DevIchHda.cpp revision 2b114c590cf5a19f8047cd7bde9c7e5ae00aa22b
/* $Id$ */
/** @file
* DevIchHda - VBox ICH Intel HD Audio Controller.
*
* Implemented against the specifications found in "High Definition Audio
* Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller
* HUB 6 (ICH6) Family, Datasheet", document number 301473-002.
*/
/*
* Copyright (C) 2006-2014 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include <VBox/vmm/pdmdev.h>
#include <VBox/vmm/pdmaudioifs.h>
#include <VBox/version.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#include <iprt/asm-math.h>
#ifdef IN_RING3
# include <iprt/uuid.h>
# include <iprt/string.h>
# include <iprt/mem.h>
#endif
#include <iprt/list.h>
#if 0
/* Warning: Enabling this causes a *lot* of output! */
#ifdef LOG_GROUP
# undef LOG_GROUP
#endif
#define LOG_GROUP LOG_GROUP_DEV_AUDIO
#include <VBox/log.h>
#endif
#include "VBoxDD.h"
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
# include "AudioMixer.h"
#else
extern "C" {
#include "audio.h"
}
#endif
#include "DevIchHdaCodec.h"
#ifdef DEBUG
#define DEBUG_LUN
# ifdef DEBUG_LUN
# define DEBUG_LUN_NUM 0
# endif
#endif /* DEBUG */
/*******************************************************************************
* Defined Constants And Macros *
*******************************************************************************/
//#define HDA_AS_PCI_EXPRESS
#define VBOX_WITH_INTEL_HDA
#if (defined(DEBUG) && defined(DEBUG_andy))
/* Enables experimental support for separate mic-in handling.
Do not enable this yet for regular builds, as this needs more testing first! */
# define VBOX_WITH_HDA_MIC_IN
#endif
#if defined(VBOX_WITH_HP_HDA)
/* HP Pavilion dv4t-1300 */
# define HDA_PCI_VENDOR_ID 0x103c
# define HDA_PCI_DEVICE_ID 0x30f7
#elif defined(VBOX_WITH_INTEL_HDA)
/* Intel HDA controller */
# define HDA_PCI_VENDOR_ID 0x8086
# define HDA_PCI_DEVICE_ID 0x2668
#elif defined(VBOX_WITH_NVIDIA_HDA)
/* nVidia HDA controller */
# define HDA_PCI_VENDOR_ID 0x10de
# define HDA_PCI_DEVICE_ID 0x0ac0
#else
# error "Please specify your HDA device vendor/device IDs"
#endif
/** @todo r=bird: Looking at what the linux driver (accidentally?) does when
* updating CORBWP, I belive that the ICH6 datahsheet is wrong and that CORBRP
* is read only except for bit 15 like the HDA spec states.
*
* Btw. the CORBRPRST implementation is incomplete according to both docs (sw
* writes 1, hw sets it to 1 (after completion), sw reads 1, sw writes 0). */
#define BIRD_THINKS_CORBRP_IS_MOSTLY_RO
#define HDA_NREGS 114
#define HDA_NREGS_SAVED 112
/**
* NB: Register values stored in memory (au32Regs[]) are indexed through
* the HDA_RMX_xxx macros (also HDA_MEM_IND_NAME()). On the other hand, the
* register descriptors in g_aHdaRegMap[] are indexed through the
* HDA_REG_xxx macros (also HDA_REG_IND_NAME()).
*
* The au32Regs[] layout is kept unchanged for saved state
* compatibility. */
/* Registers */
#define HDA_REG_IND_NAME(x) HDA_REG_##x
#define HDA_MEM_IND_NAME(x) HDA_RMX_##x
#define HDA_REG_FIELD_MASK(reg, x) HDA_##reg##_##x##_MASK
#define HDA_REG_FIELD_FLAG_MASK(reg, x) RT_BIT(HDA_##reg##_##x##_SHIFT)
#define HDA_REG_FIELD_SHIFT(reg, x) HDA_##reg##_##x##_SHIFT
#define HDA_REG_IND(pThis, x) ((pThis)->au32Regs[g_aHdaRegMap[x].mem_idx])
#define HDA_REG(pThis, x) (HDA_REG_IND((pThis), HDA_REG_IND_NAME(x)))
#define HDA_REG_FLAG_VALUE(pThis, reg, val) (HDA_REG((pThis),reg) & (((HDA_REG_FIELD_FLAG_MASK(reg, val)))))
#define HDA_REG_GCAP 0 /* range 0x00-0x01*/
#define HDA_RMX_GCAP 0
/* GCAP HDASpec 3.3.2 This macro encodes the following information about HDA in a compact manner:
* oss (15:12) - number of output streams supported
* iss (11:8) - number of input streams supported
* bss (7:3) - number of bidirectional streams supported
* bds (2:1) - number of serial data out signals supported
* b64sup (0) - 64 bit addressing supported.
*/
#define HDA_MAKE_GCAP(oss, iss, bss, bds, b64sup) \
( (((oss) & 0xF) << 12) \
| (((iss) & 0xF) << 8) \
| (((bss) & 0x1F) << 3) \
| (((bds) & 0x3) << 2) \
| ((b64sup) & 1))
#define HDA_REG_VMIN 1 /* 0x02 */
#define HDA_RMX_VMIN 1
#define HDA_REG_VMAJ 2 /* 0x03 */
#define HDA_RMX_VMAJ 2
#define HDA_REG_OUTPAY 3 /* 0x04-0x05 */
#define HDA_RMX_OUTPAY 3
#define HDA_REG_INPAY 4 /* 0x06-0x07 */
#define HDA_RMX_INPAY 4
#define HDA_REG_GCTL 5 /* 0x08-0x0B */
#define HDA_RMX_GCTL 5
#define HDA_GCTL_RST_SHIFT 0
#define HDA_GCTL_FSH_SHIFT 1
#define HDA_GCTL_UR_SHIFT 8
#define HDA_REG_WAKEEN 6 /* 0x0C */
#define HDA_RMX_WAKEEN 6
#define HDA_REG_STATESTS 7 /* 0x0E */
#define HDA_RMX_STATESTS 7
#define HDA_STATES_SCSF 0x7
#define HDA_REG_GSTS 8 /* 0x10-0x11*/
#define HDA_RMX_GSTS 8
#define HDA_GSTS_FSH_SHIFT 1
#define HDA_REG_OUTSTRMPAY 9 /* 0x18 */
#define HDA_RMX_OUTSTRMPAY 112
#define HDA_REG_INSTRMPAY 10 /* 0x1a */
#define HDA_RMX_INSTRMPAY 113
#define HDA_REG_INTCTL 11 /* 0x20 */
#define HDA_RMX_INTCTL 9
#define HDA_INTCTL_GIE_SHIFT 31
#define HDA_INTCTL_CIE_SHIFT 30
#define HDA_INTCTL_S0_SHIFT 0
#define HDA_INTCTL_S1_SHIFT 1
#define HDA_INTCTL_S2_SHIFT 2
#define HDA_INTCTL_S3_SHIFT 3
#define HDA_INTCTL_S4_SHIFT 4
#define HDA_INTCTL_S5_SHIFT 5
#define HDA_INTCTL_S6_SHIFT 6
#define HDA_INTCTL_S7_SHIFT 7
#define INTCTL_SX(pThis, X) (HDA_REG_FLAG_VALUE((pThis), INTCTL, S##X))
#define HDA_REG_INTSTS 12 /* 0x24 */
#define HDA_RMX_INTSTS 10
#define HDA_INTSTS_GIS_SHIFT 31
#define HDA_INTSTS_CIS_SHIFT 30
#define HDA_INTSTS_S0_SHIFT 0
#define HDA_INTSTS_S1_SHIFT 1
#define HDA_INTSTS_S2_SHIFT 2
#define HDA_INTSTS_S3_SHIFT 3
#define HDA_INTSTS_S4_SHIFT 4
#define HDA_INTSTS_S5_SHIFT 5
#define HDA_INTSTS_S6_SHIFT 6
#define HDA_INTSTS_S7_SHIFT 7
#define HDA_INTSTS_S_MASK(num) RT_BIT(HDA_REG_FIELD_SHIFT(S##num))
#define HDA_REG_WALCLK 13 /* 0x24 */
#define HDA_RMX_WALCLK /* Not defined! */
/* Note: The HDA specification defines a SSYNC register at offset 0x38. The
* ICH6/ICH9 datahseet defines SSYNC at offset 0x34. The Linux HDA driver matches
* the datasheet.
*/
#define HDA_REG_SSYNC 14 /* 0x34 */
#define HDA_RMX_SSYNC 12
#define HDA_REG_CORBLBASE 15 /* 0x40 */
#define HDA_RMX_CORBLBASE 13
#define HDA_REG_CORBUBASE 16 /* 0x44 */
#define HDA_RMX_CORBUBASE 14
#define HDA_REG_CORBWP 17 /* 0x48 */
#define HDA_RMX_CORBWP 15
#define HDA_REG_CORBRP 18 /* 0x4A */
#define HDA_RMX_CORBRP 16
#define HDA_CORBRP_RST_SHIFT 15
#define HDA_CORBRP_WP_SHIFT 0
#define HDA_CORBRP_WP_MASK 0xFF
#define HDA_REG_CORBCTL 19 /* 0x4C */
#define HDA_RMX_CORBCTL 17
#define HDA_CORBCTL_DMA_SHIFT 1
#define HDA_CORBCTL_CMEIE_SHIFT 0
#define HDA_REG_CORBSTS 20 /* 0x4D */
#define HDA_RMX_CORBSTS 18
#define HDA_CORBSTS_CMEI_SHIFT 0
#define HDA_REG_CORBSIZE 21 /* 0x4E */
#define HDA_RMX_CORBSIZE 19
#define HDA_CORBSIZE_SZ_CAP 0xF0
#define HDA_CORBSIZE_SZ 0x3
/* till ich 10 sizes of CORB and RIRB are hardcoded to 256 in real hw */
#define HDA_REG_RIRBLBASE 22 /* 0x50 */
#define HDA_RMX_RIRBLBASE 20
#define HDA_REG_RIRBUBASE 23 /* 0x54 */
#define HDA_RMX_RIRBUBASE 21
#define HDA_REG_RIRBWP 24 /* 0x58 */
#define HDA_RMX_RIRBWP 22
#define HDA_RIRBWP_RST_SHIFT 15
#define HDA_RIRBWP_WP_MASK 0xFF
#define HDA_REG_RINTCNT 25 /* 0x5A */
#define HDA_RMX_RINTCNT 23
#define RINTCNT_N(pThis) (HDA_REG(pThis, RINTCNT) & 0xff)
#define HDA_REG_RIRBCTL 26 /* 0x5C */
#define HDA_RMX_RIRBCTL 24
#define HDA_RIRBCTL_RIC_SHIFT 0
#define HDA_RIRBCTL_DMA_SHIFT 1
#define HDA_ROI_DMA_SHIFT 2
#define HDA_REG_RIRBSTS 27 /* 0x5D */
#define HDA_RMX_RIRBSTS 25
#define HDA_RIRBSTS_RINTFL_SHIFT 0
#define HDA_RIRBSTS_RIRBOIS_SHIFT 2
#define HDA_REG_RIRBSIZE 28 /* 0x5E */
#define HDA_RMX_RIRBSIZE 26
#define HDA_RIRBSIZE_SZ_CAP 0xF0
#define HDA_RIRBSIZE_SZ 0x3
#define RIRBSIZE_SZ(pThis) (HDA_REG(pThis, HDA_REG_RIRBSIZE) & HDA_RIRBSIZE_SZ)
#define RIRBSIZE_SZ_CAP(pThis) (HDA_REG(pThis, HDA_REG_RIRBSIZE) & HDA_RIRBSIZE_SZ_CAP)
#define HDA_REG_IC 29 /* 0x60 */
#define HDA_RMX_IC 27
#define HDA_REG_IR 30 /* 0x64 */
#define HDA_RMX_IR 28
#define HDA_REG_IRS 31 /* 0x68 */
#define HDA_RMX_IRS 29
#define HDA_IRS_ICB_SHIFT 0
#define HDA_IRS_IRV_SHIFT 1
#define HDA_REG_DPLBASE 32 /* 0x70 */
#define HDA_RMX_DPLBASE 30
#define DPLBASE(pThis) (HDA_REG((pThis), DPLBASE))
#define HDA_REG_DPUBASE 33 /* 0x74 */
#define HDA_RMX_DPUBASE 31
#define DPUBASE(pThis) (HDA_REG((pThis), DPUBASE))
#define DPBASE_ENABLED 1
#define DPBASE_ADDR_MASK (~(uint64_t)0x7f)
#define HDA_STREAM_REG_DEF(name, num) (HDA_REG_SD##num##name)
#define HDA_STREAM_RMX_DEF(name, num) (HDA_RMX_SD##num##name)
/* Note: sdnum here _MUST_ be stream reg number [0,7]. */
#define HDA_STREAM_REG(pThis, name, sdnum) (HDA_REG_IND((pThis), HDA_REG_SD0##name + (sdnum) * 10))
#define HDA_REG_SD0CTL 34 /* 0x80 */
#define HDA_REG_SD1CTL (HDA_STREAM_REG_DEF(CTL, 0) + 10) /* 0xA0 */
#define HDA_REG_SD2CTL (HDA_STREAM_REG_DEF(CTL, 0) + 20) /* 0xC0 */
#define HDA_REG_SD3CTL (HDA_STREAM_REG_DEF(CTL, 0) + 30) /* 0xE0 */
#define HDA_REG_SD4CTL (HDA_STREAM_REG_DEF(CTL, 0) + 40) /* 0x100 */
#define HDA_REG_SD5CTL (HDA_STREAM_REG_DEF(CTL, 0) + 50) /* 0x120 */
#define HDA_REG_SD6CTL (HDA_STREAM_REG_DEF(CTL, 0) + 60) /* 0x140 */
#define HDA_REG_SD7CTL (HDA_STREAM_REG_DEF(CTL, 0) + 70) /* 0x160 */
#define HDA_RMX_SD0CTL 32
#define HDA_RMX_SD1CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 10)
#define HDA_RMX_SD2CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 20)
#define HDA_RMX_SD3CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 30)
#define HDA_RMX_SD4CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 40)
#define HDA_RMX_SD5CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 50)
#define HDA_RMX_SD6CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 60)
#define HDA_RMX_SD7CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 70)
#define SD(func, num) SD##num##func
#define SDCTL(pThis, num) HDA_REG((pThis), SD(CTL, num))
#define SDCTL_NUM(pThis, num) ((SDCTL((pThis), num) & HDA_REG_FIELD_MASK(SDCTL,NUM)) >> HDA_REG_FIELD_SHIFT(SDCTL, NUM))
#define HDA_SDCTL_NUM_MASK 0xF
#define HDA_SDCTL_NUM_SHIFT 20
#define HDA_SDCTL_DIR_SHIFT 19
#define HDA_SDCTL_TP_SHIFT 18
#define HDA_SDCTL_STRIPE_MASK 0x3
#define HDA_SDCTL_STRIPE_SHIFT 16
#define HDA_SDCTL_DEIE_SHIFT 4
#define HDA_SDCTL_FEIE_SHIFT 3
#define HDA_SDCTL_ICE_SHIFT 2
#define HDA_SDCTL_RUN_SHIFT 1
#define HDA_SDCTL_SRST_SHIFT 0
#define HDA_REG_SD0STS 35 /* 0x83 */
#define HDA_REG_SD1STS (HDA_STREAM_REG_DEF(STS, 0) + 10) /* 0xA3 */
#define HDA_REG_SD2STS (HDA_STREAM_REG_DEF(STS, 0) + 20) /* 0xC3 */
#define HDA_REG_SD3STS (HDA_STREAM_REG_DEF(STS, 0) + 30) /* 0xE3 */
#define HDA_REG_SD4STS (HDA_STREAM_REG_DEF(STS, 0) + 40) /* 0x103 */
#define HDA_REG_SD5STS (HDA_STREAM_REG_DEF(STS, 0) + 50) /* 0x123 */
#define HDA_REG_SD6STS (HDA_STREAM_REG_DEF(STS, 0) + 60) /* 0x143 */
#define HDA_REG_SD7STS (HDA_STREAM_REG_DEF(STS, 0) + 70) /* 0x163 */
#define HDA_RMX_SD0STS 33
#define HDA_RMX_SD1STS (HDA_STREAM_RMX_DEF(STS, 0) + 10)
#define HDA_RMX_SD2STS (HDA_STREAM_RMX_DEF(STS, 0) + 20)
#define HDA_RMX_SD3STS (HDA_STREAM_RMX_DEF(STS, 0) + 30)
#define HDA_RMX_SD4STS (HDA_STREAM_RMX_DEF(STS, 0) + 40)
#define HDA_RMX_SD5STS (HDA_STREAM_RMX_DEF(STS, 0) + 50)
#define HDA_RMX_SD6STS (HDA_STREAM_RMX_DEF(STS, 0) + 60)
#define HDA_RMX_SD7STS (HDA_STREAM_RMX_DEF(STS, 0) + 70)
#define SDSTS(pThis, num) HDA_REG((pThis), SD(STS, num))
#define HDA_SDSTS_FIFORDY_SHIFT 5
#define HDA_SDSTS_DE_SHIFT 4
#define HDA_SDSTS_FE_SHIFT 3
#define HDA_SDSTS_BCIS_SHIFT 2
#define HDA_REG_SD0LPIB 36 /* 0x84 */
#define HDA_REG_SD1LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 10) /* 0xA4 */
#define HDA_REG_SD2LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 20) /* 0xC4 */
#define HDA_REG_SD3LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 30) /* 0xE4 */
#define HDA_REG_SD4LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 40) /* 0x104 */
#define HDA_REG_SD5LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 50) /* 0x124 */
#define HDA_REG_SD6LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 60) /* 0x144 */
#define HDA_REG_SD7LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 70) /* 0x164 */
#define HDA_RMX_SD0LPIB 34
#define HDA_RMX_SD1LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 10)
#define HDA_RMX_SD2LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 20)
#define HDA_RMX_SD3LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 30)
#define HDA_RMX_SD4LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 40)
#define HDA_RMX_SD5LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 50)
#define HDA_RMX_SD6LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 60)
#define HDA_RMX_SD7LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 70)
#define HDA_REG_SD0CBL 37 /* 0x88 */
#define HDA_REG_SD1CBL (HDA_STREAM_REG_DEF(CBL, 0) + 10) /* 0xA8 */
#define HDA_REG_SD2CBL (HDA_STREAM_REG_DEF(CBL, 0) + 20) /* 0xC8 */
#define HDA_REG_SD3CBL (HDA_STREAM_REG_DEF(CBL, 0) + 30) /* 0xE8 */
#define HDA_REG_SD4CBL (HDA_STREAM_REG_DEF(CBL, 0) + 40) /* 0x108 */
#define HDA_REG_SD5CBL (HDA_STREAM_REG_DEF(CBL, 0) + 50) /* 0x128 */
#define HDA_REG_SD6CBL (HDA_STREAM_REG_DEF(CBL, 0) + 60) /* 0x148 */
#define HDA_REG_SD7CBL (HDA_STREAM_REG_DEF(CBL, 0) + 70) /* 0x168 */
#define HDA_RMX_SD0CBL 35
#define HDA_RMX_SD1CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 10)
#define HDA_RMX_SD2CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 20)
#define HDA_RMX_SD3CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 30)
#define HDA_RMX_SD4CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 40)
#define HDA_RMX_SD5CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 50)
#define HDA_RMX_SD6CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 60)
#define HDA_RMX_SD7CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 70)
#define HDA_REG_SD0LVI 38 /* 0x8C */
#define HDA_REG_SD1LVI (HDA_STREAM_REG_DEF(LVI, 0) + 10) /* 0xAC */
#define HDA_REG_SD2LVI (HDA_STREAM_REG_DEF(LVI, 0) + 20) /* 0xCC */
#define HDA_REG_SD3LVI (HDA_STREAM_REG_DEF(LVI, 0) + 30) /* 0xEC */
#define HDA_REG_SD4LVI (HDA_STREAM_REG_DEF(LVI, 0) + 40) /* 0x10C */
#define HDA_REG_SD5LVI (HDA_STREAM_REG_DEF(LVI, 0) + 50) /* 0x12C */
#define HDA_REG_SD6LVI (HDA_STREAM_REG_DEF(LVI, 0) + 60) /* 0x14C */
#define HDA_REG_SD7LVI (HDA_STREAM_REG_DEF(LVI, 0) + 70) /* 0x16C */
#define HDA_RMX_SD0LVI 36
#define HDA_RMX_SD1LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 10)
#define HDA_RMX_SD2LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 20)
#define HDA_RMX_SD3LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 30)
#define HDA_RMX_SD4LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 40)
#define HDA_RMX_SD5LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 50)
#define HDA_RMX_SD6LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 60)
#define HDA_RMX_SD7LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 70)
#define HDA_REG_SD0FIFOW 39 /* 0x8E */
#define HDA_REG_SD1FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 10) /* 0xAE */
#define HDA_REG_SD2FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 20) /* 0xCE */
#define HDA_REG_SD3FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 30) /* 0xEE */
#define HDA_REG_SD4FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 40) /* 0x10E */
#define HDA_REG_SD5FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 50) /* 0x12E */
#define HDA_REG_SD6FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 60) /* 0x14E */
#define HDA_REG_SD7FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 70) /* 0x16E */
#define HDA_RMX_SD0FIFOW 37
#define HDA_RMX_SD1FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 10)
#define HDA_RMX_SD2FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 20)
#define HDA_RMX_SD3FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 30)
#define HDA_RMX_SD4FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 40)
#define HDA_RMX_SD5FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 50)
#define HDA_RMX_SD6FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 60)
#define HDA_RMX_SD7FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 70)
/*
* ICH6 datasheet defined limits for FIFOW values (18.2.38)
*/
#define HDA_SDFIFOW_8B 0x2
#define HDA_SDFIFOW_16B 0x3
#define HDA_SDFIFOW_32B 0x4
#define HDA_REG_SD0FIFOS 40 /* 0x90 */
#define HDA_REG_SD1FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 10) /* 0xB0 */
#define HDA_REG_SD2FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 20) /* 0xD0 */
#define HDA_REG_SD3FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 30) /* 0xF0 */
#define HDA_REG_SD4FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 40) /* 0x110 */
#define HDA_REG_SD5FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 50) /* 0x130 */
#define HDA_REG_SD6FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 60) /* 0x150 */
#define HDA_REG_SD7FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 70) /* 0x170 */
#define HDA_RMX_SD0FIFOS 38
#define HDA_RMX_SD1FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 10)
#define HDA_RMX_SD2FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 20)
#define HDA_RMX_SD3FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 30)
#define HDA_RMX_SD4FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 40)
#define HDA_RMX_SD5FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 50)
#define HDA_RMX_SD6FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 60)
#define HDA_RMX_SD7FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 70)
/*
* ICH6 datasheet defines limits for FIFOS registers (18.2.39)
* formula: size - 1
* Other values not listed are not supported.
*/
#define HDA_SDONFIFO_16B 0x0F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_32B 0x1F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_64B 0x3F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_128B 0x7F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_192B 0xBF /* 8-, 16-, 20-, 24-, 32-bit Output Streams */
#define HDA_SDONFIFO_256B 0xFF /* 20-, 24-bit Output Streams */
#define HDA_SDINFIFO_120B 0x77 /* 8-, 16-, 20-, 24-, 32-bit Input Streams */
#define HDA_SDINFIFO_160B 0x9F /* 20-, 24-bit Input Streams Streams */
#define SDFIFOS(pThis, num) HDA_REG((pThis), SD(FIFOS, num))
#define HDA_REG_SD0FMT 41 /* 0x92 */
#define HDA_REG_SD1FMT (HDA_STREAM_REG_DEF(FMT, 0) + 10) /* 0xB2 */
#define HDA_REG_SD2FMT (HDA_STREAM_REG_DEF(FMT, 0) + 20) /* 0xD2 */
#define HDA_REG_SD3FMT (HDA_STREAM_REG_DEF(FMT, 0) + 30) /* 0xF2 */
#define HDA_REG_SD4FMT (HDA_STREAM_REG_DEF(FMT, 0) + 40) /* 0x112 */
#define HDA_REG_SD5FMT (HDA_STREAM_REG_DEF(FMT, 0) + 50) /* 0x132 */
#define HDA_REG_SD6FMT (HDA_STREAM_REG_DEF(FMT, 0) + 60) /* 0x152 */
#define HDA_REG_SD7FMT (HDA_STREAM_REG_DEF(FMT, 0) + 70) /* 0x172 */
#define HDA_RMX_SD0FMT 39
#define HDA_RMX_SD1FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 10)
#define HDA_RMX_SD2FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 20)
#define HDA_RMX_SD3FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 30)
#define HDA_RMX_SD4FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 40)
#define HDA_RMX_SD5FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 50)
#define HDA_RMX_SD6FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 60)
#define HDA_RMX_SD7FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 70)
#define SDFMT(pThis, num) (HDA_REG((pThis), SD(FMT, num)))
#define HDA_SDFMT_BASE_RATE_SHIFT 14
#define HDA_SDFMT_MULT_SHIFT 11
#define HDA_SDFMT_MULT_MASK 0x7
#define HDA_SDFMT_DIV_SHIFT 8
#define HDA_SDFMT_DIV_MASK 0x7
#define HDA_SDFMT_BITS_SHIFT 4
#define HDA_SDFMT_BITS_MASK 0x7
#define SDFMT_BASE_RATE(pThis, num) ((SDFMT(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDFMT, BASE_RATE)) >> HDA_REG_FIELD_SHIFT(SDFMT, BASE_RATE))
#define SDFMT_MULT(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,MULT)) >> HDA_REG_FIELD_SHIFT(SDFMT, MULT))
#define SDFMT_DIV(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,DIV)) >> HDA_REG_FIELD_SHIFT(SDFMT, DIV))
#define HDA_REG_SD0BDPL 42 /* 0x98 */
#define HDA_REG_SD1BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 10) /* 0xB8 */
#define HDA_REG_SD2BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 20) /* 0xD8 */
#define HDA_REG_SD3BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 30) /* 0xF8 */
#define HDA_REG_SD4BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 40) /* 0x118 */
#define HDA_REG_SD5BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 50) /* 0x138 */
#define HDA_REG_SD6BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 60) /* 0x158 */
#define HDA_REG_SD7BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 70) /* 0x178 */
#define HDA_RMX_SD0BDPL 40
#define HDA_RMX_SD1BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 10)
#define HDA_RMX_SD2BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 20)
#define HDA_RMX_SD3BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 30)
#define HDA_RMX_SD4BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 40)
#define HDA_RMX_SD5BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 50)
#define HDA_RMX_SD6BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 60)
#define HDA_RMX_SD7BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 70)
#define HDA_REG_SD0BDPU 43 /* 0x9C */
#define HDA_REG_SD1BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 10) /* 0xBC */
#define HDA_REG_SD2BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 20) /* 0xDC */
#define HDA_REG_SD3BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 30) /* 0xFC */
#define HDA_REG_SD4BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 40) /* 0x11C */
#define HDA_REG_SD5BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 50) /* 0x13C */
#define HDA_REG_SD6BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 60) /* 0x15C */
#define HDA_REG_SD7BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 70) /* 0x17C */
#define HDA_RMX_SD0BDPU 41
#define HDA_RMX_SD1BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 10)
#define HDA_RMX_SD2BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 20)
#define HDA_RMX_SD3BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 30)
#define HDA_RMX_SD4BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 40)
#define HDA_RMX_SD5BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 50)
#define HDA_RMX_SD6BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 60)
#define HDA_RMX_SD7BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 70)
#define HDA_CODEC_CAD_SHIFT 28
/* Encodes the (required) LUN into a codec command. */
#define HDA_CODEC_CMD(cmd, lun) ((cmd) | (lun << HDA_CODEC_CAD_SHIFT))
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
typedef struct HDABDLEDESC
{
uint64_t u64BdleCviAddr;
uint32_t u32BdleMaxCvi;
uint32_t u32BdleCvi;
uint32_t u32BdleCviLen;
uint32_t u32BdleCviPos;
bool fBdleCviIoc;
uint32_t cbUnderFifoW;
uint8_t au8HdaBuffer[HDA_SDONFIFO_256B + 1];
} HDABDLEDESC, *PHDABDLEDESC;
typedef struct HDASTREAMTRANSFERDESC
{
uint64_t u64BaseDMA;
uint32_t u32Ctl;
uint32_t *pu32Sts;
uint8_t u8Strm;
uint32_t *pu32Lpib;
uint32_t u32Cbl;
uint32_t u32Fifos;
} HDASTREAMTRANSFERDESC, *PHDASTREAMTRANSFERDESC;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
/**
* Struct for maintaining a host backend driver.
* This driver must be associated to one, and only one,
* HDA codec. The HDA controller does the actual multiplexing
* of HDA codec data to various host backend drivers then.
*/
typedef struct HDADRIVER
{
RTLISTNODE Node;
/** Pointer to HDA controller (state). */
PHDASTATE pHDAState;
/** Driver flags. */
PDMAUDIODRVFLAGS Flags;
/** LUN to which this driver has been assigned. */
uint8_t uLUN;
/** Audio connector interface to the underlying
* host backend. */
R3PTRTYPE(PPDMIAUDIOCONNECTOR) pConnector;
/** PCM line input stream. */
R3PTRTYPE(PPDMAUDIOGSTSTRMIN) pStrmIn;
/** Mixer handle for line input stream. */
R3PTRTYPE(PAUDMIXSTREAM) phStrmIn;
/** PCM microphone input stream. */
R3PTRTYPE(PPDMAUDIOGSTSTRMIN) pStrmMic;
/** Mixer handle for microphone input stream. */
R3PTRTYPE(PAUDMIXSTREAM) phStrmMic;
/** PCM output stream. */
R3PTRTYPE(PPDMAUDIOGSTSTRMOUT) pGstStrmOut;
} HDADRIVER, *PHDADRIVER;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
/**
* ICH Intel HD Audio Controller state.
*/
typedef struct HDASTATE
{
/** The PCI device structure. */
PCIDevice PciDev;
/** R3 Pointer to the device instance. */
PPDMDEVINSR3 pDevInsR3;
/** R0 Pointer to the device instance. */
PPDMDEVINSR0 pDevInsR0;
/** R0 Pointer to the device instance. */
PPDMDEVINSRC pDevInsRC;
uint32_t u32Padding;
/** Pointer to the attached audio driver. */
R3PTRTYPE(PPDMIBASE) pDrvBase;
/** The base interface for LUN\#0. */
PDMIBASE IBase;
RTGCPHYS MMIOBaseAddr;
uint32_t au32Regs[HDA_NREGS];
HDABDLEDESC StInBdle;
HDABDLEDESC StOutBdle;
HDABDLEDESC StMicBdle;
uint64_t u64CORBBase;
uint64_t u64RIRBBase;
uint64_t u64DPBase;
/** Pointer to CORB buffer. */
R3PTRTYPE(uint32_t *) pu32CorbBuf;
/** Size in bytes of CORB buffer. */
uint32_t cbCorbBuf;
uint32_t u32Padding2;
/** Pointer to RIRB buffer. */
R3PTRTYPE(uint64_t *) pu64RirbBuf;
/** Size in bytes of RIRB buffer. */
uint32_t cbRirbBuf;
/** Indicates if HDA is in reset. */
bool fInReset;
/** Interrupt on completion */
bool fCviIoc;
/** Flag whether the R0 part is enabled. */
bool fR0Enabled;
/** Flag whether the RC part is enabled. */
bool fRCEnabled;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
/** Number of active + allocated LUNs. Each
* LUN has a HDA driver assigned. */
uint8_t cLUNs;
uint8_t au8PaddingLUNs[4];
/** The HDA codec to use. */
R3PTRTYPE(PHDACODEC) pCodec;
/** Array of active HDA drivers. */
R3PTRTYPE(PHDADRIVER) paDrv[32];
/** The device' software mixer. */
R3PTRTYPE(PAUDIOMIXER) pMixer;
/** Audio sink for line input. */
R3PTRTYPE(PAUDMIXSINK) pSinkLineIn;
/** Audio sink for microphone input. */
R3PTRTYPE(PAUDMIXSINK) pSinkMicIn;
#else
R3PTRTYPE(PPDMIAUDIOCONNECTOR) pDrv;
/** The HDA codec to use. */
R3PTRTYPE(PHDACODEC) pCodec;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
uint64_t u64BaseTS;
/** 1.2.3.4.5.6.7. - someone please tell me what I'm counting! - .8.9.10... */
uint8_t u8Counter;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
uint8_t au8Padding[4];
#else
uint8_t au8Padding[7];
#endif
} HDASTATE;
/** Pointer to the ICH Intel HD Audio Controller state. */
typedef HDASTATE *PHDASTATE;
#define ISD0FMT_TO_AUDIO_SELECTOR(pThis) \
( AUDIO_FORMAT_SELECTOR((pThis)->pCodec, In, SDFMT_BASE_RATE(pThis, 0), SDFMT_MULT(pThis, 0), SDFMT_DIV(pThis, 0)) )
#define OSD0FMT_TO_AUDIO_SELECTOR(pThis) \
( AUDIO_FORMAT_SELECTOR((pThis)->pCodec, Out, SDFMT_BASE_RATE(pThis, 4), SDFMT_MULT(pThis, 4), SDFMT_DIV(pThis, 4)) )
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
#ifndef VBOX_DEVICE_STRUCT_TESTCASE
static FNPDMDEVRESET hdaReset;
static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegReadSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value);
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
static void hdaTransfer(PHDADRIVER pDrv, ENMSOUNDSOURCE enmSrc, uint32_t cbAvail);
#else
static void hdaTransfer(PHDACODEC pCodec, ENMSOUNDSOURCE enmSource, int cbAvail);
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
#ifdef IN_RING3
DECLINLINE(void) hdaInitTransferDescriptor(PHDASTATE pThis, PHDABDLEDESC pBdle, uint8_t u8Strm,
PHDASTREAMTRANSFERDESC pStreamDesc);
static void hdaFetchBdle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc);
#ifdef LOG_ENABLED
static void dump_bd(PHDASTATE pThis, PHDABDLEDESC pBdle, uint64_t u64BaseDMA);
#endif
#endif
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/* see 302349 p 6.2*/
static const struct HDAREGDESC
{
/** Register offset in the register space. */
uint32_t offset;
/** Size in bytes. Registers of size > 4 are in fact tables. */
uint32_t size;
/** Readable bits. */
uint32_t readable;
/** Writable bits. */
uint32_t writable;
/** Read callback. */
int (*pfnRead)(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value);
/** Write callback. */
int (*pfnWrite)(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value);
/** Index into the register storage array. */
uint32_t mem_idx;
/** Abbreviated name. */
const char *abbrev;
} g_aHdaRegMap[HDA_NREGS] =
/* Turn a short register name into an memory index and a stringized name. */
#define RA(abbrev) HDA_MEM_IND_NAME(abbrev), #abbrev
/* Same as above for an input stream ('I' prefixed). */
#define IA(abbrev) HDA_MEM_IND_NAME(abbrev), "I"#abbrev
/* Same as above for an output stream ('O' prefixed). */
#define OA(abbrev) HDA_MEM_IND_NAME(abbrev), "O"#abbrev
/* Same as above for a register *not* stored in memory. */
#define UA(abbrev) 0, #abbrev
{
/* offset size read mask write mask read callback write callback abbrev */
/*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- */
{ 0x00000, 0x00002, 0x0000FFFB, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(GCAP) }, /* Global Capabilities */
{ 0x00002, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(VMIN) }, /* Minor Version */
{ 0x00003, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(VMAJ) }, /* Major Version */
{ 0x00004, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(OUTPAY) }, /* Output Payload Capabilities */
{ 0x00006, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(INPAY) }, /* Input Payload Capabilities */
{ 0x00008, 0x00004, 0x00000103, 0x00000103, hdaRegReadU32 , hdaRegWriteGCTL , RA(GCTL) }, /* Global Control */
{ 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, hdaRegReadU16 , hdaRegWriteU16 , RA(WAKEEN) }, /* Wake Enable */
{ 0x0000e, 0x00002, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteSTATESTS , RA(STATESTS) }, /* State Change Status */
{ 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, hdaRegReadUnimpl , hdaRegWriteUnimpl , RA(GSTS) }, /* Global Status */
{ 0x00018, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(OUTSTRMPAY)}, /* Output Stream Payload Capability */
{ 0x0001A, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(INSTRMPAY) }, /* Input Stream Payload Capability */
{ 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, hdaRegReadU32 , hdaRegWriteU32 , RA(INTCTL) }, /* Interrupt Control */
{ 0x00024, 0x00004, 0xC00000FF, 0x00000000, hdaRegReadINTSTS , hdaRegWriteUnimpl , RA(INTSTS) }, /* Interrupt Status */
{ 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadWALCLK , hdaRegWriteUnimpl , UA(WALCLK) }, /* Wall Clock Counter */
/// @todo r=michaln: Doesn't the SSYNC register need to actually stop the stream(s)?
{ 0x00034, 0x00004, 0x000000FF, 0x000000FF, hdaRegReadU32 , hdaRegWriteU32 , RA(SSYNC) }, /* Stream Synchronization */
{ 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , RA(CORBLBASE) }, /* CORB Lower Base Address */
{ 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , RA(CORBUBASE) }, /* CORB Upper Base Address */
{ 0x00048, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteCORBWP , RA(CORBWP) }, /* CORB Write Pointer */
{ 0x0004A, 0x00002, 0x000080FF, 0x000080FF, hdaRegReadU16 , hdaRegWriteCORBRP , RA(CORBRP) }, /* CORB Read Pointer */
{ 0x0004C, 0x00001, 0x00000003, 0x00000003, hdaRegReadU8 , hdaRegWriteCORBCTL , RA(CORBCTL) }, /* CORB Control */
{ 0x0004D, 0x00001, 0x00000001, 0x00000001, hdaRegReadU8 , hdaRegWriteCORBSTS , RA(CORBSTS) }, /* CORB Status */
{ 0x0004E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(CORBSIZE) }, /* CORB Size */
{ 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , RA(RIRBLBASE) }, /* RIRB Lower Base Address */
{ 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , RA(RIRBUBASE) }, /* RIRB Upper Base Address */
{ 0x00058, 0x00002, 0x000000FF, 0x00008000, hdaRegReadU8 , hdaRegWriteRIRBWP , RA(RIRBWP) }, /* RIRB Write Pointer */
{ 0x0005A, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteU16 , RA(RINTCNT) }, /* Response Interrupt Count */
{ 0x0005C, 0x00001, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteU8 , RA(RIRBCTL) }, /* RIRB Control */
{ 0x0005D, 0x00001, 0x00000005, 0x00000005, hdaRegReadU8 , hdaRegWriteRIRBSTS , RA(RIRBSTS) }, /* RIRB Status */
{ 0x0005E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(RIRBSIZE) }, /* RIRB Size */
{ 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , RA(IC) }, /* Immediate Command */
{ 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteUnimpl , RA(IR) }, /* Immediate Response */
{ 0x00068, 0x00002, 0x00000002, 0x00000002, hdaRegReadIRS , hdaRegWriteIRS , RA(IRS) }, /* Immediate Command Status */
{ 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, hdaRegReadU32 , hdaRegWriteBase , RA(DPLBASE) }, /* MA Position Lower Base */
{ 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , RA(DPUBASE) }, /* DMA Position Upper Base */
{ 0x00080, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD0CTL) }, /* Input Stream Descriptor 0 (ICD0) Control */
{ 0x00083, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD0STS) }, /* ISD0 Status */
{ 0x00084, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD0LPIB) }, /* ISD0 Link Position In Buffer */
{ 0x00088, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD0CBL) }, /* ISD0 Cyclic Buffer Length */
{ 0x0008C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD0LVI) }, /* ISD0 Last Valid Index */
{ 0x0008E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD0FIFOW) }, /* ISD0 FIFO Watermark */
{ 0x00090, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD0FIFOS) }, /* ISD0 FIFO Size */
{ 0x00092, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD0FMT) }, /* ISD0 Format */
{ 0x00098, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD0BDPL) }, /* ISD0 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x0009C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD0BDPU) }, /* ISD0 Buffer Descriptor List Pointer-Upper Base Address */
{ 0x000A0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD1CTL) }, /* Input Stream Descriptor 1 (ISD1) Control */
{ 0x000A3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD1STS) }, /* ISD1 Status */
{ 0x000A4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD1LPIB) }, /* ISD1 Link Position In Buffer */
{ 0x000A8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD1CBL) }, /* ISD1 Cyclic Buffer Length */
{ 0x000AC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD1LVI) }, /* ISD1 Last Valid Index */
{ 0x000AE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD1FIFOW) }, /* ISD1 FIFO Watermark */
{ 0x000B0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD1FIFOS) }, /* ISD1 FIFO Size */
{ 0x000B2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD1FMT) }, /* ISD1 Format */
{ 0x000B8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD1BDPL) }, /* ISD1 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x000BC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD1BDPU) }, /* ISD1 Buffer Descriptor List Pointer-Upper Base Address */
{ 0x000C0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD2CTL) }, /* Input Stream Descriptor 2 (ISD2) Control */
{ 0x000C3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD2STS) }, /* ISD2 Status */
{ 0x000C4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD2LPIB) }, /* ISD2 Link Position In Buffer */
{ 0x000C8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD2CBL) }, /* ISD2 Cyclic Buffer Length */
{ 0x000CC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD2LVI) }, /* ISD2 Last Valid Index */
{ 0x000CE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD2FIFOW) }, /* ISD2 FIFO Watermark */
{ 0x000D0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD2FIFOS) }, /* ISD2 FIFO Size */
{ 0x000D2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD2FMT) }, /* ISD2 Format */
{ 0x000D8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD2BDPL) }, /* ISD2 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x000DC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD2BDPU) }, /* ISD2 Buffer Descriptor List Pointer-Upper Base Address */
{ 0x000E0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD3CTL) }, /* Input Stream Descriptor 3 (ISD3) Control */
{ 0x000E3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD3STS) }, /* ISD3 Status */
{ 0x000E4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD3LPIB) }, /* ISD3 Link Position In Buffer */
{ 0x000E8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD3CBL) }, /* ISD3 Cyclic Buffer Length */
{ 0x000EC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD3LVI) }, /* ISD3 Last Valid Index */
{ 0x000EE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD3FIFOW) }, /* ISD3 FIFO Watermark */
{ 0x000F0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD3FIFOS) }, /* ISD3 FIFO Size */
{ 0x000F2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD3FMT) }, /* ISD3 Format */
{ 0x000F8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD3BDPL) }, /* ISD3 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x000FC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD3BDPU) }, /* ISD3 Buffer Descriptor List Pointer-Upper Base Address */
{ 0x00100, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD4CTL) }, /* Output Stream Descriptor 4 (OSD4) Control */
{ 0x00103, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD4STS) }, /* OSD4 Status */
{ 0x00104, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD4LPIB) }, /* OSD4 Link Position In Buffer */
{ 0x00108, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD4CBL) }, /* OSD4 Cyclic Buffer Length */
{ 0x0010C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD4LVI) }, /* OSD4 Last Valid Index */
{ 0x0010E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD4FIFOW) }, /* OSD4 FIFO Watermark */
{ 0x00110, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD4FIFOS) }, /* OSD4 FIFO Size */
{ 0x00112, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD4FMT) }, /* OSD4 Format */
{ 0x00118, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD4BDPL) }, /* OSD4 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x0011C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD4BDPU) }, /* OSD4 Buffer Descriptor List Pointer-Upper Base Address */
{ 0x00120, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD5CTL) }, /* Output Stream Descriptor 5 (OSD5) Control */
{ 0x00123, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD5STS) }, /* OSD5 Status */
{ 0x00124, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD5LPIB) }, /* OSD5 Link Position In Buffer */
{ 0x00128, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD5CBL) }, /* OSD5 Cyclic Buffer Length */
{ 0x0012C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD5LVI) }, /* OSD5 Last Valid Index */
{ 0x0012E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD5FIFOW) }, /* OSD5 FIFO Watermark */
{ 0x00130, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD5FIFOS) }, /* OSD5 FIFO Size */
{ 0x00132, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD5FMT) }, /* OSD5 Format */
{ 0x00138, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD5BDPL) }, /* OSD5 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x0013C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD5BDPU) }, /* OSD5 Buffer Descriptor List Pointer-Upper Base Address */
{ 0x00140, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD6CTL) }, /* Output Stream Descriptor 6 (OSD6) Control */
{ 0x00143, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD6STS) }, /* OSD6 Status */
{ 0x00144, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD6LPIB) }, /* OSD6 Link Position In Buffer */
{ 0x00148, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD6CBL) }, /* OSD6 Cyclic Buffer Length */
{ 0x0014C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD6LVI) }, /* OSD6 Last Valid Index */
{ 0x0014E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD6FIFOW) }, /* OSD6 FIFO Watermark */
{ 0x00150, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD6FIFOS) }, /* OSD6 FIFO Size */
{ 0x00152, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD6FMT) }, /* OSD6 Format */
{ 0x00158, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD6BDPL) }, /* OSD6 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x0015C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD6BDPU) }, /* OSD6 Buffer Descriptor List Pointer-Upper Base Address */
{ 0x00160, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD7CTL) }, /* Output Stream Descriptor 7 (OSD7) Control */
{ 0x00163, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD7STS) }, /* OSD7 Status */
{ 0x00164, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD7LPIB) }, /* OSD7 Link Position In Buffer */
{ 0x00168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD7CBL) }, /* OSD7 Cyclic Buffer Length */
{ 0x0016C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD7LVI) }, /* OSD7 Last Valid Index */
{ 0x0016E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD7FIFOW) }, /* OSD7 FIFO Watermark */
{ 0x00170, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD7FIFOS) }, /* OSD7 FIFO Size */
{ 0x00172, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD7FMT) }, /* OSD7 Format */
{ 0x00178, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD7BDPL) }, /* OSD7 Buffer Descriptor List Pointer-Lower Base Address */
{ 0x0017C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD7BDPU) }, /* OSD7 Buffer Descriptor List Pointer-Upper Base Address */
};
/**
* HDA register aliases (HDA spec 3.3.45).
* @remarks Sorted by offReg.
*/
static const struct
{
/** The alias register offset. */
uint32_t offReg;
/** The register index. */
int idxAlias;
} g_aHdaRegAliases[] =
{
{ 0x2084, HDA_REG_SD0LPIB },
{ 0x20a4, HDA_REG_SD1LPIB },
{ 0x20c4, HDA_REG_SD2LPIB },
{ 0x20e4, HDA_REG_SD3LPIB },
{ 0x2104, HDA_REG_SD4LPIB },
{ 0x2124, HDA_REG_SD5LPIB },
{ 0x2144, HDA_REG_SD6LPIB },
{ 0x2164, HDA_REG_SD7LPIB },
};
#ifdef IN_RING3
/** HDABDLEDESC field descriptors the v3+ saved state. */
static SSMFIELD const g_aHdaBDLEDescFields[] =
{
SSMFIELD_ENTRY( HDABDLEDESC, u64BdleCviAddr),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleMaxCvi),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCvi),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviLen),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviPos),
SSMFIELD_ENTRY( HDABDLEDESC, fBdleCviIoc),
SSMFIELD_ENTRY( HDABDLEDESC, cbUnderFifoW),
SSMFIELD_ENTRY( HDABDLEDESC, au8HdaBuffer),
SSMFIELD_ENTRY_TERM()
};
/** HDABDLEDESC field descriptors the v1 and v2 saved state. */
static SSMFIELD const g_aHdaBDLEDescFieldsOld[] =
{
SSMFIELD_ENTRY( HDABDLEDESC, u64BdleCviAddr),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleMaxCvi),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCvi),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviLen),
SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviPos),
SSMFIELD_ENTRY( HDABDLEDESC, fBdleCviIoc),
SSMFIELD_ENTRY_PAD_HC_AUTO(3, 3),
SSMFIELD_ENTRY( HDABDLEDESC, cbUnderFifoW),
SSMFIELD_ENTRY( HDABDLEDESC, au8HdaBuffer),
SSMFIELD_ENTRY_TERM()
};
#endif
/**
* 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff.
*/
static uint32_t const g_afMasks[5] =
{
UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff)
};
#ifdef IN_RING3
DECLINLINE(void) hdaUpdatePosBuf(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc)
{
if (pThis->u64DPBase & DPBASE_ENABLED)
PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
(pThis->u64DPBase & DPBASE_ADDR_MASK) + pStreamDesc->u8Strm * 8,
pStreamDesc->pu32Lpib, sizeof(uint32_t));
}
#endif
DECLINLINE(uint32_t) hdaFifoWToSz(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc)
{
#if 0
switch(HDA_STREAM_REG(pThis, FIFOW, pStreamDesc->u8Strm))
{
case HDA_SDFIFOW_8B: return 8;
case HDA_SDFIFOW_16B: return 16;
case HDA_SDFIFOW_32B: return 32;
default:
AssertMsgFailed(("unsupported value (%x) in SDFIFOW(,%d)\n", HDA_REG_IND(pThis, pStreamDesc->u8Strm), pStreamDesc->u8Strm));
}
#endif
return 0;
}
static int hdaProcessInterrupt(PHDASTATE pThis)
{
#define IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, num) \
( INTCTL_SX((pThis), num) \
&& (SDSTS(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)))
bool fIrq = false;
if ( HDA_REG_FLAG_VALUE(pThis, INTCTL, CIE)
&& ( HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RINTFL)
|| HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RIRBOIS)
|| (HDA_REG(pThis, STATESTS) & HDA_REG(pThis, WAKEEN))))
fIrq = true;
if ( IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 0)
|| IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 4))
fIrq = true;
if (HDA_REG_FLAG_VALUE(pThis, INTCTL, GIE))
{
LogFunc(("irq %s\n", fIrq ? "asserted" : "deasserted"));
PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0 , fIrq);
}
return VINF_SUCCESS;
}
/**
* Looks up a register at the exact offset given by @a offReg.
*
* @returns Register index on success, -1 if not found.
* @param pThis The HDA device state.
* @param offReg The register offset.
*/
static int hdaRegLookup(PHDASTATE pThis, uint32_t offReg)
{
/*
* Aliases.
*/
if (offReg >= g_aHdaRegAliases[0].offReg)
{
for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
if (offReg == g_aHdaRegAliases[i].offReg)
return g_aHdaRegAliases[i].idxAlias;
Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
return -1;
}
/*
* Binary search the
*/
int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
int idxLow = 0;
for (;;)
{
int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
if (offReg < g_aHdaRegMap[idxMiddle].offset)
{
if (idxLow == idxMiddle)
break;
idxEnd = idxMiddle;
}
else if (offReg > g_aHdaRegMap[idxMiddle].offset)
{
idxLow = idxMiddle + 1;
if (idxLow >= idxEnd)
break;
}
else
return idxMiddle;
}
#ifdef RT_STRICT
for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
Assert(g_aHdaRegMap[i].offset != offReg);
#endif
return -1;
}
/**
* Looks up a register covering the offset given by @a offReg.
*
* @returns Register index on success, -1 if not found.
* @param pThis The HDA device state.
* @param offReg The register offset.
*/
static int hdaRegLookupWithin(PHDASTATE pThis, uint32_t offReg)
{
/*
* Aliases.
*/
if (offReg >= g_aHdaRegAliases[0].offReg)
{
for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++)
{
uint32_t off = offReg - g_aHdaRegAliases[i].offReg;
if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size)
return g_aHdaRegAliases[i].idxAlias;
}
Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg);
return -1;
}
/*
* Binary search the
*/
int idxEnd = RT_ELEMENTS(g_aHdaRegMap);
int idxLow = 0;
for (;;)
{
int idxMiddle = idxLow + (idxEnd - idxLow) / 2;
if (offReg < g_aHdaRegMap[idxMiddle].offset)
{
if (idxLow == idxMiddle)
break;
idxEnd = idxMiddle;
}
else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size)
{
idxLow = idxMiddle + 1;
if (idxLow >= idxEnd)
break;
}
else
return idxMiddle;
}
#ifdef RT_STRICT
for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size);
#endif
return -1;
}
#ifdef IN_RING3
static int hdaCmdSync(PHDASTATE pThis, bool fLocal)
{
int rc = VINF_SUCCESS;
if (fLocal)
{
Assert((HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA)));
rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
#ifdef DEBUG_CMD_BUFFER
uint8_t i = 0;
do
{
LogFunc(("corb%02x: ", i));
uint8_t j = 0;
do
{
const char *prefix;
if ((i + j) == HDA_REG(pThis, CORBRP);
prefix = "[R]";
else if ((i + j) == HDA_REG(pThis, CORBWP);
prefix = "[W]";
else
prefix = " "; /* three spaces */
LogFunc(("%s%08x", prefix, pThis->pu32CorbBuf[i + j]));
j++;
} while (j < 8);
LogFunc(("\n"));
i += 8;
} while(i != 0);
#endif
}
else
{
Assert((HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA)));
rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
#ifdef DEBUG_CMD_BUFFER
uint8_t i = 0;
do {
LogFunc(("rirb%02x: ", i));
uint8_t j = 0;
do {
const char *prefix;
if ((i + j) == HDA_REG(pThis, RIRBWP))
prefix = "[W]";
else
prefix = " ";
LogFunc((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j]));
} while (++j < 8);
LogFunc(("\n"));
i += 8;
} while (i != 0);
#endif
}
return rc;
}
static int hdaCORBCmdProcess(PHDASTATE pThis)
{
int rc;
uint8_t corbRp;
uint8_t corbWp;
uint8_t rirbWp;
PFNHDACODECVERBPROCESSOR pfn = (PFNHDACODECVERBPROCESSOR)NULL;
rc = hdaCmdSync(pThis, true);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
corbRp = HDA_REG(pThis, CORBRP);
corbWp = HDA_REG(pThis, CORBWP);
rirbWp = HDA_REG(pThis, RIRBWP);
Assert((corbWp != corbRp));
LogFlowFunc(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", HDA_REG(pThis, CORBRP),
HDA_REG(pThis, CORBWP), HDA_REG(pThis, RIRBWP)));
while (corbRp != corbWp)
{
uint32_t cmd;
uint64_t resp;
pfn = NULL;
corbRp++;
cmd = pThis->pu32CorbBuf[corbRp];
rc = pThis->pCodec->pfnLookup(pThis->pCodec,
HDA_CODEC_CMD(cmd, 0 /* Codec index */),
&pfn);
if (RT_SUCCESS(rc))
{
rc = pfn(pThis->pCodec,
HDA_CODEC_CMD(cmd, 0 /* LUN */), &resp);
}
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
Assert(pfn);
(rirbWp)++;
LogFunc(("verb:%08x->%016lx\n", cmd, resp));
if ( (resp & CODEC_RESPONSE_UNSOLICITED)
&& !HDA_REG_FLAG_VALUE(pThis, GCTL, UR))
{
LogFunc(("unexpected unsolicited response.\n"));
HDA_REG(pThis, CORBRP) = corbRp;
return rc;
}
pThis->pu64RirbBuf[rirbWp] = resp;
pThis->u8Counter++;
if (pThis->u8Counter == RINTCNT_N(pThis))
break;
}
HDA_REG(pThis, CORBRP) = corbRp;
HDA_REG(pThis, RIRBWP) = rirbWp;
rc = hdaCmdSync(pThis, false);
LogFunc(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", HDA_REG(pThis, CORBRP),
HDA_REG(pThis, CORBWP), HDA_REG(pThis, RIRBWP)));
if (HDA_REG_FLAG_VALUE(pThis, RIRBCTL, RIC))
{
HDA_REG(pThis, RIRBSTS) |= HDA_REG_FIELD_FLAG_MASK(RIRBSTS,RINTFL);
pThis->u8Counter = 0;
rc = hdaProcessInterrupt(pThis);
}
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
return rc;
}
#endif
static void hdaStreamReset(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint8_t u8Strm)
{
LogFunc(("reset of stream (%d) started\n", u8Strm));
Assert(( pThis
&& pBdle
&& pStreamDesc
&& u8Strm <= 7));
RT_BZERO(pBdle, sizeof(HDABDLEDESC));
*pStreamDesc->pu32Lpib = 0;
*pStreamDesc->pu32Sts = 0;
/* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20
* bits are reserved for stream number 18.2.33, resets SDnCTL except SRCT bit */
HDA_STREAM_REG(pThis, CTL, u8Strm) = 0x40000 | (HDA_STREAM_REG(pThis, CTL, u8Strm) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST));
/* ICH6 defines default values (0x77 for input and 0xBF for output descriptors) of FIFO size. 18.2.39 */
HDA_STREAM_REG(pThis, FIFOS, u8Strm) = u8Strm < 4 ? HDA_SDINFIFO_120B : HDA_SDONFIFO_192B;
HDA_STREAM_REG(pThis, FIFOW, u8Strm) = u8Strm < 4 ? HDA_SDFIFOW_8B : HDA_SDFIFOW_32B;
HDA_STREAM_REG(pThis, CBL, u8Strm) = 0;
HDA_STREAM_REG(pThis, LVI, u8Strm) = 0;
HDA_STREAM_REG(pThis, FMT, u8Strm) = 0;
HDA_STREAM_REG(pThis, BDPU, u8Strm) = 0;
HDA_STREAM_REG(pThis, BDPL, u8Strm) = 0;
LogFunc(("reset of stream (%d) finished\n", u8Strm));
}
/* Register access handlers. */
static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
*pu32Value = 0;
return VINF_SUCCESS;
}
static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
return VINF_SUCCESS;
}
/* U8 */
static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0);
return hdaRegReadU32(pThis, iReg, pu32Value);
}
static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
Assert((u32Value & 0xffffff00) == 0);
return hdaRegWriteU32(pThis, iReg, u32Value);
}
/* U16 */
static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0);
return hdaRegReadU32(pThis, iReg, pu32Value);
}
static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
Assert((u32Value & 0xffff0000) == 0);
return hdaRegWriteU32(pThis, iReg, u32Value);
}
/* U24 */
static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0);
return hdaRegReadU32(pThis, iReg, pu32Value);
}
static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
Assert((u32Value & 0xff000000) == 0);
return hdaRegWriteU32(pThis, iReg, u32Value);
}
/* U32 */
static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
*pu32Value = pThis->au32Regs[iRegMem] & g_aHdaRegMap[iReg].readable;
return VINF_SUCCESS;
}
static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
pThis->au32Regs[iRegMem] = (u32Value & g_aHdaRegMap[iReg].writable)
| (pThis->au32Regs[iRegMem] & ~g_aHdaRegMap[iReg].writable);
return VINF_SUCCESS;
}
static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, RST))
{
/* exit reset state */
HDA_REG(pThis, GCTL) |= HDA_REG_FIELD_FLAG_MASK(GCTL, RST);
pThis->fInReset = false;
}
else
{
#ifdef IN_RING3
/* enter reset state*/
if ( HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA)
|| HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA))
{
LogFunc(("HDA enters in reset with DMA(RIRB:%s, CORB:%s)\n",
HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) ? "on" : "off",
HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA) ? "on" : "off"));
}
hdaReset(pThis->CTX_SUFF(pDevIns));
HDA_REG(pThis, GCTL) &= ~HDA_REG_FIELD_FLAG_MASK(GCTL, RST);
pThis->fInReset = true;
#else
return VINF_IOM_R3_MMIO_WRITE;
#endif
}
if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, FSH))
{
/* Flush: GSTS:1 set, see 6.2.6*/
HDA_REG(pThis, GSTS) |= HDA_REG_FIELD_FLAG_MASK(GSTS, FSH); /* set the flush state */
/* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6)*/
}
return VINF_SUCCESS;
}
static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
uint32_t v = pThis->au32Regs[iRegMem];
uint32_t nv = u32Value & HDA_STATES_SCSF;
pThis->au32Regs[iRegMem] &= ~(v & nv); /* write of 1 clears corresponding bit */
return VINF_SUCCESS;
}
static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
uint32_t v = 0;
if ( HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RIRBOIS)
|| HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RINTFL)
|| HDA_REG_FLAG_VALUE(pThis, CORBSTS, CMEI)
|| HDA_REG(pThis, STATESTS))
v |= RT_BIT(30);
#define HDA_IS_STREAM_EVENT(pThis, stream) \
( (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)) \
|| (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)) \
|| (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)))
#define MARK_STREAM(pThis, stream, v) do { (v) |= HDA_IS_STREAM_EVENT((pThis),stream) ? RT_BIT((stream)) : 0; } while(0)
MARK_STREAM(pThis, 0, v);
MARK_STREAM(pThis, 1, v);
MARK_STREAM(pThis, 2, v);
MARK_STREAM(pThis, 3, v);
MARK_STREAM(pThis, 4, v);
MARK_STREAM(pThis, 5, v);
MARK_STREAM(pThis, 6, v);
MARK_STREAM(pThis, 7, v);
v |= v ? RT_BIT(31) : 0;
*pu32Value = v;
return VINF_SUCCESS;
}
static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
/* HDA spec (1a): 3.3.16 WALCLK counter ticks with 24Mhz bitclock rate. */
*pu32Value = (uint32_t)ASMMultU64ByU32DivByU32(PDMDevHlpTMTimeVirtGetNano(pThis->CTX_SUFF(pDevIns))
- pThis->u64BaseTS, 24, 1000);
return VINF_SUCCESS;
}
static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
if (u32Value & HDA_REG_FIELD_FLAG_MASK(CORBRP, RST))
HDA_REG(pThis, CORBRP) = 0;
#ifndef BIRD_THINKS_CORBRP_IS_MOSTLY_RO
else
return hdaRegWriteU8(pThis, iReg, u32Value);
#endif
return VINF_SUCCESS;
}
static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
#ifdef IN_RING3
int rc = hdaRegWriteU8(pThis, iReg, u32Value);
AssertRC(rc);
if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)
&& HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) != 0)
return hdaCORBCmdProcess(pThis);
return rc;
#else
return VINF_IOM_R3_MMIO_WRITE;
#endif
}
static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
uint32_t v = HDA_REG(pThis, CORBSTS);
HDA_REG(pThis, CORBSTS) &= ~(v & u32Value);
return VINF_SUCCESS;
}
static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
#ifdef IN_RING3
int rc;
rc = hdaRegWriteU16(pThis, iReg, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
if (HDA_REG(pThis, CORBWP) == HDA_REG(pThis, CORBRP))
return VINF_SUCCESS;
if (!HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA))
return VINF_SUCCESS;
rc = hdaCORBCmdProcess(pThis);
return rc;
#else
return VINF_IOM_R3_MMIO_WRITE;
#endif
}
static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
bool fRun = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
bool fReset = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST));
bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST));
if (fInReset)
{
/*
* Assert!!! Guest is resetting HDA's stream, we're expecting guest will mark stream as exit
* from reset
*/
Assert((!fReset));
LogFunc(("guest initiated exit of stream reset.\n"));
}
else if (fReset)
{
#ifdef IN_RING3
/*
* Assert!!! ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset.
*/
uint8_t u8Strm = 0;
PHDABDLEDESC pBdle = NULL;
HDASTREAMTRANSFERDESC StreamDesc;
Assert((!fInRun && !fRun));
switch (iReg)
{
case HDA_REG_SD0CTL:
u8Strm = 0;
pBdle = &pThis->StInBdle;
break;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
# ifdef VBOX_WITH_HDA_MIC_IN
case HDA_REG_SD2CTL:
u8Strm = 2;
pBdle = &pThis->StMicBdle;
break;
# endif
#endif
case HDA_REG_SD4CTL:
u8Strm = 4;
pBdle = &pThis->StOutBdle;
break;
default:
LogFunc(("changing SRST bit on non-attached stream\n"));
return hdaRegWriteU24(pThis, iReg, u32Value);
}
LogFunc(("guest initiated enter to stream reset.\n"));
hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc);
hdaStreamReset(pThis, pBdle, &StreamDesc, u8Strm);
#else
return VINF_IOM_R3_MMIO_WRITE;
#endif
}
else
{
#ifdef IN_RING3
/* we enter here to change DMA states only */
if ( (fInRun && !fRun)
|| (fRun && !fInRun))
{
Assert((!fReset && !fInReset));
switch (iReg)
{
case HDA_REG_SD0CTL:
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
pThis->paDrv[lun]->pConnector->pfnEnableIn(pThis->paDrv[lun]->pConnector,
pThis->paDrv[lun]->pStrmIn, fRun);
#else
AUD_set_active_in(pThis->pCodec->SwVoiceIn, fRun);
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
# ifdef VBOX_WITH_HDA_MIC_IN
case HDA_REG_SD2CTL:
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
pThis->paDrv[lun]->pConnector->pfnEnableIn(pThis->paDrv[lun]->pConnector,
pThis->paDrv[lun]->pStrmMic, fRun);
# endif
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
case HDA_REG_SD4CTL:
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
pThis->paDrv[lun]->pConnector->pfnEnableOut(pThis->paDrv[lun]->pConnector,
pThis->paDrv[lun]->pGstStrmOut, fRun);
#else
AUD_set_active_out(pThis->pCodec->SwVoiceOut, fRun);
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
default:
AssertMsgFailed(("Changing RUN bit on non-attached stream, register %RU32\n", iReg));
break;
}
}
#else /* !IN_RING3 */
return VINF_IOM_R3_MMIO_WRITE;
#endif
}
return hdaRegWriteU24(pThis, iReg, u32Value);
}
static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
uint32_t v = HDA_REG_IND(pThis, iReg);
v &= ~(u32Value & v);
HDA_REG_IND(pThis, iReg) = v;
hdaProcessInterrupt(pThis);
return VINF_SUCCESS;
}
static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
int rc = hdaRegWriteU32(pThis, iReg, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, VINF_SUCCESS);
return rc;
}
static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
switch (u32Value)
{
case HDA_SDFIFOW_8B:
case HDA_SDFIFOW_16B:
case HDA_SDFIFOW_32B:
return hdaRegWriteU16(pThis, iReg, u32Value);
default:
LogFunc(("Attempt to store unsupported value(%x) in SDFIFOW\n", u32Value));
return hdaRegWriteU16(pThis, iReg, HDA_SDFIFOW_32B);
}
return VINF_SUCCESS;
}
/**
* @note This method could be called for changing value on Output Streams
* only (ICH6 datasheet 18.2.39)
*/
static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
switch (iReg)
{
/* SDInFIFOS is RO, n=0-3 */
case HDA_REG_SD0FIFOS:
case HDA_REG_SD1FIFOS:
case HDA_REG_SD2FIFOS:
case HDA_REG_SD3FIFOS:
LogFunc(("Guest tries change value of FIFO size of input stream\n"));
break;
case HDA_REG_SD4FIFOS:
case HDA_REG_SD5FIFOS:
case HDA_REG_SD6FIFOS:
case HDA_REG_SD7FIFOS:
switch(u32Value)
{
case HDA_SDONFIFO_16B:
case HDA_SDONFIFO_32B:
case HDA_SDONFIFO_64B:
case HDA_SDONFIFO_128B:
case HDA_SDONFIFO_192B:
return hdaRegWriteU16(pThis, iReg, u32Value);
case HDA_SDONFIFO_256B:
LogFunc(("256-bit is unsupported, HDA is switched into 192-bit mode\n"));
default:
return hdaRegWriteU16(pThis, iReg, HDA_SDONFIFO_192B);
}
break;
default:
AssertMsgFailed(("Something weird happened with register lookup routine\n"));
}
return VINF_SUCCESS;
}
#ifdef IN_RING3
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
static int hdaSdFmtToAudSettings(uint32_t u32SdFmt, PPDMAUDIOSTREAMCFG pCfg)
#else
static int hdaSdFmtToAudSettings(uint32_t u32SdFmt, audsettings_t *pCfg)
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
{
AssertPtrReturn(pCfg, VERR_INVALID_POINTER);
# define EXTRACT_VALUE(v, mask, shift) ((v & ((mask) << (shift))) >> (shift))
int rc = VINF_SUCCESS;
uint32_t u32Hz = (u32SdFmt & HDA_SDFMT_BASE_RATE_SHIFT) ? 44100 : 48000;
uint32_t u32HzMult = 1;
uint32_t u32HzDiv = 1;
switch (EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT))
{
case 0: u32HzMult = 1; break;
case 1: u32HzMult = 2; break;
case 2: u32HzMult = 3; break;
case 3: u32HzMult = 4; break;
default:
LogFunc(("Unsupported multiplier %x\n",
EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT)));
rc = VERR_NOT_SUPPORTED;
break;
}
switch (EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT))
{
case 0: u32HzDiv = 1; break;
case 1: u32HzDiv = 2; break;
case 2: u32HzDiv = 3; break;
case 3: u32HzDiv = 4; break;
case 4: u32HzDiv = 5; break;
case 5: u32HzDiv = 6; break;
case 6: u32HzDiv = 7; break;
case 7: u32HzDiv = 8; break;
default:
LogFunc(("Unsupported divisor %x\n",
EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT)));
rc = VERR_NOT_SUPPORTED;
break;
}
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
PDMAUDIOFMT enmFmt = AUD_FMT_S16; /* Default to 16-bit signed. */
#else
audfmt_e enmFmt = AUD_FMT_S16; /* Default to 16-bit signed. */
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
switch (EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT))
{
case 0:
LogFunc(("%s requested 8-bit\n", __FUNCTION__));
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
enmFmt = AUD_FMT_S8;
#else
enmFmt = AUD_FMT_S8;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
case 1:
LogFunc(("%s requested 16-bit\n", __FUNCTION__));
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
enmFmt = AUD_FMT_S16;
#else
enmFmt = AUD_FMT_S16;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
case 2:
LogFunc(("%s requested 20-bit\n", __FUNCTION__));
break;
case 3:
LogFunc(("%s requested 24-bit\n", __FUNCTION__));
break;
case 4:
LogFunc(("%s requested 32-bit\n", __FUNCTION__));
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
enmFmt = AUD_FMT_S32;
#else
enmFmt = AUD_FMT_S32;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
default:
AssertMsgFailed(("Unsupported bits shift %x\n",
EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT)));
rc = VERR_NOT_SUPPORTED;
break;
}
if (RT_SUCCESS(rc))
{
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
pCfg->uHz = u32Hz * u32HzMult / u32HzDiv;
pCfg->cChannels = (u32SdFmt & 0xf) + 1;
pCfg->enmFormat = enmFmt;
pCfg->enmEndianness = PDMAUDIOHOSTENDIANESS;
#else
pCfg->nchannels = (u32SdFmt & 0xf) + 1;
pCfg->fmt = enmFmt;
pCfg->endianness = 0;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
}
# undef EXTRACT_VALUE
return rc;
}
#endif
static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
#ifdef IN_RING3
# ifdef VBOX_WITH_HDA_CODEC_EMU
/* No reason to reopen voice with same settings. */
if (u32Value == HDA_REG_IND(pThis, iReg))
return VINF_SUCCESS;
PDMAUDIOSTREAMCFG as;
int rc = hdaSdFmtToAudSettings(u32Value, &as);
if (RT_FAILURE(rc))
return rc;
switch (iReg)
{
case HDA_REG_SD0FMT:
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
rc = hdaCodecOpenStream(pThis->pCodec, PI_INDEX, &as);
break;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
# ifdef VBOX_WITH_HDA_MIC_IN
case HDA_REG_SD2FMT:
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
rc = hdaCodecOpenStream(pThis->pCodec, MC_INDEX, &as);
break;
# endif
#endif
default:
LogFunc(("Warning: Attempt to change format on register %d\n", iReg));
break;
}
/** @todo r=andy rc gets lost; needs fixing. */
return hdaRegWriteU16(pThis, iReg, u32Value);
# else
return hdaRegWriteU16(pThis, iReg, u32Value);
# endif
#else
return VINF_IOM_R3_MMIO_WRITE;
#endif
}
static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
int rc = hdaRegWriteU32(pThis, iReg, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, VINF_SUCCESS);
return rc;
}
static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
int rc = hdaRegWriteU32(pThis, iReg, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, VINF_SUCCESS);
return rc;
}
static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value)
{
int rc = VINF_SUCCESS;
/* regarding 3.4.3 we should mark IRS as busy in case CORB is active */
if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)
|| HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA))
HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */
rc = hdaRegReadU32(pThis, iReg, pu32Value);
return rc;
}
static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
int rc = VINF_SUCCESS;
/*
* If the guest set the ICB bit of IRS register, HDA should process the verb in IC register,
* write the response to IR register, and set the IRV (valid in case of success) bit of IRS register.
*/
if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, ICB)
&& !HDA_REG_FLAG_VALUE(pThis, IRS, ICB))
{
#ifdef IN_RING3
PFNHDACODECVERBPROCESSOR pfn = NULL;
uint64_t resp;
uint32_t cmd = HDA_REG(pThis, IC);
if (HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP))
{
/*
* 3.4.3 defines behavior of immediate Command status register.
*/
LogRel(("guest attempted process immediate verb (%x) with active CORB\n", cmd));
return rc;
}
HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */
LogFunc(("IC:%x\n", cmd));
# if 0
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
rc = pThis->pCodec[lun]->pfnLookup(pThis->pCodec[lun],
HDA_CODEC_CMD(cmd, lun),
&pfn);
if (RT_SUCCESS(rc))
{
AssertPtr(pfn);
rc = pfn(pThis->pCodec[lun],
HDA_CODEC_CMD(cmd, lun), &resp);
if (RT_FAILURE(rc))
break;
}
}
# else
rc = pThis->pCodec->pfnLookup(pThis->pCodec,
HDA_CODEC_CMD(cmd, 0 /* LUN */),
&pfn);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
rc = pfn(pThis->pCodec,
HDA_CODEC_CMD(cmd, 0 /* LUN */), &resp);
# endif
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
HDA_REG(pThis, IR) = (uint32_t)resp;
LogFunc(("IR:%x\n", HDA_REG(pThis, IR)));
HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, IRV); /* result is ready */
HDA_REG(pThis, IRS) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy is clear */
#else /* !IN_RING3 */
rc = VINF_IOM_R3_MMIO_WRITE;
#endif
return rc;
}
/*
* Once the guest read the response, it should clean the IRV bit of the IRS register.
*/
if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, IRV)
&& HDA_REG_FLAG_VALUE(pThis, IRS, IRV))
HDA_REG(pThis, IRS) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, IRV);
return rc;
}
static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
if (u32Value & HDA_REG_FIELD_FLAG_MASK(RIRBWP, RST))
{
HDA_REG(pThis, RIRBWP) = 0;
}
/* The remaining bits are O, see 6.2.22 */
return VINF_SUCCESS;
}
static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx;
int rc = hdaRegWriteU32(pThis, iReg, u32Value);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
switch(iReg)
{
case HDA_REG_CORBLBASE:
pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000);
pThis->u64CORBBase |= pThis->au32Regs[iRegMem];
break;
case HDA_REG_CORBUBASE:
pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF);
pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
break;
case HDA_REG_RIRBLBASE:
pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000);
pThis->u64RIRBBase |= pThis->au32Regs[iRegMem];
break;
case HDA_REG_RIRBUBASE:
pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF);
pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
break;
case HDA_REG_DPLBASE:
/** @todo: first bit has special meaning */
pThis->u64DPBase &= UINT64_C(0xFFFFFFFF00000000);
pThis->u64DPBase |= pThis->au32Regs[iRegMem];
break;
case HDA_REG_DPUBASE:
pThis->u64DPBase &= UINT64_C(0x00000000FFFFFFFF);
pThis->u64DPBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32);
break;
default:
AssertMsgFailed(("Invalid index"));
break;
}
LogFunc(("CORB base:%llx RIRB base: %llx DP base: %llx\n",
pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase));
return rc;
}
static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value)
{
uint8_t v = HDA_REG(pThis, RIRBSTS);
HDA_REG(pThis, RIRBSTS) &= ~(v & u32Value);
return hdaProcessInterrupt(pThis);
}
#ifdef IN_RING3
#ifdef LOG_ENABLED
static void dump_bd(PHDASTATE pThis, PHDABDLEDESC pBdle, uint64_t u64BaseDMA)
{
#if 0
uint64_t addr;
uint32_t len;
uint32_t ioc;
uint8_t bdle[16];
uint32_t counter;
uint32_t i;
uint32_t sum = 0;
Assert(pBdle && pBdle->u32BdleMaxCvi);
for (i = 0; i <= pBdle->u32BdleMaxCvi; ++i)
{
PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i*16, bdle, 16);
addr = *(uint64_t *)bdle;
len = *(uint32_t *)&bdle[8];
ioc = *(uint32_t *)&bdle[12];
LogFunc(("%s bdle[%d] a:%llx, len:%d, ioc:%d\n", (i == pBdle->u32BdleCvi? "[C]": " "), i, addr, len, ioc & 0x1));
sum += len;
}
LogFunc(("sum: %d\n", sum));
for (i = 0; i < 8; ++i)
{
PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + i*8, &counter, sizeof(&counter));
LogFunc(("%s stream[%d] counter=%x\n", i == SDCTL_NUM(pThis, 4) || i == SDCTL_NUM(pThis, 0)? "[C]": " ",
i , counter));
}
#endif
}
#endif
static void hdaFetchBdle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc)
{
uint8_t bdle[16];
Assert(( pStreamDesc->u64BaseDMA
&& pBdle
&& pBdle->u32BdleMaxCvi));
PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pStreamDesc->u64BaseDMA + pBdle->u32BdleCvi*16, bdle, 16);
pBdle->u64BdleCviAddr = *(uint64_t *)bdle;
pBdle->u32BdleCviLen = *(uint32_t *)&bdle[8];
pBdle->fBdleCviIoc = (*(uint32_t *)&bdle[12]) & 0x1;
#ifdef LOG_ENABLED
dump_bd(pThis, pBdle, pStreamDesc->u64BaseDMA);
#endif
}
DECLINLINE(uint32_t) hdaCalculateTransferBufferLength(PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc,
uint32_t u32SoundBackendBufferBytesAvail, uint32_t u32CblLimit)
{
uint32_t cb2Copy;
/*
* Number of bytes depends on the current position in buffer (u32BdleCviLen-u32BdleCviPos)
*/
Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos)); /* sanity */
cb2Copy = pBdle->u32BdleCviLen - pBdle->u32BdleCviPos;
/*
* we may increase the counter in range of [0, FIFOS + 1]
*/
cb2Copy = RT_MIN(cb2Copy, pStreamDesc->u32Fifos + 1);
Assert((u32SoundBackendBufferBytesAvail > 0));
/* sanity check to avoid overriding the backend audio buffer */
cb2Copy = RT_MIN(cb2Copy, u32SoundBackendBufferBytesAvail);
cb2Copy = RT_MIN(cb2Copy, u32CblLimit);
if (cb2Copy <= pBdle->cbUnderFifoW)
return 0;
cb2Copy -= pBdle->cbUnderFifoW; /* forcibly reserve the amount of unreported bytes to copy */
return cb2Copy;
}
DECLINLINE(void) hdaBackendWriteTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied,
uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity)
{
LogFunc(("cbArranged2Copy: %d, cbCopied: %d, pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n",
cbArranged2Copy, cbCopied, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0));
Assert((cbCopied));
AssertPtr(pu32DMACursor);
Assert((pu32BackendBufferCapacity && *pu32BackendBufferCapacity));
/* Assertion!!! Fewer than cbUnderFifoW bytes were copied.
* Probably we need to move the buffer, but it is rather hard to imagine a situation
* where it might happen.
*/
AssertMsg((cbCopied == pBdle->cbUnderFifoW + cbArranged2Copy), /* we assume that we write the entire buffer including unreported bytes */
("cbCopied=%RU32 != pBdle->cbUnderFifoW=%RU32 + cbArranged2Copy=%RU32\n",
cbCopied, pBdle->cbUnderFifoW, cbArranged2Copy));
if ( pBdle->cbUnderFifoW
&& pBdle->cbUnderFifoW <= cbCopied)
{
LogFunc(("CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n",
pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
}
pBdle->cbUnderFifoW -= RT_MIN(pBdle->cbUnderFifoW, cbCopied);
Assert((!pBdle->cbUnderFifoW)); /* Assert!!! Incorrect assumption */
/* We always increment the position of DMA buffer counter because we're always reading into an intermediate buffer */
pBdle->u32BdleCviPos += cbArranged2Copy;
Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos && *pu32BackendBufferCapacity >= cbCopied)); /* sanity */
/* We report all bytes (including previously unreported bytes) */
*pu32DMACursor += cbCopied;
/* Decrease the backend counter by the number of bytes we copied to the backend */
*pu32BackendBufferCapacity -= cbCopied;
LogFunc(("CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n",
pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, *pu32DMACursor, *pu32BackendBufferCapacity));
}
DECLINLINE(void) hdaBackendReadTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied,
uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity)
{
Assert((cbCopied, cbArranged2Copy));
*pu32BackendBufferCapacity -= cbCopied;
pBdle->u32BdleCviPos += cbCopied;
LogFunc(("CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
*pu32DMACursor += cbCopied + pBdle->cbUnderFifoW;
pBdle->cbUnderFifoW = 0;
LogFunc(("CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n",
pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0));
}
DECLINLINE(void) hdaBackendTransferUnreported(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc,
uint32_t cbCopied, uint32_t *pu32BackendBufferCapacity)
{
LogFunc(("CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
pBdle->u32BdleCviPos += cbCopied;
pBdle->cbUnderFifoW += cbCopied;
/* In case of a read transaction we're always copying from the backend buffer */
if (pu32BackendBufferCapacity)
*pu32BackendBufferCapacity -= cbCopied;
LogFunc(("CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
Assert((pBdle->cbUnderFifoW <= hdaFifoWToSz(pThis, pStreamDesc)));
}
DECLINLINE(bool) hdaIsTransferCountersOverlapped(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc)
{
bool fOnBufferEdge = ( *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl
|| pBdle->u32BdleCviPos == pBdle->u32BdleCviLen);
Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl));
if (*pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl)
*pStreamDesc->pu32Lpib -= pStreamDesc->u32Cbl;
hdaUpdatePosBuf(pThis, pStreamDesc);
/* don't touch BdleCvi counter on uninitialized descriptor */
if ( pBdle->u32BdleCviPos
&& pBdle->u32BdleCviPos == pBdle->u32BdleCviLen)
{
pBdle->u32BdleCviPos = 0;
pBdle->u32BdleCvi++;
if (pBdle->u32BdleCvi == pBdle->u32BdleMaxCvi + 1)
pBdle->u32BdleCvi = 0;
}
return fOnBufferEdge;
}
DECLINLINE(void) hdaStreamCounterUpdate(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc,
uint32_t cbInc)
{
/*
* if we're below the FIFO Watermark, it's expected that HDA doesn't fetch anything.
* (ICH6 datasheet 18.2.38)
*/
if (!pBdle->cbUnderFifoW)
{
*pStreamDesc->pu32Lpib += cbInc;
/*
* Assert. The buffer counters should never overlap.
*/
Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl));
hdaUpdatePosBuf(pThis, pStreamDesc);
}
}
static bool hdaDoNextTransferCycle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc)
{
bool fDoNextTransferLoop = true;
if ( pBdle->u32BdleCviPos == pBdle->u32BdleCviLen
|| *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl)
{
if ( !pBdle->cbUnderFifoW
&& pBdle->fBdleCviIoc)
{
/**
* @todo - more carefully investigate BCIS flag.
* Speech synthesis works fine on Mac Guest if this bit isn't set
* but in general sound quality gets worse.
*/
*pStreamDesc->pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS);
/*
* we should generate the interrupt if ICE bit of SDCTL register is set.
*/
if (pStreamDesc->u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE))
hdaProcessInterrupt(pThis);
}
fDoNextTransferLoop = false;
}
return fDoNextTransferLoop;
}
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
/**
* hdaReadAudio - copies samples from audio backend to DMA.
* Note: This function writes to the DMA buffer immediately,
* but "reports bytes" when all conditions are met (FIFOW).
*/
static uint32_t hdaReadAudio(PHDASTATE pThis, PAUDMIXSINK pSink, PHDABDLEDESC pBdle,
PHDASTREAMTRANSFERDESC pStreamDesc,
uint32_t *pu32Avail, bool *fStop, uint32_t u32CblLimit)
{
uint32_t cbTransferred = 0;
LogFlowFunc(("CVI(pos:%d, len:%d)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
uint32_t cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pu32Avail, u32CblLimit);
if (!cb2Copy)
{
/* If we enter here we can't report "unreported bits". */
*fStop = true;
}
else
{
uint32_t cbRead = 0;
int rc = audioMixerProcessSinkIn(pSink, pBdle->au8HdaBuffer, cb2Copy, &cbRead);
if (RT_SUCCESS(rc))
{
/*
* Write the HDA DMA buffer.
*/
PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns),
pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos,
pBdle->au8HdaBuffer, cbRead);
/* Don't see any reason why cb2Copy would differ from cbRead. */
Assert((cbRead == cb2Copy && (*pu32Avail) >= cb2Copy)); /* sanity */
if (pBdle->cbUnderFifoW + cbRead > hdaFifoWToSz(pThis, 0))
hdaBackendReadTransferReported(pBdle, cb2Copy, cbRead, &cbTransferred, pu32Avail);
else
{
hdaBackendTransferUnreported(pThis, pBdle, pStreamDesc, cbRead, pu32Avail);
*fStop = true;
}
}
else
*fStop = true;
}
Assert((cbTransferred <= (SDFIFOS(pThis, 0) + 1)));
LogFunc(("CVI(pos:%RU32, len:%RU32), cbTransferred: %RU32\n",
pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransferred));
return cbTransferred;
}
#else
static uint32_t hdaReadAudio(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t *pu32Avail, bool *fStop, uint32_t u32CblLimit)
{
PHDABDLEDESC pBdle = &pThis->StInBdle;
uint32_t cbTransferred = 0;
uint32_t cb2Copy = 0;
uint32_t cbBackendCopy = 0;
Log(("hda:ra: CVI(pos:%d, len:%d)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pu32Avail, u32CblLimit);
if (!cb2Copy)
/* if we enter here we can't report "unreported bits" */
*fStop = true;
else
{
/*
* read from backend input line to the last unreported position or at the begining.
*/
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
//cbBackendCopy = pThis->pDrv[0]->pfnRead(pThis->pDrv[0], pThis->pCodec[0]->SwVoiceIn, pBdle->au8HdaBuffer, cb2Copy);
//cbBackendCopy = pThis->pDrv[0]->pfnRead(pThis->pDrv[0], pThis->pCodec[1]->SwVoiceIn, pBdle->au8HdaBuffer, cb2Copy);
#else
cbBackendCopy = AUD_read(pThis->pCodec->SwVoiceIn, pBdle->au8HdaBuffer, cb2Copy);
#endif
/*
* write the HDA DMA buffer
*/
PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos, pBdle->au8HdaBuffer, cbBackendCopy);
/* Don't see any reason why cb2Copy would differ from cbBackendCopy */
Assert((cbBackendCopy == cb2Copy && (*pu32Avail) >= cb2Copy)); /* sanity */
if (pBdle->cbUnderFifoW + cbBackendCopy > hdaFifoWToSz(pThis, 0))
hdaBackendReadTransferReported(pBdle, cb2Copy, cbBackendCopy, &cbTransferred, pu32Avail);
else
{
hdaBackendTransferUnreported(pThis, pBdle, pStreamDesc, cbBackendCopy, pu32Avail);
*fStop = true;
}
}
Assert((cbTransferred <= (SDFIFOS(pThis, 0) + 1)));
Log(("hda:ra: CVI(pos:%d, len:%d) cbTransferred: %d\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransferred));
return cbTransferred;
}
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
static uint32_t hdaWriteAudio(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t *pu32Avail, bool *fStop, uint32_t u32CblLimit)
{
PHDABDLEDESC pBdle = &pThis->StOutBdle;
uint32_t cbTransferred = 0;
uint32_t cbWrittenMax = 0; /* local byte counter, how many bytes copied to backend */
LogFunc(("CVI(cvi:%RU32, pos:%RU32, len:%RU32)\n", pBdle->u32BdleCvi, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen));
/* Local byte counter (on local buffer). */
uint32_t cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pu32Avail, u32CblLimit);
/*
* Copy from DMA to the corresponding hdaBuffer (if there are any bytes from the
* previous unreported transfer we write at offset 'pBdle->cbUnderFifoW').
*/
if (!cb2Copy)
*fStop = true;
else
{
PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns),
pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos,
pBdle->au8HdaBuffer + pBdle->cbUnderFifoW, cb2Copy);
/*
* Write to audio backend. We should ensure that we have enough bytes to copy to the backend.
*/
if (cb2Copy + pBdle->cbUnderFifoW >= hdaFifoWToSz(pThis, pStreamDesc))
{
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
int rc;
uint32_t cbWritten;
# ifdef DEBUG_LUN
uint8_t lun = DEBUG_LUN_NUM;
# else
for (uint8_t lun = 0; lun < 1; lun++)
{
# endif
rc = pThis->paDrv[lun]->pConnector->pfnWrite(pThis->paDrv[lun]->pConnector, pThis->paDrv[lun]->pGstStrmOut,
pBdle->au8HdaBuffer, cb2Copy + pBdle->cbUnderFifoW,
&cbWritten);
# ifndef DEBUG_LUN
if (RT_FAILURE(rc))
continue;
# endif
cbWrittenMax = RT_MAX(cbWrittenMax, cbWritten);
# ifndef DEBUG_LUN
}
# endif
#else
cbWrittenMax = AUD_write (pThis->pCodec->SwVoiceOut, pBdle->au8HdaBuffer, cb2Copy + pBdle->cbUnderFifoW);
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
hdaBackendWriteTransferReported(pBdle, cb2Copy, cbWrittenMax, &cbTransferred, pu32Avail);
}
else
{
/* Not enough bytes to be processed and reported, we'll try our luck next time around. */
hdaBackendTransferUnreported(pThis, pBdle, pStreamDesc, cb2Copy, NULL);
*fStop = true;
}
}
Assert(cbTransferred <= SDFIFOS(pThis, 4) + 1);
LogFunc(("CVI(pos:%RU32, len:%RU32, cbTransferred:%RU32)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransferred));
return cbTransferred;
}
/**
* @interface_method_impl{HDACODEC,pfnReset}
*/
DECLCALLBACK(int) hdaCodecReset(PHDACODEC pCodec)
{
PHDASTATE pThis = pCodec->pHDAState;
NOREF(pThis);
return VINF_SUCCESS;
}
DECLINLINE(void) hdaInitTransferDescriptor(PHDASTATE pThis, PHDABDLEDESC pBdle, uint8_t u8Strm,
PHDASTREAMTRANSFERDESC pStreamDesc)
{
Assert(pThis); Assert(pBdle); Assert(pStreamDesc); Assert(u8Strm <= 7);
RT_BZERO(pStreamDesc, sizeof(HDASTREAMTRANSFERDESC));
pStreamDesc->u8Strm = u8Strm;
pStreamDesc->u32Ctl = HDA_STREAM_REG(pThis, CTL, u8Strm);
pStreamDesc->u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, u8Strm),
HDA_STREAM_REG(pThis, BDPU, u8Strm));
pStreamDesc->pu32Lpib = &HDA_STREAM_REG(pThis, LPIB, u8Strm);
pStreamDesc->pu32Sts = &HDA_STREAM_REG(pThis, STS, u8Strm);
pStreamDesc->u32Cbl = HDA_STREAM_REG(pThis, CBL, u8Strm);
pStreamDesc->u32Fifos = HDA_STREAM_REG(pThis, FIFOS, u8Strm);
pBdle->u32BdleMaxCvi = HDA_STREAM_REG(pThis, LVI, u8Strm);
#ifdef LOG_ENABLED
if ( pBdle
&& pBdle->u32BdleMaxCvi)
{
LogFunc(("Initialization of transfer descriptor:\n"));
dump_bd(pThis, pBdle, pStreamDesc->u64BaseDMA);
}
#endif
}
static DECLCALLBACK(void) hdaCloseIn(PHDASTATE pThis, PDMAUDIORECSOURCE enmRecSource)
{
NOREF(pThis);
NOREF(enmRecSource);
LogFlowFuncEnter();
}
static DECLCALLBACK(void) hdaCloseOut(PHDASTATE pThis)
{
NOREF(pThis);
LogFlowFuncEnter();
}
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
# ifdef VBOX_WITH_HDA_MIC_IN
static void hdaMicInputCallback(void *pvDrv, uint32_t cbAvail)
{
PHDADRIVER pThis = (PHDADRIVER)pvDrv;
hdaTransfer(pThis, MC_INDEX, cbAvail);
}
# endif /* VBOX_WITH_HDA_MIC_IN */
static void hdaLineInputCallback(void *pvDrv, uint32_t cbAvail)
{
PHDADRIVER pThis = (PHDADRIVER)pvDrv;
hdaTransfer(pThis, PI_INDEX, cbAvail);
}
static void hdaOutputCallback(void *pvDrv, uint32_t cbFree)
{
PHDADRIVER pThis = (PHDADRIVER)pvDrv;
hdaTransfer(pThis, PO_INDEX, cbFree);
}
static DECLCALLBACK(int) hdaOpenIn(PHDASTATE pThis,
const char *pszName, PDMAUDIORECSOURCE enmRecSource,
PPDMAUDIOSTREAMCFG pCfg)
{
PDMAUDIOCALLBACK_FN pfnCallback;
PAUDMIXSINK pSink;
switch (enmRecSource)
{
# ifdef VBOX_WITH_HDA_MIC_IN
case PDMAUDIORECSOURCE_MIC:
pfnCallback = hdaMicInputCallback;
pSink = pThis->pSinkMicIn;
break;
# endif
case PDMAUDIORECSOURCE_LINE_IN:
pfnCallback = hdaLineInputCallback;
pSink = pThis->pSinkLineIn;
break;
default:
AssertMsgFailed(("Audio source %ld not supported\n", enmRecSource));
return VERR_NOT_SUPPORTED;
}
int rc;
char *pszDesc;
Assert(pThis->cLUNs);
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
if (RTStrAPrintf(&pszDesc, "[LUN#%RU8] %s", lun, pszName) <= 0)
{
rc = VERR_NO_MEMORY;
break;
}
PHDADRIVER pDrv = pThis->paDrv[lun];
rc = pDrv->pConnector->pfnOpenIn(pDrv->pConnector,
pszDesc, enmRecSource,
pfnCallback /* fnCallback */, pDrv /* pvCallback */,
pCfg,
&pDrv->pStrmIn);
LogFlowFunc(("LUN#%RU8: Opened input \"%s\", with rc=%Rrc\n", lun, pszDesc, rc));
if (rc == VINF_SUCCESS) /* Note: Could return VWRN_ALREADY_EXISTS. */
{
audioMixerRemoveStream(pSink, pDrv->phStrmIn);
rc = audioMixerAddStreamIn(pSink,
pDrv->pConnector, pDrv->pStrmIn,
0 /* uFlags */, &pDrv->phStrmIn);
}
RTStrFree(pszDesc);
}
LogFlowFuncLeaveRC(rc);
return rc;
}
static DECLCALLBACK(int) hdaOpenOut(PHDASTATE pThis,
const char *pszName, PPDMAUDIOSTREAMCFG pCfg)
{
int rc;
Assert(pThis->cLUNs);
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
PHDADRIVER pDrv = pThis->paDrv[lun];
rc = pDrv->pConnector->pfnOpenOut(pDrv->pConnector, pszName,
hdaOutputCallback /* fnCallback */, pDrv /* pvCallback */,
pCfg,
&pDrv->pGstStrmOut);
}
LogFlowFuncLeaveRC(rc);
return rc;
}
static DECLCALLBACK(int) hdaSetVolume(PHDASTATE pThis,
bool fMute, uint8_t uVolLeft, uint8_t uVolRight)
{
int rc;
Assert(pThis->cLUNs);
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
PHDADRIVER pDrv = pThis->paDrv[lun];
rc = pDrv->pConnector->pfnSetVolume(pDrv->pConnector,
fMute, uVolLeft, uVolRight);
}
LogFlowFuncLeaveRC(rc);
return rc;
}
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
static DECLCALLBACK(void) hdaTransfer(PHDADRIVER pDrv,
ENMSOUNDSOURCE enmSrc, uint32_t cbAvail)
{
AssertPtrReturnVoid(pDrv);
PHDASTATE pThis = pDrv->pHDAState;
LogFlowFunc(("pDrv=%p (LUN #%RU8), enmSrc=%ld, cbAvail=%RU32\n",
pDrv, pDrv->uLUN, enmSrc, cbAvail));
#else
static DECLCALLBACK(void) hdaTransfer(PHDACODEC pCodec, ENMSOUNDSOURCE enmSrc, int cbAvail)
{
AssertPtrReturnVoid(pCodec);
PHDASTATE pThis = pCodec->pHDAState;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
uint8_t u8Strm;
PHDABDLEDESC pBdle;
switch (enmSrc)
{
case PI_INDEX:
{
u8Strm = 0;
pBdle = &pThis->StInBdle;
break;
}
#ifdef VBOX_WITH_HDA_MIC_IN
case MC_INDEX:
{
u8Strm = 2;
pBdle = &pThis->StMicBdle;
break;
}
#endif
case PO_INDEX:
{
u8Strm = 4;
pBdle = &pThis->StOutBdle;
break;
}
default:
AssertMsgFailed(("Unknown source index %ld\n", enmSrc));
return;
}
HDASTREAMTRANSFERDESC StreamDesc;
hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc);
bool fStop = false;
while (cbAvail && !fStop)
{
Assert( (StreamDesc.u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN))
&& cbAvail
&& StreamDesc.u64BaseDMA);
/* Fetch the Buffer Descriptor Entry (BDE). */
if (hdaIsTransferCountersOverlapped(pThis, pBdle, &StreamDesc))
hdaFetchBdle(pThis, pBdle, &StreamDesc);
*StreamDesc.pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY);
Assert((StreamDesc.u32Cbl >= (*StreamDesc.pu32Lpib))); /* sanity */
uint32_t u32CblLimit = StreamDesc.u32Cbl - (*StreamDesc.pu32Lpib);
Assert((u32CblLimit > hdaFifoWToSz(pThis, &StreamDesc)));
LogFunc(("CBL=%RU32, LPIB=%RU32\n", StreamDesc.u32Cbl, *StreamDesc.pu32Lpib));
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
PAUDMIXSINK pSink;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
uint32_t cb;
switch (enmSrc)
{
case PI_INDEX:
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
pSink = pThis->pSinkLineIn;
cb = hdaReadAudio(pThis, pSink, pBdle, &StreamDesc, &cbAvail, &fStop, u32CblLimit);
#else
cb = hdaReadAudio(pThis, &StreamDesc, (uint32_t *)&cbAvail, &fStop, u32CblLimit);
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
case PO_INDEX:
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
cb = hdaWriteAudio(pThis, &StreamDesc, &cbAvail, &fStop, u32CblLimit);
#else
cb = hdaWriteAudio(pThis, &StreamDesc, (uint32_t *)&cbAvail, &fStop, u32CblLimit);
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
break;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
# ifdef VBOX_WITH_HDA_MIC_IN
case MC_INDEX:
pSink = pThis->pSinkMicIn;
cb = hdaReadAudio(pThis, pSink, pBdle, &StreamDesc, &cbAvail, &fStop, u32CblLimit);
break;
# endif
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
default:
cb = 0;
fStop = true;
AssertMsgFailedReturnVoid(("Unsupported source index %d\n", enmSrc));
break;
}
Assert(cb <= StreamDesc.u32Fifos + 1);
*StreamDesc.pu32Sts &= ~HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY);
/* Process end of buffer condition. */
hdaStreamCounterUpdate(pThis, pBdle, &StreamDesc, cb);
fStop = !fStop ? !hdaDoNextTransferCycle(pThis, pBdle, &StreamDesc) : fStop;
}
}
#endif /* IN_RING3 */
/* MMIO callbacks */
/**
* @callback_method_impl{FNIOMMMIOREAD, Looks up and calls the appropriate handler.}
*
* @note During implementation, we discovered so-called "forgotten" or "hole"
* registers whose description is not listed in the RPM, datasheet, or
* spec.
*/
PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
int rc;
/*
* Look up and log.
*/
uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
int idxRegDsc = hdaRegLookup(pThis, offReg); /* Register descriptor index. */
#ifdef LOG_ENABLED
unsigned const cbLog = cb;
uint32_t offRegLog = offReg;
#endif
LogFunc(("offReg=%#x cb=%#x\n", offReg, cb));
#define NEW_READ_CODE
#ifdef NEW_READ_CODE
Assert(cb == 4); Assert((offReg & 3) == 0);
if (pThis->fInReset && idxRegDsc != HDA_REG_GCTL)
LogFunc(("access to registers except GCTL is blocked while reset\n"));
if (idxRegDsc == -1)
LogRel(("Invalid read access @0x%x(of bytes:%d)\n", offReg, cb));
if (idxRegDsc != -1)
{
/* ASSUMES gapless DWORD at end of map. */
if (g_aHdaRegMap[idxRegDsc].size == 4)
{
/*
* Straight forward DWORD access.
*/
rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, (uint32_t *)pv);
LogFunc(("read %s => %x (%Rrc)\n", g_aHdaRegMap[idxRegDsc].abbrev, *(uint32_t *)pv, rc));
}
else
{
/*
* Multi register read (unless there are trailing gaps).
* ASSUMES that only DWORD reads have sideeffects.
*/
uint32_t u32Value = 0;
unsigned cbLeft = 4;
do
{
uint32_t const cbReg = g_aHdaRegMap[idxRegDsc].size;
uint32_t u32Tmp = 0;
rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Tmp);
LogFunc(("read %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxRegDsc].abbrev, cbReg, u32Tmp, rc));
if (rc != VINF_SUCCESS)
break;
u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8);
cbLeft -= cbReg;
offReg += cbReg;
idxRegDsc++;
} while (cbLeft > 0 && g_aHdaRegMap[idxRegDsc].offset == offReg);
if (rc == VINF_SUCCESS)
*(uint32_t *)pv = u32Value;
else
Assert(!IOM_SUCCESS(rc));
}
}
else
{
rc = VINF_IOM_MMIO_UNUSED_FF;
LogFunc(("hole at %x is accessed for read\n", offReg));
}
#else
if (idxRegDsc != -1)
{
/** @todo r=bird: Accesses crossing register boundraries aren't handled
* right from what I can tell? If they are, please explain
* what the rules are. */
uint32_t mask = 0;
uint32_t shift = (g_aHdaRegMap[idxRegDsc].offset - offReg) % sizeof(uint32_t) * 8;
uint32_t u32Value = 0;
switch(cb)
{
case 1: mask = 0x000000ff; break;
case 2: mask = 0x0000ffff; break;
case 4:
/* 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word */
case 8:
mask = 0xffffffff;
cb = 4;
break;
}
#if 0
/* Cross-register access. Mac guest hits this assert doing assumption 4 byte access to 3 byte registers e.g. {I,O}SDnCTL
*/
//Assert((cb <= g_aHdaRegMap[idxRegDsc].size - (offReg - g_aHdaRegMap[idxRegDsc].offset)));
if (cb > g_aHdaRegMap[idxRegDsc].size - (offReg - g_aHdaRegMap[idxRegDsc].offset))
{
int off = cb - (g_aHdaRegMap[idxRegDsc].size - (offReg - g_aHdaRegMap[idxRegDsc].offset));
rc = hdaMMIORead(pDevIns, pvUser, GCPhysAddr + cb - off, (char *)pv + cb - off, off);
if (RT_FAILURE(rc))
AssertRCReturn (rc, rc);
}
//Assert(((offReg - g_aHdaRegMap[idxRegDsc].offset) == 0));
#endif
mask <<= shift;
rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Value);
*(uint32_t *)pv |= (u32Value & mask);
LogFunc(("read %s[%x/%x]\n", g_aHdaRegMap[idxRegDsc].abbrev, u32Value, *(uint32_t *)pv));
}
else
{
*(uint32_t *)pv = 0xFF;
LogFunc(("hole at %x is accessed for read\n", offReg));
rc = VINF_SUCCESS;
}
#endif
/*
* Log the outcome.
*/
#ifdef LOG_ENABLED
if (cbLog == 4)
LogFunc(("@%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc));
else if (cbLog == 2)
LogFunc(("@%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc));
else if (cbLog == 1)
LogFunc(("@%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc));
#endif
return rc;
}
DECLINLINE(int) hdaWriteReg(PHDASTATE pThis, int idxRegDsc, uint32_t u32Value, char const *pszLog)
{
if (pThis->fInReset && idxRegDsc != HDA_REG_GCTL)
LogFunc(("access to registers except GCTL is blocked while reset\n")); /** @todo where is this enforced? */
uint32_t idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
#ifdef LOG_ENABLED
uint32_t const u32CurValue = pThis->au32Regs[idxRegMem];
#endif
int rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32Value);
LogFunc(("write %#x -> %s[%db]; %x => %x%s\n", u32Value, g_aHdaRegMap[idxRegDsc].abbrev,
g_aHdaRegMap[idxRegDsc].size, u32CurValue, pThis->au32Regs[idxRegMem], pszLog));
return rc;
}
/**
* @callback_method_impl{FNIOMMMIOWRITE, Looks up and calls the appropriate handler.}
*/
PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
int rc;
/*
* The behavior of accesses that aren't aligned on natural boundraries is
* undefined. Just reject them outright.
*/
/** @todo IOM could check this, it could also split the 8 byte accesses for us. */
Assert(cb == 1 || cb == 2 || cb == 4 || cb == 8);
if (GCPhysAddr & (cb - 1))
return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: GCPhysAddr=%RGp cb=%u\n", GCPhysAddr, cb);
/*
* Look up and log the access.
*/
uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr;
int idxRegDsc = hdaRegLookup(pThis, offReg);
uint32_t idxRegMem = idxRegDsc != -1 ? g_aHdaRegMap[idxRegDsc].mem_idx : UINT32_MAX;
uint64_t u64Value;
if (cb == 4) u64Value = *(uint32_t const *)pv;
else if (cb == 2) u64Value = *(uint16_t const *)pv;
else if (cb == 1) u64Value = *(uint8_t const *)pv;
else if (cb == 8) u64Value = *(uint64_t const *)pv;
else
{
u64Value = 0; /* shut up gcc. */
AssertReleaseMsgFailed(("%d\n", cb));
}
#ifdef LOG_ENABLED
uint32_t const u32LogOldValue = idxRegDsc >= 0 ? pThis->au32Regs[idxRegMem] : UINT32_MAX;
uint32_t const offRegLog = offReg;
int const idxRegLog = idxRegMem;
if (idxRegDsc == -1)
LogFunc(("@%#05x u32=%#010x cb=%d\n", offReg, *(uint32_t const *)pv, cb));
else if (cb == 4)
LogFunc(("@%#05x u32=%#010x %s\n", offReg, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
else if (cb == 2)
LogFunc(("@%#05x u16=%#06x (%#010x) %s\n", offReg, *(uint16_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
else if (cb == 1)
LogFunc(("@%#05x u8=%#04x (%#010x) %s\n", offReg, *(uint8_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev));
if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size != cb)
LogFunc(("size=%d != cb=%d!!\n", g_aHdaRegMap[idxRegDsc].size, cb));
#endif
#define NEW_WRITE_CODE
#ifdef NEW_WRITE_CODE
/*
* Try for a direct hit first.
*/
if (idxRegDsc != -1 && g_aHdaRegMap[idxRegDsc].size == cb)
{
rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "");
LogFunc(("@%#05x %#x -> %#x\n", offRegLog, u32LogOldValue,
idxRegLog != -1 ? pThis->au32Regs[idxRegLog] : UINT32_MAX));
}
/*
* Partial or multiple register access, loop thru the requested memory.
*/
else
{
/* If it's an access beyond the start of the register, shift the input
value and fill in missing bits. Natural alignment rules means we
will only see 1 or 2 byte accesses of this kind, so no risk of
shifting out input values. */
if (idxRegDsc == -1 && (idxRegDsc = hdaRegLookupWithin(pThis, offReg)) != -1)
{
uint32_t const cbBefore = offReg - g_aHdaRegMap[idxRegDsc].offset; Assert(cbBefore > 0 && cbBefore < 4);
offReg -= cbBefore;
idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
u64Value <<= cbBefore * 8;
u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbBefore];
LogFunc(("Within register, supplied %u leading bits: %#llx -> %#llx ...\n",
cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value));
}
/* Loop thru the write area, it may cover multiple registers. */
rc = VINF_SUCCESS;
for (;;)
{
uint32_t cbReg;
if (idxRegDsc != -1)
{
idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx;
cbReg = g_aHdaRegMap[idxRegDsc].size;
if (cb < cbReg)
{
u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbReg] & ~g_afMasks[cb];
LogFunc(("Supplying missing bits (%#x): %#llx -> %#llx ...\n",
g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value));
}
uint32_t u32LogOldVal = pThis->au32Regs[idxRegMem];
rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "*");
LogFunc(("@%#05x %#x -> %#x\n", offRegLog, u32LogOldVal,
pThis->au32Regs[idxRegMem]));
}
else
{
LogRel(("Invalid write access @0x%x!\n", offReg));
cbReg = 1;
}
if (rc != VINF_SUCCESS)
break;
if (cbReg >= cb)
break;
/* advance */
offReg += cbReg;
cb -= cbReg;
u64Value >>= cbReg * 8;
if (idxRegDsc == -1)
idxRegDsc = hdaRegLookup(pThis, offReg);
else
{
idxRegDsc++;
if ( (unsigned)idxRegDsc >= RT_ELEMENTS(g_aHdaRegMap)
|| g_aHdaRegMap[idxRegDsc].offset != offReg)
idxRegDsc = -1;
}
}
}
#else
if (idxRegDsc != -1)
{
/** @todo r=bird: This looks like code for handling unaligned register
* accesses. If it isn't, then add a comment explaining what you're
* trying to do here. OTOH, if it is then it has the following
* issues:
* -# You're calculating the wrong new value for the register.
* -# You're not handling cross register accesses. Imagine a
* 4-byte write starting at CORBCTL, or a 8-byte write.
*
* PS! consider dropping the 'offset' argument to pfnWrite/pfnRead as
* nobody seems to be using it and it just adds complexity when reading
* the code.
*
*/
uint32_t u32CurValue = pThis->au32Regs[idxRegMem];
uint32_t u32NewValue;
uint32_t mask;
switch (cb)
{
case 1:
u32NewValue = *(uint8_t const *)pv;
mask = 0xff;
break;
case 2:
u32NewValue = *(uint16_t const *)pv;
mask = 0xffff;
break;
case 4:
case 8:
/* 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word */
u32NewValue = *(uint32_t const *)pv;
mask = 0xffffffff;
cb = 4;
break;
default:
AssertFailedReturn(VERR_INTERNAL_ERROR_4); /* shall not happen. */
}
/* cross-register access, see corresponding comment in hdaMMIORead */
uint32_t shift = (g_aHdaRegMap[idxRegDsc].offset - offReg) % sizeof(uint32_t) * 8;
mask <<= shift;
u32NewValue <<= shift;
u32NewValue &= mask;
u32NewValue |= (u32CurValue & ~mask);
rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32NewValue);
LogFunc(("write %s:(%x) %x => %x\n", g_aHdaRegMap[idxRegDsc].abbrev, u32NewValue,
u32CurValue, pThis->au32Regs[idxRegMem]));
}
else
rc = VINF_SUCCESS;
LogFunc(("@%#05x %#x -> %#x\n", offRegLog, u32LogOldValue,
idxRegLog != -1 ? pThis->au32Regs[idxRegLog] : UINT32_MAX));
#endif
return rc;
}
/* PCI callback. */
#ifdef IN_RING3
/**
* @callback_method_impl{FNPCIIOREGIONMAP}
*/
static DECLCALLBACK(int) hdaPciIoRegionMap(PPCIDEVICE pPciDev, int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb,
PCIADDRESSSPACE enmType)
{
PPDMDEVINS pDevIns = pPciDev->pDevIns;
PHDASTATE pThis = RT_FROM_MEMBER(pPciDev, HDASTATE, PciDev);
RTIOPORT Port = (RTIOPORT)GCPhysAddress;
int rc;
/*
* 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word.
*
* Let IOM talk DWORDs when reading, saves a lot of complications. On
* writing though, we have to do it all ourselves because of sideeffects.
*/
Assert(enmType == PCI_ADDRESS_SPACE_MEM);
rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/,
#ifdef NEW_READ_CODE
IOMMMIO_FLAGS_READ_DWORD |
#else
IOMMMIO_FLAGS_READ_PASSTHRU |
#endif
IOMMMIO_FLAGS_WRITE_PASSTHRU,
hdaMMIOWrite, hdaMMIORead, "HDA");
if (RT_FAILURE(rc))
return rc;
if (pThis->fR0Enabled)
{
rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/,
"hdaMMIOWrite", "hdaMMIORead");
if (RT_FAILURE(rc))
return rc;
}
if (pThis->fRCEnabled)
{
rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/,
"hdaMMIOWrite", "hdaMMIORead");
if (RT_FAILURE(rc))
return rc;
}
pThis->MMIOBaseAddr = GCPhysAddress;
return VINF_SUCCESS;
}
/* Saved state callbacks. */
/**
* @callback_method_impl{FNSSMDEVSAVEEXEC}
*/
static DECLCALLBACK(int) hdaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
/* Save Codec nodes states */
#if 0
/** @todo Handle LUNs > 0! */
hdaCodecSaveState(pThis->pCodec[0], pSSM);
#else
hdaCodecSaveState(pThis->pCodec, pSSM);
#endif
/* Save MMIO registers */
AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= HDA_NREGS_SAVED);
SSMR3PutU32(pSSM, RT_ELEMENTS(pThis->au32Regs));
SSMR3PutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
/* Save HDA dma counters */
SSMR3PutStructEx(pSSM, &pThis->StOutBdle, sizeof(pThis->StOutBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL);
SSMR3PutStructEx(pSSM, &pThis->StMicBdle, sizeof(pThis->StMicBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL);
SSMR3PutStructEx(pSSM, &pThis->StInBdle, sizeof(pThis->StInBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL);
return VINF_SUCCESS;
}
/**
* @callback_method_impl{FNSSMDEVLOADEXEC}
*/
static DECLCALLBACK(int) hdaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
/*
* Load Codec nodes states.
*/
#if 0
/** @todo Handle LUNs > 0! */
int rc = hdaCodecLoadState(pThis->pCodec[0], pSSM, uVersion);
#else
int rc = hdaCodecLoadState(pThis->pCodec, pSSM, uVersion);
#endif
if (RT_FAILURE(rc))
return rc;
/*
* Load MMIO registers.
*/
uint32_t cRegs;
switch (uVersion)
{
case HDA_SSM_VERSION_1:
/* Starting with r71199, we would save 112 instead of 113
registers due to some code cleanups. This only affected trunk
builds in the 4.1 development period. */
cRegs = 113;
if (SSMR3HandleRevision(pSSM) >= 71199)
{
uint32_t uVer = SSMR3HandleVersion(pSSM);
if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4
&& VBOX_FULL_VERSION_GET_MINOR(uVer) == 0
&& VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51)
cRegs = 112;
}
break;
case HDA_SSM_VERSION_2:
case HDA_SSM_VERSION_3:
cRegs = 112;
AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= HDA_NREGS_SAVED);
break;
case HDA_SSM_VERSION:
rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc);
if (cRegs != RT_ELEMENTS(pThis->au32Regs))
LogRel(("cRegs is %d, expected %d\n", cRegs, RT_ELEMENTS(pThis->au32Regs)));
break;
default:
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
if (cRegs >= RT_ELEMENTS(pThis->au32Regs))
{
SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs));
SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs)));
}
else
SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs);
/*
* Load HDA DMA counters.
*/
uint32_t fFlags = uVersion <= HDA_SSM_VERSION_2 ? SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED : 0;
PCSSMFIELD paFields = uVersion <= HDA_SSM_VERSION_2 ? g_aHdaBDLEDescFieldsOld : g_aHdaBDLEDescFields;
rc = SSMR3GetStructEx(pSSM, &pThis->StOutBdle, sizeof(pThis->StOutBdle), fFlags, paFields, NULL);
AssertRCReturn(rc, rc);
rc = SSMR3GetStructEx(pSSM, &pThis->StMicBdle, sizeof(pThis->StMicBdle), fFlags, paFields, NULL);
AssertRCReturn(rc, rc);
rc = SSMR3GetStructEx(pSSM, &pThis->StInBdle, sizeof(pThis->StInBdle), fFlags, paFields, NULL);
AssertRCReturn(rc, rc);
/*
* Update stuff after the state changes.
*/
bool fEnableIn = RT_BOOL(SDCTL(pThis, 0) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
bool fEnableMicIn = RT_BOOL(SDCTL(pThis, 2) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
bool fEnableOut = RT_BOOL(SDCTL(pThis, 4) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
rc = pThis->paDrv[lun]->pConnector->pfnEnableIn(pThis->paDrv[lun]->pConnector, pThis->paDrv[lun]->pStrmIn,
fEnableIn);
if (RT_FAILURE(rc))
break;
rc = pThis->paDrv[lun]->pConnector->pfnEnableIn(pThis->paDrv[lun]->pConnector, pThis->paDrv[lun]->pStrmMic,
fEnableMicIn);
if (RT_FAILURE(rc))
break;
rc = pThis->paDrv[lun]->pConnector->pfnEnableOut(pThis->paDrv[lun]->pConnector, pThis->paDrv[lun]->pGstStrmOut,
fEnableOut);
if (RT_FAILURE(rc))
break;
}
#else
AUD_set_active_in(pThis->pCodec->SwVoiceIn, SDCTL(pThis, 0) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
AUD_set_active_out(pThis->pCodec->SwVoiceOut, SDCTL(pThis, 4) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN));
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
if (RT_SUCCESS(rc))
{
pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE));
pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE));
pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE), HDA_REG(pThis, DPUBASE));
}
LogFlowFuncLeaveRC(rc);
return rc;
}
/* Debug and log type formatters. */
/**
* @callback_method_impl{FNRTSTRFORMATTYPE}
*/
static DECLCALLBACK(size_t)
hdaFormatStrmCtl(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
const char *pszType, void const *pvValue,
int cchWidth, int cchPrecision, unsigned fFlags,
void *pvUser)
{
uint32_t sdCtl = (uint32_t)(uintptr_t)pvValue;
return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
"SDCTL(raw: %#x, strm:%#x, dir:%RTbool, tp:%RTbool strip:%x, deie:%RTbool, ioce:%RTbool, run:%RTbool, srst:%RTbool)",
sdCtl,
(sdCtl & HDA_REG_FIELD_MASK(SDCTL, NUM)) >> HDA_SDCTL_NUM_SHIFT,
RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, DIR)),
RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, TP)),
(sdCtl & HDA_REG_FIELD_MASK(SDCTL, STRIPE)) >> HDA_SDCTL_STRIPE_SHIFT,
RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, DEIE)),
RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE)),
RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)),
RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)));
}
/**
* @callback_method_impl{FNRTSTRFORMATTYPE}
*/
static DECLCALLBACK(size_t)
hdaFormatStrmFifos(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
const char *pszType, void const *pvValue,
int cchWidth, int cchPrecision, unsigned fFlags,
void *pvUser)
{
uint32_t uSdFifos = (uint32_t)(uintptr_t)pvValue;
uint32_t cb;
switch (uSdFifos)
{
case HDA_SDONFIFO_16B: cb = 16; break;
case HDA_SDONFIFO_32B: cb = 32; break;
case HDA_SDONFIFO_64B: cb = 64; break;
case HDA_SDONFIFO_128B: cb = 128; break;
case HDA_SDONFIFO_192B: cb = 192; break;
case HDA_SDONFIFO_256B: cb = 256; break;
case HDA_SDINFIFO_120B: cb = 120; break;
case HDA_SDINFIFO_160B: cb = 160; break;
default: cb = 0; break;
}
return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw: %#x, sdfifos:%u B)", uSdFifos, cb);
}
/**
* @callback_method_impl{FNRTSTRFORMATTYPE}
*/
static DECLCALLBACK(size_t)
hdaFormatStrmFifow(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
const char *pszType, void const *pvValue,
int cchWidth, int cchPrecision, unsigned fFlags,
void *pvUser)
{
uint32_t uSdFifos = (uint32_t)(uintptr_t)pvValue;
uint32_t cb;
switch (uSdFifos)
{
case HDA_SDFIFOW_8B: cb = 8; break;
case HDA_SDFIFOW_16B: cb = 16; break;
case HDA_SDFIFOW_32B: cb = 32; break;
default: cb = 0; break;
}
return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSdFifos, cb);
}
/**
* @callback_method_impl{FNRTSTRFORMATTYPE}
*/
static DECLCALLBACK(size_t)
hdaFormatStrmSts(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
const char *pszType, void const *pvValue,
int cchWidth, int cchPrecision, unsigned fFlags,
void *pvUser)
{
uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue;
return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
"SDSTS(raw: %#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)",
uSdSts,
RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY)),
RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)),
RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)),
RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS)));
}
static int hdaLookUpRegisterByName(PHDASTATE pThis, const char *pszArgs)
{
int iReg = 0;
for (; iReg < HDA_NREGS; ++iReg)
if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs))
return iReg;
return -1;
}
static void hdaDbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex)
{
Assert( pThis
&& iHdaIndex >= 0
&& iHdaIndex < HDA_NREGS);
pHlp->pfnPrintf(pHlp, "%s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[g_aHdaRegMap[iHdaIndex].mem_idx]);
}
/**
* @callback_method_impl{FNDBGFHANDLERDEV}
*/
static DECLCALLBACK(void) hdaInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
int iHdaRegisterIndex = hdaLookUpRegisterByName(pThis, pszArgs);
if (iHdaRegisterIndex != -1)
hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
else
for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NREGS; ++iHdaRegisterIndex)
hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex);
}
static void hdaDbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaStrmIndex)
{
Assert( pThis
&& iHdaStrmIndex >= 0
&& iHdaStrmIndex < 7);
pHlp->pfnPrintf(pHlp, "Dump of %d HDA Stream:\n", iHdaStrmIndex);
pHlp->pfnPrintf(pHlp, "SD%dCTL: %R[sdctl]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, CTL, iHdaStrmIndex));
pHlp->pfnPrintf(pHlp, "SD%dCTS: %R[sdsts]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, STS, iHdaStrmIndex));
pHlp->pfnPrintf(pHlp, "SD%dFIFOS: %R[sdfifos]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, FIFOS, iHdaStrmIndex));
pHlp->pfnPrintf(pHlp, "SD%dFIFOW: %R[sdfifow]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, FIFOW, iHdaStrmIndex));
}
static int hdaLookUpStreamIndex(PHDASTATE pThis, const char *pszArgs)
{
/* todo: add args parsing */
return -1;
}
/**
* @callback_method_impl{FNDBGFHANDLERDEV}
*/
static DECLCALLBACK(void) hdaInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
int iHdaStrmIndex = hdaLookUpStreamIndex(pThis, pszArgs);
if (iHdaStrmIndex != -1)
hdaDbgPrintStream(pThis, pHlp, iHdaStrmIndex);
else
for(iHdaStrmIndex = 0; iHdaStrmIndex < 7; ++iHdaStrmIndex)
hdaDbgPrintStream(pThis, pHlp, iHdaStrmIndex);
}
/**
* @callback_method_impl{FNDBGFHANDLERDEV}
*/
static DECLCALLBACK(void) hdaInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
#if 0
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
if (pThis->pCodec[lun]->pfnCodecDbgListNodes)
pThis->pCodec[lun]->pfnCodecDbgListNodes(pThis->pCodec[lun], pHlp, pszArgs);
else
pHlp->pfnPrintf(pHlp, "Codec implementation for LUN #%RU8 doesn't provide corresponding callback\n", lun);
}
#else
if (pThis->pCodec->pfnCodecDbgListNodes)
pThis->pCodec->pfnCodecDbgListNodes(pThis->pCodec, pHlp, pszArgs);
else
pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
#endif
}
/**
* @callback_method_impl{FNDBGFHANDLERDEV}
*/
static DECLCALLBACK(void) hdaInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
#if 0
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
if (pThis->pCodec[lun]->pfnCodecDbgSelector)
pThis->pCodec[lun]->pfnCodecDbgSelector(pThis->pCodec[lun], pHlp, pszArgs);
else
pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
}
#else
if (pThis->pCodec->pfnCodecDbgSelector)
pThis->pCodec->pfnCodecDbgSelector(pThis->pCodec, pHlp, pszArgs);
else
pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n");
#endif
}
/* PDMIBASE */
/**
* @interface_method_impl{PDMIBASE,pfnQueryInterface}
*/
static DECLCALLBACK(void *) hdaQueryInterface(struct PDMIBASE *pInterface, const char *pszIID)
{
PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase);
Assert(&pThis->IBase == pInterface);
PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase);
return NULL;
}
/* PDMDEVREG */
/**
* Reset notification.
*
* @returns VBox status.
* @param pDevIns The device instance data.
*
* @remark The original sources didn't install a reset handler, but it seems to
* make sense to me so we'll do it.
*/
static DECLCALLBACK(void) hdaReset(PPDMDEVINS pDevIns)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
HDA_REG(pThis, GCAP) = HDA_MAKE_GCAP(4,4,0,0,1); /* see 6.2.1 */
HDA_REG(pThis, VMIN) = 0x00; /* see 6.2.2 */
HDA_REG(pThis, VMAJ) = 0x01; /* see 6.2.3 */
HDA_REG(pThis, OUTPAY) = 0x003C; /* see 6.2.4 */
HDA_REG(pThis, INPAY) = 0x001D; /* see 6.2.5 */
HDA_REG(pThis, CORBSIZE) = 0x42; /* see 6.2.1 */
HDA_REG(pThis, RIRBSIZE) = 0x42; /* see 6.2.1 */
HDA_REG(pThis, CORBRP) = 0x0;
HDA_REG(pThis, RIRBWP) = 0x0;
LogFunc(("Resetting ...\n"));
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
/* Stop any audio currently playing. */
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
pThis->paDrv[lun]->pConnector->pfnEnableIn(pThis->paDrv[lun]->pConnector, pThis->paDrv[lun]->pStrmIn,
false /* Disable */);
/* Ignore rc. */
pThis->paDrv[lun]->pConnector->pfnEnableIn(pThis->paDrv[lun]->pConnector, pThis->paDrv[lun]->pStrmMic,
false /* Disable */);
/* Ditto. */
pThis->paDrv[lun]->pConnector->pfnEnableOut(pThis->paDrv[lun]->pConnector, pThis->paDrv[lun]->pGstStrmOut,
false /* Disable */);
/* Ditto. */
}
#else
AUD_set_active_in(pThis->pCodec->SwVoiceIn, false);
AUD_set_active_out(pThis->pCodec->SwVoiceOut, false);
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
pThis->cbCorbBuf = 256 * sizeof(uint32_t);
if (pThis->pu32CorbBuf)
RT_BZERO(pThis->pu32CorbBuf, pThis->cbCorbBuf);
else
pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf);
pThis->cbRirbBuf = 256 * sizeof(uint64_t);
if (pThis->pu64RirbBuf)
RT_BZERO(pThis->pu64RirbBuf, pThis->cbRirbBuf);
else
pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf);
pThis->u64BaseTS = PDMDevHlpTMTimeVirtGetNano(pDevIns);
HDABDLEDESC StEmptyBdle;
for (uint8_t u8Strm = 0; u8Strm < 8; ++u8Strm)
{
HDASTREAMTRANSFERDESC StreamDesc;
PHDABDLEDESC pBdle = NULL;
if (u8Strm == 0)
pBdle = &pThis->StInBdle;
else if (u8Strm == 2)
pBdle = &pThis->StMicBdle;
else if(u8Strm == 4)
pBdle = &pThis->StOutBdle;
else
{
RT_ZERO(StEmptyBdle);
pBdle = &StEmptyBdle;
}
hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc);
/* hdaStreamReset prevents changing the SRST bit, so we force it to zero here. */
HDA_STREAM_REG(pThis, CTL, u8Strm) = 0;
hdaStreamReset(pThis, pBdle, &StreamDesc, u8Strm);
}
/* emulation of codec "wake up" (HDA spec 5.5.1 and 6.5)*/
HDA_REG(pThis, STATESTS) = 0x1;
LogFunc(("Reset finished\n"));
}
/**
* @interface_method_impl{PDMDEVREG,pfnDestruct}
*/
static DECLCALLBACK(int) hdaDestruct(PPDMDEVINS pDevIns)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
if (pThis->pCodec)
{
int rc = hdaCodecDestruct(pThis->pCodec);
AssertRC(rc);
RTMemFree(pThis->pCodec);
pThis->pCodec = NULL;
}
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
for (uint8_t lun = 0; lun < pThis->cLUNs; lun++)
{
if (pThis->paDrv[lun])
{
RTMemFree(pThis->paDrv[lun]);
pThis->paDrv[lun] = NULL;
}
}
if (pThis->pMixer)
{
audioMixerDestroy(pThis->pMixer);
pThis->pMixer = NULL;
}
pThis->cLUNs = 0;
#else
if (pThis->pCodec)
{
int rc = hdaCodecDestruct(pThis->pCodec);
AssertRC(rc);
RTMemFree(pThis->pCodec);
pThis->pCodec = NULL;
}
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
RTMemFree(pThis->pu32CorbBuf);
pThis->pu32CorbBuf = NULL;
RTMemFree(pThis->pu64RirbBuf);
pThis->pu64RirbBuf = NULL;
return VINF_SUCCESS;
}
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
/**
* Attach command.
*
* This is called to let the device attach to a driver for a specified LUN
* during runtime. This is not called during VM construction, the device
* constructor have to attach to all the available drivers.
*
* @returns VBox status code.
* @param pDevIns The device instance.
* @param uLUN The logical unit which is being detached.
* @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines.
*/
static DECLCALLBACK(int) hdaAttach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
AssertMsgReturn(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG,
("HDA device does not support hotplugging\n"),
VERR_INVALID_PARAMETER);
/*
* Attach driver.
*/
char *pszDesc = NULL;
if (RTStrAPrintf(&pszDesc, "Audio driver port (HDA) for LUN #%u", uLUN) <= 0)
AssertMsgReturn(pszDesc,
("Not enough memory for HDA driver port description of LUN #%u\n", uLUN),
VERR_NO_MEMORY);
int rc = PDMDevHlpDriverAttach(pDevIns, uLUN,
&pThis->IBase, &pThis->pDrvBase, pszDesc);
if (RT_SUCCESS(rc))
{
PHDADRIVER pDrv = (PHDADRIVER)RTMemAllocZ(sizeof(HDADRIVER));
if (pDrv)
{
pDrv->pConnector = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMIAUDIOCONNECTOR);
AssertMsg(pDrv->pConnector != NULL,
("Configuration error: LUN #%u has no host audio interface, rc=%Rrc\n",
uLUN, rc));
pDrv->pHDAState = pThis;
pDrv->uLUN = uLUN;
/*
* For now we always set the driver at LUN 0 as our primary
* host backend. This might change in the future.
*/
if (pDrv->uLUN == 0)
pDrv->Flags |= PDMAUDIODRVFLAG_PRIMARY;
LogFunc(("LUN #%u: pCon=%p, drvFlags=0x%x\n",
uLUN, pDrv->pConnector, pDrv->Flags));
pThis->paDrv[uLUN] = pDrv;
pThis->cLUNs++;
}
else
rc = VERR_NO_MEMORY;
}
else if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
{
LogFunc(("No attached driver for LUN #%u\n", uLUN));
}
else if (RT_FAILURE(rc))
AssertMsgFailed(("Failed to attach HDA LUN #%u (\"%s\"), rc=%Rrc\n",
uLUN, pszDesc, rc));
RTStrFree(pszDesc);
LogFunc(("iLUN=%u, fFlags=0x%x, rc=%Rrc\n", uLUN, fFlags, rc));
return rc;
}
static DECLCALLBACK(void) hdaDetach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags)
{
NOREF(pDevIns); NOREF(iLUN); NOREF(fFlags);
LogFlowFuncEnter();
}
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
/**
* @interface_method_impl{PDMDEVREG,pfnConstruct}
*/
static DECLCALLBACK(int) hdaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle)
{
PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE);
Assert(iInstance == 0);
PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
/*
* Validations.
*/
if (!CFGMR3AreValuesValid(pCfgHandle, "R0Enabled\0"
"RCEnabled\0"))
return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES,
N_ ("Invalid configuration for the Intel HDA device"));
int rc = CFGMR3QueryBoolDef(pCfgHandle, "RCEnabled", &pThis->fRCEnabled, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("HDA configuration error: failed to read RCEnabled as boolean"));
rc = CFGMR3QueryBoolDef(pCfgHandle, "R0Enabled", &pThis->fR0Enabled, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("HDA configuration error: failed to read R0Enabled as boolean"));
/*
* Initialize data (most of it anyway).
*/
pThis->pDevInsR3 = pDevIns;
pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
/* IBase */
pThis->IBase.pfnQueryInterface = hdaQueryInterface;
/* PCI Device */
PCIDevSetVendorId (&pThis->PciDev, HDA_PCI_VENDOR_ID); /* nVidia */
PCIDevSetDeviceId (&pThis->PciDev, HDA_PCI_DEVICE_ID); /* HDA */
PCIDevSetCommand (&pThis->PciDev, 0x0000); /* 04 rw,ro - pcicmd. */
PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */
PCIDevSetRevisionId (&pThis->PciDev, 0x01); /* 08 ro - rid. */
PCIDevSetClassProg (&pThis->PciDev, 0x00); /* 09 ro - pi. */
PCIDevSetClassSub (&pThis->PciDev, 0x03); /* 0a ro - scc; 03 == HDA. */
PCIDevSetClassBase (&pThis->PciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */
PCIDevSetHeaderType (&pThis->PciDev, 0x00); /* 0e ro - headtyp. */
PCIDevSetBaseAddress (&pThis->PciDev, 0, /* 10 rw - MMIO */
false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000);
PCIDevSetInterruptLine (&pThis->PciDev, 0x00); /* 3c rw. */
PCIDevSetInterruptPin (&pThis->PciDev, 0x01); /* 3d ro - INTA#. */
#if defined(HDA_AS_PCI_EXPRESS)
PCIDevSetCapabilityList (&pThis->PciDev, 0x80);
#elif defined(VBOX_WITH_MSI_DEVICES)
PCIDevSetCapabilityList (&pThis->PciDev, 0x60);
#else
PCIDevSetCapabilityList (&pThis->PciDev, 0x50); /* ICH6 datasheet 18.1.16 */
#endif
/// @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning
/// of these values needs to be properly documented!
/* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
PCIDevSetByte(&pThis->PciDev, 0x40, 0x01);
/* Power Management */
PCIDevSetByte(&pThis->PciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM);
PCIDevSetByte(&pThis->PciDev, 0x50 + 1, 0x0); /* next */
PCIDevSetWord(&pThis->PciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ );
#ifdef HDA_AS_PCI_EXPRESS
/* PCI Express */
PCIDevSetByte(&pThis->PciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */
PCIDevSetByte(&pThis->PciDev, 0x80 + 1, 0x60); /* next */
/* Device flags */
PCIDevSetWord(&pThis->PciDev, 0x80 + 2,
/* version */ 0x1 |
/* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) |
/* MSI */ (100) << 9 );
/* Device capabilities */
PCIDevSetDWord(&pThis->PciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET);
/* Device control */
PCIDevSetWord( &pThis->PciDev, 0x80 + 8, 0);
/* Device status */
PCIDevSetWord( &pThis->PciDev, 0x80 + 10, 0);
/* Link caps */
PCIDevSetDWord(&pThis->PciDev, 0x80 + 12, 0);
/* Link control */
PCIDevSetWord( &pThis->PciDev, 0x80 + 16, 0);
/* Link status */
PCIDevSetWord( &pThis->PciDev, 0x80 + 18, 0);
/* Slot capabilities */
PCIDevSetDWord(&pThis->PciDev, 0x80 + 20, 0);
/* Slot control */
PCIDevSetWord( &pThis->PciDev, 0x80 + 24, 0);
/* Slot status */
PCIDevSetWord( &pThis->PciDev, 0x80 + 26, 0);
/* Root control */
PCIDevSetWord( &pThis->PciDev, 0x80 + 28, 0);
/* Root capabilities */
PCIDevSetWord( &pThis->PciDev, 0x80 + 30, 0);
/* Root status */
PCIDevSetDWord(&pThis->PciDev, 0x80 + 32, 0);
/* Device capabilities 2 */
PCIDevSetDWord(&pThis->PciDev, 0x80 + 36, 0);
/* Device control 2 */
PCIDevSetQWord(&pThis->PciDev, 0x80 + 40, 0);
/* Link control 2 */
PCIDevSetQWord(&pThis->PciDev, 0x80 + 48, 0);
/* Slot control 2 */
PCIDevSetWord( &pThis->PciDev, 0x80 + 56, 0);
#endif
/*
* Register the PCI device.
*/
rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev);
if (RT_FAILURE(rc))
return rc;
rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaPciIoRegionMap);
if (RT_FAILURE(rc))
return rc;
#ifdef VBOX_WITH_MSI_DEVICES
PDMMSIREG MsiReg;
RT_ZERO(MsiReg);
MsiReg.cMsiVectors = 1;
MsiReg.iMsiCapOffset = 0x60;
MsiReg.iMsiNextOffset = 0x50;
rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg);
if (RT_FAILURE(rc))
{
/* That's OK, we can work without MSI */
PCIDevSetCapabilityList(&pThis->PciDev, 0x50);
}
#endif
rc = PDMDevHlpSSMRegister(pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaSaveExec, hdaLoadExec);
if (RT_FAILURE(rc))
return rc;
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
/* We support 32 LUNs max. This should be enough for now. */
for (uint8_t lun = 0; lun < 32 ; lun++)
{
LogFunc(("Trying to attach driver for LUN #%RU32 ...\n", lun));
rc = hdaAttach(pDevIns, lun, PDM_TACH_FLAGS_NOT_HOT_PLUG);
if (RT_FAILURE(rc))
{
if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
rc = VINF_SUCCESS;
break;
}
}
if (RT_SUCCESS(rc))
{
rc = audioMixerCreate("HDA Mixer", 0 /* uFlags */,
&pThis->pMixer);
if (RT_SUCCESS(rc))
{
PDMAUDIOSTREAMCFG streamCfg;
streamCfg.uHz = 48000;
streamCfg.cChannels = 2;
streamCfg.enmFormat = AUD_FMT_S16;
streamCfg.enmEndianness = PDMAUDIOHOSTENDIANESS;
rc = audioMixerSetDeviceFormat(pThis->pMixer, &streamCfg);
AssertRC(rc);
/* Add all required audio sinks. */
rc = audioMixerAddSink(pThis->pMixer, "[Recording] Line In",
&pThis->pSinkLineIn);
AssertRC(rc);
rc = audioMixerAddSink(pThis->pMixer, "[Recording] Microphone In",
&pThis->pSinkMicIn);
AssertRC(rc);
}
}
LogFunc(("cLUNs=%RU8, rc=%Rrc\n", pThis->cLUNs, rc));
#else
/*
* Attach driver.
*/
rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThis->IBase, &pThis->pDrvBase, "Audio Driver Port");
if (rc == VERR_PDM_NO_ATTACHED_DRIVER)
Log(("hda: No attached driver!\n"));
else if (RT_FAILURE(rc))
{
AssertMsgFailed(("Failed to attach Intel HDA LUN #0! rc=%Rrc\n", rc));
return rc;
}
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
if (RT_SUCCESS(rc))
{
/* Construct codec. */
pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC));
if (!pThis->pCodec)
return PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating HDA codec state"));
#ifdef VBOX_WITH_PDM_AUDIO_DRIVER
/* Audio driver callbacks for multiplexing. */
pThis->pCodec->pfnCloseIn = hdaCloseIn;
pThis->pCodec->pfnCloseOut = hdaCloseOut;
pThis->pCodec->pfnOpenIn = hdaOpenIn;
pThis->pCodec->pfnOpenOut = hdaOpenOut;
pThis->pCodec->pfnSetVolume = hdaSetVolume;
#endif /* VBOX_WITH_PDM_AUDIO_DRIVER */
pThis->pCodec->pHDAState = pThis; /* Assign HDA controller state to codec. */
/* Construct the codec. */
rc = hdaCodecConstruct(pDevIns, pThis->pCodec, 0 /* Codec index */, pCfgHandle);
if (RT_FAILURE(rc))
AssertRCReturn(rc, rc);
/* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for
verb F20 should provide device/codec recognition. */
Assert(pThis->pCodec->u16VendorId);
Assert(pThis->pCodec->u16DeviceId);
PCIDevSetSubSystemVendorId(&pThis->PciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */
PCIDevSetSubSystemId( &pThis->PciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */
pThis->pCodec->pfnTransfer = hdaTransfer;
pThis->pCodec->pfnReset = hdaCodecReset;
}
if (RT_SUCCESS(rc))
{
hdaReset(pDevIns);
/*
* 18.2.6,7 defines that values of this registers might be cleared on power on/reset
* hdaReset shouldn't affects these registers.
*/
HDA_REG(pThis, WAKEEN) = 0x0;
HDA_REG(pThis, STATESTS) = 0x0;
/*
* Debug and string formatter types.
*/
PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaInfo);
PDMDevHlpDBGFInfoRegister(pDevIns, "hdastrm", "HDA stream info. (hdastrm [stream number])", hdaInfoStream);
PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaInfoCodecNodes);
PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaInfoCodecSelector);
rc = RTStrFormatTypeRegister("sdctl", hdaFormatStrmCtl, NULL);
AssertRC(rc);
rc = RTStrFormatTypeRegister("sdsts", hdaFormatStrmSts, NULL);
AssertRC(rc);
rc = RTStrFormatTypeRegister("sdfifos", hdaFormatStrmFifos, NULL);
AssertRC(rc);
rc = RTStrFormatTypeRegister("sdfifow", hdaFormatStrmFifow, NULL);
AssertRC(rc);
#if 0
rc = RTStrFormatTypeRegister("sdfmt", printHdaStrmFmt, NULL);
AssertRC(rc);
#endif
/*
* Some debug assertions.
*/
for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++)
{
struct HDAREGDESC const *pReg = &g_aHdaRegMap[i];
struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL;
/* binary search order. */
AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset,
("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
/* alignment. */
AssertReleaseMsg( pReg->size == 1
|| (pReg->size == 2 && (pReg->offset & 1) == 0)
|| (pReg->size == 3 && (pReg->offset & 3) == 0)
|| (pReg->size == 4 && (pReg->offset & 3) == 0),
("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
/* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */
AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg);
if (pReg->offset & 3)
{
struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL;
AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
if (pPrevReg)
AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset,
("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size));
}
#if 0
if ((pReg->offset + pReg->size) & 3)
{
AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
if (pNextReg)
AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset,
("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n",
i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size));
}
#endif
/* The final entry is a full dword, no gaps! Allows shortcuts. */
AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0,
("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size));
}
}
LogFlowFuncLeaveRC(rc);
return rc;
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DeviceICH6_HDA =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szName */
"hda",
/* szRCMod */
"VBoxDDGC.gc",
/* szR0Mod */
"VBoxDDR0.r0",
/* pszDescription */
"Intel HD Audio Controller",
/* fFlags */
PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_AUDIO,
/* cMaxInstances */
1,
/* cbInstance */
sizeof(HDASTATE),
/* pfnConstruct */
hdaConstruct,
/* pfnDestruct */
hdaDestruct,
/* pfnRelocate */
NULL,
/* pfnMemSetup */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
hdaReset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
NULL,
/* pfnDetach */
NULL,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
NULL,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */