RirbBuf);
return VINF_SUCCESS;
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DeviceICH6_HDA =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szName */
"hda",
/* szRCMod */
"",
/* szR0Mod */
"",
/* pszDescription */
"ICH IntelHD Audio Controller",
/* fFlags */
PDM_DEVREG_FLAGS_DEFAULT_BITS,
/* fClass */
PDM_DEVREG_CLASS_AUDIO,
/* cMaxInstances */
1,
/* cbInstance */
sizeof(PCIINTELHDLinkState),
/* pfnConstruct */
hdaConstruct,
/* pfnDestruct */
hdaDestruct,
/* pfnRelocate */
NULL,
/* pfnIOCtl */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
hdaReset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
NULL,
/* pfnDetach */
NULL,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
NULL,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};