asm-amd64-x86.h revision d8818699735c83c36fc9555f85e6d86b610cdc67
/** @file
* IPRT - AMD64 and x86 Specific Assembly Functions.
*/
/*
* Copyright (C) 2006-2013 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
#ifndef ___iprt_asm_amd64_x86_h
#define ___iprt_asm_amd64_x86_h
#include <iprt/types.h>
#if !defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86)
# error "Not on AMD64 or x86"
#endif
#if defined(_MSC_VER) && RT_INLINE_ASM_USES_INTRIN
# include <intrin.h>
/* Emit the intrinsics at all optimization levels. */
# pragma intrinsic(_ReadWriteBarrier)
# pragma intrinsic(__cpuid)
# pragma intrinsic(_enable)
# pragma intrinsic(_disable)
# pragma intrinsic(__rdtsc)
# pragma intrinsic(__readmsr)
# pragma intrinsic(__writemsr)
# pragma intrinsic(__outbyte)
# pragma intrinsic(__outbytestring)
# pragma intrinsic(__outword)
# pragma intrinsic(__outwordstring)
# pragma intrinsic(__outdword)
# pragma intrinsic(__outdwordstring)
# pragma intrinsic(__inbyte)
# pragma intrinsic(__inbytestring)
# pragma intrinsic(__inword)
# pragma intrinsic(__inwordstring)
# pragma intrinsic(__indword)
# pragma intrinsic(__indwordstring)
# pragma intrinsic(__invlpg)
# pragma intrinsic(__wbinvd)
# pragma intrinsic(__readcr0)
# pragma intrinsic(__readcr2)
# pragma intrinsic(__readcr3)
# pragma intrinsic(__readcr4)
# pragma intrinsic(__writecr0)
# pragma intrinsic(__writecr3)
# pragma intrinsic(__writecr4)
# pragma intrinsic(__readdr)
# pragma intrinsic(__writedr)
# ifdef RT_ARCH_AMD64
# pragma intrinsic(__readcr8)
# pragma intrinsic(__writecr8)
# endif
# if RT_INLINE_ASM_USES_INTRIN >= 15
# pragma intrinsic(__readeflags)
# pragma intrinsic(__writeeflags)
# endif
#endif
/** @defgroup grp_rt_asm_amd64_x86 AMD64 and x86 Specific ASM Routines
* @ingroup grp_rt_asm
* @{
*/
/** @todo find a more proper place for this structure? */
#pragma pack(1)
/** IDTR */
typedef struct RTIDTR
{
/** Size of the IDT. */
uint16_t cbIdt;
/** Address of the IDT. */
uintptr_t pIdt;
} RTIDTR, *PRTIDTR;
#pragma pack()
#pragma pack(1)
/** GDTR */
typedef struct RTGDTR
{
/** Size of the GDT. */
uint16_t cbGdt;
/** Address of the GDT. */
uintptr_t pGdt;
} RTGDTR, *PRTGDTR;
#pragma pack()
/**
* Gets the content of the IDTR CPU register.
* @param pIdtr Where to store the IDTR contents.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(void) ASMGetIDTR(PRTIDTR pIdtr);
#else
DECLINLINE(void) ASMGetIDTR(PRTIDTR pIdtr)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("sidt %0" : "=m" (*pIdtr));
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pIdtr]
sidt [rax]
# else
mov eax, [pIdtr]
sidt [eax]
# endif
}
# endif
}
#endif
/**
* Sets the content of the IDTR CPU register.
* @param pIdtr Where to load the IDTR contents from
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(void) ASMSetIDTR(const RTIDTR *pIdtr);
#else
DECLINLINE(void) ASMSetIDTR(const RTIDTR *pIdtr)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lidt %0" : : "m" (*pIdtr));
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pIdtr]
lidt [rax]
# else
mov eax, [pIdtr]
lidt [eax]
# endif
}
# endif
}
#endif
/**
* Gets the content of the GDTR CPU register.
* @param pGdtr Where to store the GDTR contents.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(void) ASMGetGDTR(PRTGDTR pGdtr);
#else
DECLINLINE(void) ASMGetGDTR(PRTGDTR pGdtr)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("sgdt %0" : "=m" (*pGdtr));
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pGdtr]
sgdt [rax]
# else
mov eax, [pGdtr]
sgdt [eax]
# endif
}
# endif
}
#endif
/**
* Get the cs register.
* @returns cs.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetCS(void);
#else
DECLINLINE(RTSEL) ASMGetCS(void)
{
RTSEL SelCS;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movw %%cs, %0\n\t" : "=r" (SelCS));
# else
__asm
{
mov ax, cs
mov [SelCS], ax
}
# endif
return SelCS;
}
#endif
/**
* Get the DS register.
* @returns DS.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetDS(void);
#else
DECLINLINE(RTSEL) ASMGetDS(void)
{
RTSEL SelDS;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movw %%ds, %0\n\t" : "=r" (SelDS));
# else
__asm
{
mov ax, ds
mov [SelDS], ax
}
# endif
return SelDS;
}
#endif
/**
* Get the ES register.
* @returns ES.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetES(void);
#else
DECLINLINE(RTSEL) ASMGetES(void)
{
RTSEL SelES;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movw %%es, %0\n\t" : "=r" (SelES));
# else
__asm
{
mov ax, es
mov [SelES], ax
}
# endif
return SelES;
}
#endif
/**
* Get the FS register.
* @returns FS.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetFS(void);
#else
DECLINLINE(RTSEL) ASMGetFS(void)
{
RTSEL SelFS;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movw %%fs, %0\n\t" : "=r" (SelFS));
# else
__asm
{
mov ax, fs
mov [SelFS], ax
}
# endif
return SelFS;
}
# endif
/**
* Get the GS register.
* @returns GS.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetGS(void);
#else
DECLINLINE(RTSEL) ASMGetGS(void)
{
RTSEL SelGS;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movw %%gs, %0\n\t" : "=r" (SelGS));
# else
__asm
{
mov ax, gs
mov [SelGS], ax
}
# endif
return SelGS;
}
#endif
/**
* Get the SS register.
* @returns SS.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetSS(void);
#else
DECLINLINE(RTSEL) ASMGetSS(void)
{
RTSEL SelSS;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movw %%ss, %0\n\t" : "=r" (SelSS));
# else
__asm
{
mov ax, ss
mov [SelSS], ax
}
# endif
return SelSS;
}
#endif
/**
* Get the TR register.
* @returns TR.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetTR(void);
#else
DECLINLINE(RTSEL) ASMGetTR(void)
{
RTSEL SelTR;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("str %w0\n\t" : "=r" (SelTR));
# else
__asm
{
str ax
mov [SelTR], ax
}
# endif
return SelTR;
}
#endif
/**
* Get the LDTR register.
* @returns LDTR.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(RTSEL) ASMGetLDTR(void);
#else
DECLINLINE(RTSEL) ASMGetLDTR(void)
{
RTSEL SelLDTR;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("sldt %w0\n\t" : "=r" (SelLDTR));
# else
__asm
{
sldt ax
mov [SelLDTR], ax
}
# endif
return SelLDTR;
}
#endif
/**
* Get the access rights for the segment selector.
*
* @returns The access rights on success or ~0U on failure.
* @param uSel The selector value.
*
* @remarks Using ~0U for failure is chosen because valid access rights always
* have bits 0:7 as 0 (on both Intel & AMD).
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(uint32_t) ASMGetSegAttr(RTSEL uSel);
#else
DECLINLINE(uint32_t) ASMGetSegAttr(RTSEL uSel)
{
uint32_t uAttr;
/* LAR only accesses 16-bit of the source operand, but eax for the
destination operand is required for getting the full 32-bit access rights. */
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lar %1, %%eax\n\t"
"jz done%=\n\t"
"movl $0xffffffff, %%eax\n\t"
"done%=:\n\t"
"movl %%eax, %0\n\t"
: "=r" (uAttr)
: "r" (uSel)
: "cc", "%eax");
# else
__asm
{
lar eax, [uSel]
jz done
mov eax, 0ffffffffh
done:
mov [uAttr], eax
}
# endif
return uAttr;
}
#endif
/**
* Get the [RE]FLAGS register.
* @returns [RE]FLAGS.
*/
#if RT_INLINE_ASM_EXTERNAL && RT_INLINE_ASM_USES_INTRIN < 15
DECLASM(RTCCUINTREG) ASMGetFlags(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetFlags(void)
{
RTCCUINTREG uFlags;
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("pushfq\n\t"
"popq %0\n\t"
: "=r" (uFlags));
# else
__asm__ __volatile__("pushfl\n\t"
"popl %0\n\t"
: "=r" (uFlags));
# endif
# elif RT_INLINE_ASM_USES_INTRIN >= 15
uFlags = __readeflags();
# else
__asm
{
# ifdef RT_ARCH_AMD64
pushfq
pop [uFlags]
# else
pushfd
pop [uFlags]
# endif
}
# endif
return uFlags;
}
#endif
/**
* Set the [RE]FLAGS register.
* @param uFlags The new [RE]FLAGS value.
*/
#if RT_INLINE_ASM_EXTERNAL && RT_INLINE_ASM_USES_INTRIN < 15
DECLASM(void) ASMSetFlags(RTCCUINTREG uFlags);
#else
DECLINLINE(void) ASMSetFlags(RTCCUINTREG uFlags)
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("pushq %0\n\t"
"popfq\n\t"
: : "g" (uFlags));
# else
__asm__ __volatile__("pushl %0\n\t"
"popfl\n\t"
: : "g" (uFlags));
# endif
# elif RT_INLINE_ASM_USES_INTRIN >= 15
__writeeflags(uFlags);
# else
__asm
{
# ifdef RT_ARCH_AMD64
push [uFlags]
popfq
# else
push [uFlags]
popfd
# endif
}
# endif
}
#endif
/**
* Gets the content of the CPU timestamp counter register.
*
* @returns TSC.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint64_t) ASMReadTSC(void);
#else
DECLINLINE(uint64_t) ASMReadTSC(void)
{
RTUINT64U u;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rdtsc\n\t" : "=a" (u.s.Lo), "=d" (u.s.Hi));
# else
# if RT_INLINE_ASM_USES_INTRIN
u.u = __rdtsc();
# else
__asm
{
rdtsc
mov [u.s.Lo], eax
mov [u.s.Hi], edx
}
# endif
# endif
return u.u;
}
#endif
/**
* Performs the cpuid instruction returning all registers.
*
* @param uOperator CPUID operation (eax).
* @param pvEAX Where to store eax.
* @param pvEBX Where to store ebx.
* @param pvECX Where to store ecx.
* @param pvEDX Where to store edx.
* @remark We're using void pointers to ease the use of special bitfield structures and such.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMCpuId(uint32_t uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX);
#else
DECLINLINE(void) ASMCpuId(uint32_t uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
RTCCUINTREG uRAX, uRBX, uRCX, uRDX;
__asm__ __volatile__ ("cpuid\n\t"
: "=a" (uRAX),
"=b" (uRBX),
"=c" (uRCX),
"=d" (uRDX)
: "0" (uOperator), "2" (0));
*(uint32_t *)pvEAX = (uint32_t)uRAX;
*(uint32_t *)pvEBX = (uint32_t)uRBX;
*(uint32_t *)pvECX = (uint32_t)uRCX;
*(uint32_t *)pvEDX = (uint32_t)uRDX;
# else
__asm__ __volatile__ ("xchgl %%ebx, %1\n\t"
"cpuid\n\t"
"xchgl %%ebx, %1\n\t"
: "=a" (*(uint32_t *)pvEAX),
"=r" (*(uint32_t *)pvEBX),
"=c" (*(uint32_t *)pvECX),
"=d" (*(uint32_t *)pvEDX)
: "0" (uOperator), "2" (0));
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
__cpuid(aInfo, uOperator);
*(uint32_t *)pvEAX = aInfo[0];
*(uint32_t *)pvEBX = aInfo[1];
*(uint32_t *)pvECX = aInfo[2];
*(uint32_t *)pvEDX = aInfo[3];
# else
uint32_t uEAX;
uint32_t uEBX;
uint32_t uECX;
uint32_t uEDX;
__asm
{
push ebx
mov eax, [uOperator]
cpuid
mov [uEAX], eax
mov [uEBX], ebx
mov [uECX], ecx
mov [uEDX], edx
pop ebx
}
*(uint32_t *)pvEAX = uEAX;
*(uint32_t *)pvEBX = uEBX;
*(uint32_t *)pvECX = uECX;
*(uint32_t *)pvEDX = uEDX;
# endif
}
#endif
/**
* Performs the CPUID instruction with EAX and ECX input returning ALL output
* registers.
*
* @param uOperator CPUID operation (eax).
* @param uIdxECX ecx index
* @param pvEAX Where to store eax.
* @param pvEBX Where to store ebx.
* @param pvECX Where to store ecx.
* @param pvEDX Where to store edx.
* @remark We're using void pointers to ease the use of special bitfield structures and such.
*/
#if RT_INLINE_ASM_EXTERNAL || RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMCpuId_Idx_ECX(uint32_t uOperator, uint32_t uIdxECX, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX);
#else
DECLINLINE(void) ASMCpuId_Idx_ECX(uint32_t uOperator, uint32_t uIdxECX, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
RTCCUINTREG uRAX, uRBX, uRCX, uRDX;
__asm__ ("cpuid\n\t"
: "=a" (uRAX),
"=b" (uRBX),
"=c" (uRCX),
"=d" (uRDX)
: "0" (uOperator),
"2" (uIdxECX));
*(uint32_t *)pvEAX = (uint32_t)uRAX;
*(uint32_t *)pvEBX = (uint32_t)uRBX;
*(uint32_t *)pvECX = (uint32_t)uRCX;
*(uint32_t *)pvEDX = (uint32_t)uRDX;
# else
__asm__ ("xchgl %%ebx, %1\n\t"
"cpuid\n\t"
"xchgl %%ebx, %1\n\t"
: "=a" (*(uint32_t *)pvEAX),
"=r" (*(uint32_t *)pvEBX),
"=c" (*(uint32_t *)pvECX),
"=d" (*(uint32_t *)pvEDX)
: "0" (uOperator),
"2" (uIdxECX));
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
__cpuidex(aInfo, uOperator, uIdxECX);
*(uint32_t *)pvEAX = aInfo[0];
*(uint32_t *)pvEBX = aInfo[1];
*(uint32_t *)pvECX = aInfo[2];
*(uint32_t *)pvEDX = aInfo[3];
# else
uint32_t uEAX;
uint32_t uEBX;
uint32_t uECX;
uint32_t uEDX;
__asm
{
push ebx
mov eax, [uOperator]
mov ecx, [uIdxECX]
cpuid
mov [uEAX], eax
mov [uEBX], ebx
mov [uECX], ecx
mov [uEDX], edx
pop ebx
}
*(uint32_t *)pvEAX = uEAX;
*(uint32_t *)pvEBX = uEBX;
*(uint32_t *)pvECX = uECX;
*(uint32_t *)pvEDX = uEDX;
# endif
}
#endif
/**
* Performs the cpuid instruction returning ecx and edx.
*
* @param uOperator CPUID operation (eax).
* @param pvECX Where to store ecx.
* @param pvEDX Where to store edx.
* @remark We're using void pointers to ease the use of special bitfield structures and such.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMCpuId_ECX_EDX(uint32_t uOperator, void *pvECX, void *pvEDX);
#else
DECLINLINE(void) ASMCpuId_ECX_EDX(uint32_t uOperator, void *pvECX, void *pvEDX)
{
uint32_t uEBX;
ASMCpuId(uOperator, &uOperator, &uEBX, pvECX, pvEDX);
}
#endif
/**
* Performs the cpuid instruction returning eax.
*
* @param uOperator CPUID operation (eax).
* @returns EAX after cpuid operation.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMCpuId_EAX(uint32_t uOperator);
#else
DECLINLINE(uint32_t) ASMCpuId_EAX(uint32_t uOperator)
{
RTCCUINTREG xAX;
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ ("cpuid"
: "=a" (xAX)
: "0" (uOperator)
: "rbx", "rcx", "rdx");
# elif (defined(PIC) || defined(__PIC__)) && defined(__i386__)
__asm__ ("push %%ebx\n\t"
"cpuid\n\t"
"pop %%ebx\n\t"
: "=a" (xAX)
: "0" (uOperator)
: "ecx", "edx");
# else
__asm__ ("cpuid"
: "=a" (xAX)
: "0" (uOperator)
: "edx", "ecx", "ebx");
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
__cpuid(aInfo, uOperator);
xAX = aInfo[0];
# else
__asm
{
push ebx
mov eax, [uOperator]
cpuid
mov [xAX], eax
pop ebx
}
# endif
return (uint32_t)xAX;
}
#endif
/**
* Performs the cpuid instruction returning ebx.
*
* @param uOperator CPUID operation (eax).
* @returns EBX after cpuid operation.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMCpuId_EBX(uint32_t uOperator);
#else
DECLINLINE(uint32_t) ASMCpuId_EBX(uint32_t uOperator)
{
RTCCUINTREG xBX;
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
RTCCUINTREG uSpill;
__asm__ ("cpuid"
: "=a" (uSpill),
"=b" (xBX)
: "0" (uOperator)
: "rdx", "rcx");
# elif (defined(PIC) || defined(__PIC__)) && defined(__i386__)
__asm__ ("push %%ebx\n\t"
"cpuid\n\t"
"mov %%ebx, %%edx\n\t"
"pop %%ebx\n\t"
: "=a" (uOperator),
"=d" (xBX)
: "0" (uOperator)
: "ecx");
# else
__asm__ ("cpuid"
: "=a" (uOperator),
"=b" (xBX)
: "0" (uOperator)
: "edx", "ecx");
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
__cpuid(aInfo, uOperator);
xBX = aInfo[1];
# else
__asm
{
push ebx
mov eax, [uOperator]
cpuid
mov [xBX], ebx
pop ebx
}
# endif
return (uint32_t)xBX;
}
#endif
/**
* Performs the cpuid instruction returning ecx.
*
* @param uOperator CPUID operation (eax).
* @returns ECX after cpuid operation.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMCpuId_ECX(uint32_t uOperator);
#else
DECLINLINE(uint32_t) ASMCpuId_ECX(uint32_t uOperator)
{
RTCCUINTREG xCX;
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
RTCCUINTREG uSpill;
__asm__ ("cpuid"
: "=a" (uSpill),
"=c" (xCX)
: "0" (uOperator)
: "rbx", "rdx");
# elif (defined(PIC) || defined(__PIC__)) && defined(__i386__)
__asm__ ("push %%ebx\n\t"
"cpuid\n\t"
"pop %%ebx\n\t"
: "=a" (uOperator),
"=c" (xCX)
: "0" (uOperator)
: "edx");
# else
__asm__ ("cpuid"
: "=a" (uOperator),
"=c" (xCX)
: "0" (uOperator)
: "ebx", "edx");
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
__cpuid(aInfo, uOperator);
xCX = aInfo[2];
# else
__asm
{
push ebx
mov eax, [uOperator]
cpuid
mov [xCX], ecx
pop ebx
}
# endif
return (uint32_t)xCX;
}
#endif
/**
* Performs the cpuid instruction returning edx.
*
* @param uOperator CPUID operation (eax).
* @returns EDX after cpuid operation.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMCpuId_EDX(uint32_t uOperator);
#else
DECLINLINE(uint32_t) ASMCpuId_EDX(uint32_t uOperator)
{
RTCCUINTREG xDX;
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
RTCCUINTREG uSpill;
__asm__ ("cpuid"
: "=a" (uSpill),
"=d" (xDX)
: "0" (uOperator)
: "rbx", "rcx");
# elif (defined(PIC) || defined(__PIC__)) && defined(__i386__)
__asm__ ("push %%ebx\n\t"
"cpuid\n\t"
"pop %%ebx\n\t"
: "=a" (uOperator),
"=d" (xDX)
: "0" (uOperator)
: "ecx");
# else
__asm__ ("cpuid"
: "=a" (uOperator),
"=d" (xDX)
: "0" (uOperator)
: "ebx", "ecx");
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
__cpuid(aInfo, uOperator);
xDX = aInfo[3];
# else
__asm
{
push ebx
mov eax, [uOperator]
cpuid
mov [xDX], edx
pop ebx
}
# endif
return (uint32_t)xDX;
}
#endif
/**
* Checks if the current CPU supports CPUID.
*
* @returns true if CPUID is supported.
*/
DECLINLINE(bool) ASMHasCpuId(void)
{
#ifdef RT_ARCH_AMD64
return true; /* ASSUME that all amd64 compatible CPUs have cpuid. */
#else /* !RT_ARCH_AMD64 */
bool fRet = false;
# if RT_INLINE_ASM_GNU_STYLE
uint32_t u1;
uint32_t u2;
__asm__ ("pushf\n\t"
"pop %1\n\t"
"mov %1, %2\n\t"
"xorl $0x200000, %1\n\t"
"push %1\n\t"
"popf\n\t"
"pushf\n\t"
"pop %1\n\t"
"cmpl %1, %2\n\t"
"setne %0\n\t"
"push %2\n\t"
"popf\n\t"
: "=m" (fRet), "=r" (u1), "=r" (u2));
# else
__asm
{
pushfd
pop eax
mov ebx, eax
xor eax, 0200000h
push eax
popfd
pushfd
pop eax
cmp eax, ebx
setne fRet
push ebx
popfd
}
# endif
return fRet;
#endif /* !RT_ARCH_AMD64 */
}
/**
* Gets the APIC ID of the current CPU.
*
* @returns the APIC ID.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint8_t) ASMGetApicId(void);
#else
DECLINLINE(uint8_t) ASMGetApicId(void)
{
RTCCUINTREG xBX;
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
RTCCUINTREG uSpill;
__asm__ __volatile__ ("cpuid"
: "=a" (uSpill),
"=b" (xBX)
: "0" (1)
: "rcx", "rdx");
# elif (defined(PIC) || defined(__PIC__)) && defined(__i386__)
RTCCUINTREG uSpill;
__asm__ __volatile__ ("mov %%ebx,%1\n\t"
"cpuid\n\t"
"xchgl %%ebx,%1\n\t"
: "=a" (uSpill),
"=rm" (xBX)
: "0" (1)
: "ecx", "edx");
# else
RTCCUINTREG uSpill;
__asm__ __volatile__ ("cpuid"
: "=a" (uSpill),
"=b" (xBX)
: "0" (1)
: "ecx", "edx");
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
__cpuid(aInfo, 1);
xBX = aInfo[1];
# else
__asm
{
push ebx
mov eax, 1
cpuid
mov [xBX], ebx
pop ebx
}
# endif
return (uint8_t)(xBX >> 24);
}
#endif
/**
* Tests if it a genuine Intel CPU based on the ASMCpuId(0) output.
*
* @returns true/false.
* @param uEBX EBX return from ASMCpuId(0)
* @param uECX ECX return from ASMCpuId(0)
* @param uEDX EDX return from ASMCpuId(0)
*/
DECLINLINE(bool) ASMIsIntelCpuEx(uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
{
return uEBX == UINT32_C(0x756e6547)
&& uECX == UINT32_C(0x6c65746e)
&& uEDX == UINT32_C(0x49656e69);
}
/**
* Tests if this is a genuine Intel CPU.
*
* @returns true/false.
* @remarks ASSUMES that cpuid is supported by the CPU.
*/
DECLINLINE(bool) ASMIsIntelCpu(void)
{
uint32_t uEAX, uEBX, uECX, uEDX;
ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
return ASMIsIntelCpuEx(uEBX, uECX, uEDX);
}
/**
* Tests if it an authentic AMD CPU based on the ASMCpuId(0) output.
*
* @returns true/false.
* @param uEBX EBX return from ASMCpuId(0)
* @param uECX ECX return from ASMCpuId(0)
* @param uEDX EDX return from ASMCpuId(0)
*/
DECLINLINE(bool) ASMIsAmdCpuEx(uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
{
return uEBX == UINT32_C(0x68747541)
&& uECX == UINT32_C(0x444d4163)
&& uEDX == UINT32_C(0x69746e65);
}
/**
* Tests if this is an authentic AMD CPU.
*
* @returns true/false.
* @remarks ASSUMES that cpuid is supported by the CPU.
*/
DECLINLINE(bool) ASMIsAmdCpu(void)
{
uint32_t uEAX, uEBX, uECX, uEDX;
ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
return ASMIsAmdCpuEx(uEBX, uECX, uEDX);
}
/**
* Tests if it a centaur hauling VIA CPU based on the ASMCpuId(0) output.
*
* @returns true/false.
* @param uEBX EBX return from ASMCpuId(0).
* @param uECX ECX return from ASMCpuId(0).
* @param uEDX EDX return from ASMCpuId(0).
*/
DECLINLINE(bool) ASMIsViaCentaurCpuEx(uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
{
return uEBX == UINT32_C(0x746e6543)
&& uECX == UINT32_C(0x736c7561)
&& uEDX == UINT32_C(0x48727561);
}
/**
* Tests if this is a centaur hauling VIA CPU.
*
* @returns true/false.
* @remarks ASSUMES that cpuid is supported by the CPU.
*/
DECLINLINE(bool) ASMIsViaCentaurCpu(void)
{
uint32_t uEAX, uEBX, uECX, uEDX;
ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
return ASMIsAmdCpuEx(uEBX, uECX, uEDX);
}
/**
* Checks whether ASMCpuId_EAX(0x00000000) indicates a valid range.
*
*
* @returns true/false.
* @param uEAX The EAX value of CPUID leaf 0x00000000.
*
* @note This only succeeds if there are at least two leaves in the range.
* @remarks The upper range limit is just some half reasonable value we've
* picked out of thin air.
*/
DECLINLINE(bool) ASMIsValidStdRange(uint32_t uEAX)
{
return uEAX >= UINT32_C(0x00000001) && uEAX <= UINT32_C(0x000fffff);
}
/**
* Checks whether ASMCpuId_EAX(0x80000000) indicates a valid range.
*
* This only succeeds if there are at least two leaves in the range.
*
* @returns true/false.
* @param uEAX The EAX value of CPUID leaf 0x80000000.
*
* @note This only succeeds if there are at least two leaves in the range.
* @remarks The upper range limit is just some half reasonable value we've
* picked out of thin air.
*/
DECLINLINE(bool) ASMIsValidExtRange(uint32_t uEAX)
{
return uEAX >= UINT32_C(0x80000001) && uEAX <= UINT32_C(0x800fffff);
}
/**
* Extracts the CPU family from ASMCpuId(1) or ASMCpuId(0x80000001)
*
* @returns Family.
* @param uEAX EAX return from ASMCpuId(1) or ASMCpuId(0x80000001).
*/
DECLINLINE(uint32_t) ASMGetCpuFamily(uint32_t uEAX)
{
return ((uEAX >> 8) & 0xf) == 0xf
? ((uEAX >> 20) & 0x7f) + 0xf
: ((uEAX >> 8) & 0xf);
}
/**
* Extracts the CPU model from ASMCpuId(1) or ASMCpuId(0x80000001), Intel variant.
*
* @returns Model.
* @param uEAX EAX from ASMCpuId(1) or ASMCpuId(0x80000001).
*/
DECLINLINE(uint32_t) ASMGetCpuModelIntel(uint32_t uEAX)
{
return ((uEAX >> 8) & 0xf) == 0xf || (((uEAX >> 8) & 0xf) == 0x6) /* family! */
? ((uEAX >> 4) & 0xf) | ((uEAX >> 12) & 0xf0)
: ((uEAX >> 4) & 0xf);
}
/**
* Extracts the CPU model from ASMCpuId(1) or ASMCpuId(0x80000001), AMD variant.
*
* @returns Model.
* @param uEAX EAX from ASMCpuId(1) or ASMCpuId(0x80000001).
*/
DECLINLINE(uint32_t) ASMGetCpuModelAMD(uint32_t uEAX)
{
return ((uEAX >> 8) & 0xf) == 0xf
? ((uEAX >> 4) & 0xf) | ((uEAX >> 12) & 0xf0)
: ((uEAX >> 4) & 0xf);
}
/**
* Extracts the CPU model from ASMCpuId(1) or ASMCpuId(0x80000001)
*
* @returns Model.
* @param uEAX EAX from ASMCpuId(1) or ASMCpuId(0x80000001).
* @param fIntel Whether it's an intel CPU. Use ASMIsIntelCpuEx() or ASMIsIntelCpu().
*/
DECLINLINE(uint32_t) ASMGetCpuModel(uint32_t uEAX, bool fIntel)
{
return ((uEAX >> 8) & 0xf) == 0xf || (((uEAX >> 8) & 0xf) == 0x6 && fIntel) /* family! */
? ((uEAX >> 4) & 0xf) | ((uEAX >> 12) & 0xf0)
: ((uEAX >> 4) & 0xf);
}
/**
* Extracts the CPU stepping from ASMCpuId(1) or ASMCpuId(0x80000001)
*
* @returns Model.
* @param uEAX EAX from ASMCpuId(1) or ASMCpuId(0x80000001).
*/
DECLINLINE(uint32_t) ASMGetCpuStepping(uint32_t uEAX)
{
return uEAX & 0xf;
}
/**
* Get cr0.
* @returns cr0.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetCR0(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetCR0(void)
{
RTCCUINTREG uCR0;
# if RT_INLINE_ASM_USES_INTRIN
uCR0 = __readcr0();
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%cr0, %0\t\n" : "=r" (uCR0));
# else
__asm__ __volatile__("movl %%cr0, %0\t\n" : "=r" (uCR0));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, cr0
mov [uCR0], rax
# else
mov eax, cr0
mov [uCR0], eax
# endif
}
# endif
return uCR0;
}
#endif
/**
* Sets the CR0 register.
* @param uCR0 The new CR0 value.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetCR0(RTCCUINTREG uCR0);
#else
DECLINLINE(void) ASMSetCR0(RTCCUINTREG uCR0)
{
# if RT_INLINE_ASM_USES_INTRIN
__writecr0(uCR0);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%cr0\n\t" :: "r" (uCR0));
# else
__asm__ __volatile__("movl %0, %%cr0\n\t" :: "r" (uCR0));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uCR0]
mov cr0, rax
# else
mov eax, [uCR0]
mov cr0, eax
# endif
}
# endif
}
#endif
/**
* Get cr2.
* @returns cr2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetCR2(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetCR2(void)
{
RTCCUINTREG uCR2;
# if RT_INLINE_ASM_USES_INTRIN
uCR2 = __readcr2();
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%cr2, %0\t\n" : "=r" (uCR2));
# else
__asm__ __volatile__("movl %%cr2, %0\t\n" : "=r" (uCR2));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, cr2
mov [uCR2], rax
# else
mov eax, cr2
mov [uCR2], eax
# endif
}
# endif
return uCR2;
}
#endif
/**
* Sets the CR2 register.
* @param uCR2 The new CR0 value.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(void) ASMSetCR2(RTCCUINTREG uCR2);
#else
DECLINLINE(void) ASMSetCR2(RTCCUINTREG uCR2)
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%cr2\n\t" :: "r" (uCR2));
# else
__asm__ __volatile__("movl %0, %%cr2\n\t" :: "r" (uCR2));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uCR2]
mov cr2, rax
# else
mov eax, [uCR2]
mov cr2, eax
# endif
}
# endif
}
#endif
/**
* Get cr3.
* @returns cr3.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetCR3(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetCR3(void)
{
RTCCUINTREG uCR3;
# if RT_INLINE_ASM_USES_INTRIN
uCR3 = __readcr3();
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%cr3, %0\t\n" : "=r" (uCR3));
# else
__asm__ __volatile__("movl %%cr3, %0\t\n" : "=r" (uCR3));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, cr3
mov [uCR3], rax
# else
mov eax, cr3
mov [uCR3], eax
# endif
}
# endif
return uCR3;
}
#endif
/**
* Sets the CR3 register.
*
* @param uCR3 New CR3 value.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetCR3(RTCCUINTREG uCR3);
#else
DECLINLINE(void) ASMSetCR3(RTCCUINTREG uCR3)
{
# if RT_INLINE_ASM_USES_INTRIN
__writecr3(uCR3);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%cr3\n\t" : : "r" (uCR3));
# else
__asm__ __volatile__("movl %0, %%cr3\n\t" : : "r" (uCR3));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uCR3]
mov cr3, rax
# else
mov eax, [uCR3]
mov cr3, eax
# endif
}
# endif
}
#endif
/**
* Reloads the CR3 register.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMReloadCR3(void);
#else
DECLINLINE(void) ASMReloadCR3(void)
{
# if RT_INLINE_ASM_USES_INTRIN
__writecr3(__readcr3());
# elif RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG u;
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%cr3, %0\n\t"
"movq %0, %%cr3\n\t"
: "=r" (u));
# else
__asm__ __volatile__("movl %%cr3, %0\n\t"
"movl %0, %%cr3\n\t"
: "=r" (u));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, cr3
mov cr3, rax
# else
mov eax, cr3
mov cr3, eax
# endif
}
# endif
}
#endif
/**
* Get cr4.
* @returns cr4.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetCR4(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetCR4(void)
{
RTCCUINTREG uCR4;
# if RT_INLINE_ASM_USES_INTRIN
uCR4 = __readcr4();
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%cr4, %0\t\n" : "=r" (uCR4));
# else
__asm__ __volatile__("movl %%cr4, %0\t\n" : "=r" (uCR4));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, cr4
mov [uCR4], rax
# else
push eax /* just in case */
/*mov eax, cr4*/
_emit 0x0f
_emit 0x20
_emit 0xe0
mov [uCR4], eax
pop eax
# endif
}
# endif
return uCR4;
}
#endif
/**
* Sets the CR4 register.
*
* @param uCR4 New CR4 value.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetCR4(RTCCUINTREG uCR4);
#else
DECLINLINE(void) ASMSetCR4(RTCCUINTREG uCR4)
{
# if RT_INLINE_ASM_USES_INTRIN
__writecr4(uCR4);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%cr4\n\t" : : "r" (uCR4));
# else
__asm__ __volatile__("movl %0, %%cr4\n\t" : : "r" (uCR4));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uCR4]
mov cr4, rax
# else
mov eax, [uCR4]
_emit 0x0F
_emit 0x22
_emit 0xE0 /* mov cr4, eax */
# endif
}
# endif
}
#endif
/**
* Get cr8.
* @returns cr8.
* @remark The lock prefix hack for access from non-64-bit modes is NOT used and 0 is returned.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetCR8(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetCR8(void)
{
# ifdef RT_ARCH_AMD64
RTCCUINTREG uCR8;
# if RT_INLINE_ASM_USES_INTRIN
uCR8 = __readcr8();
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movq %%cr8, %0\t\n" : "=r" (uCR8));
# else
__asm
{
mov rax, cr8
mov [uCR8], rax
}
# endif
return uCR8;
# else /* !RT_ARCH_AMD64 */
return 0;
# endif /* !RT_ARCH_AMD64 */
}
#endif
/**
* Enables interrupts (EFLAGS.IF).
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMIntEnable(void);
#else
DECLINLINE(void) ASMIntEnable(void)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm("sti\n");
# elif RT_INLINE_ASM_USES_INTRIN
_enable();
# else
__asm sti
# endif
}
#endif
/**
* Disables interrupts (!EFLAGS.IF).
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMIntDisable(void);
#else
DECLINLINE(void) ASMIntDisable(void)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm("cli\n");
# elif RT_INLINE_ASM_USES_INTRIN
_disable();
# else
__asm cli
# endif
}
#endif
/**
* Disables interrupts and returns previous xFLAGS.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMIntDisableFlags(void);
#else
DECLINLINE(RTCCUINTREG) ASMIntDisableFlags(void)
{
RTCCUINTREG xFlags;
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("pushfq\n\t"
"cli\n\t"
"popq %0\n\t"
: "=r" (xFlags));
# else
__asm__ __volatile__("pushfl\n\t"
"cli\n\t"
"popl %0\n\t"
: "=r" (xFlags));
# endif
# elif RT_INLINE_ASM_USES_INTRIN && !defined(RT_ARCH_X86)
xFlags = ASMGetFlags();
_disable();
# else
__asm {
pushfd
cli
pop [xFlags]
}
# endif
return xFlags;
}
#endif
/**
* Are interrupts enabled?
*
* @returns true / false.
*/
DECLINLINE(RTCCUINTREG) ASMIntAreEnabled(void)
{
RTCCUINTREG uFlags = ASMGetFlags();
return uFlags & 0x200 /* X86_EFL_IF */ ? true : false;
}
/**
* Halts the CPU until interrupted.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(void) ASMHalt(void);
#else
DECLINLINE(void) ASMHalt(void)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("hlt\n\t");
# else
__asm {
hlt
}
# endif
}
#endif
/**
* Reads a machine specific register.
*
* @returns Register content.
* @param uRegister Register to read.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint64_t) ASMRdMsr(uint32_t uRegister);
#else
DECLINLINE(uint64_t) ASMRdMsr(uint32_t uRegister)
{
RTUINT64U u;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rdmsr\n\t"
: "=a" (u.s.Lo),
"=d" (u.s.Hi)
: "c" (uRegister));
# elif RT_INLINE_ASM_USES_INTRIN
u.u = __readmsr(uRegister);
# else
__asm
{
mov ecx, [uRegister]
rdmsr
mov [u.s.Lo], eax
mov [u.s.Hi], edx
}
# endif
return u.u;
}
#endif
/**
* Writes a machine specific register.
*
* @returns Register content.
* @param uRegister Register to write to.
* @param u64Val Value to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMWrMsr(uint32_t uRegister, uint64_t u64Val);
#else
DECLINLINE(void) ASMWrMsr(uint32_t uRegister, uint64_t u64Val)
{
RTUINT64U u;
u.u = u64Val;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("wrmsr\n\t"
::"a" (u.s.Lo),
"d" (u.s.Hi),
"c" (uRegister));
# elif RT_INLINE_ASM_USES_INTRIN
__writemsr(uRegister, u.u);
# else
__asm
{
mov ecx, [uRegister]
mov edx, [u.s.Hi]
mov eax, [u.s.Lo]
wrmsr
}
# endif
}
#endif
/**
* Reads low part of a machine specific register.
*
* @returns Register content.
* @param uRegister Register to read.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMRdMsr_Low(uint32_t uRegister);
#else
DECLINLINE(uint32_t) ASMRdMsr_Low(uint32_t uRegister)
{
uint32_t u32;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rdmsr\n\t"
: "=a" (u32)
: "c" (uRegister)
: "edx");
# elif RT_INLINE_ASM_USES_INTRIN
u32 = (uint32_t)__readmsr(uRegister);
#else
__asm
{
mov ecx, [uRegister]
rdmsr
mov [u32], eax
}
# endif
return u32;
}
#endif
/**
* Reads high part of a machine specific register.
*
* @returns Register content.
* @param uRegister Register to read.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMRdMsr_High(uint32_t uRegister);
#else
DECLINLINE(uint32_t) ASMRdMsr_High(uint32_t uRegister)
{
uint32_t u32;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rdmsr\n\t"
: "=d" (u32)
: "c" (uRegister)
: "eax");
# elif RT_INLINE_ASM_USES_INTRIN
u32 = (uint32_t)(__readmsr(uRegister) >> 32);
# else
__asm
{
mov ecx, [uRegister]
rdmsr
mov [u32], edx
}
# endif
return u32;
}
#endif
/**
* Gets dr0.
*
* @returns dr0.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetDR0(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetDR0(void)
{
RTCCUINTREG uDR0;
# if RT_INLINE_ASM_USES_INTRIN
uDR0 = __readdr(0);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%dr0, %0\n\t" : "=r" (uDR0));
# else
__asm__ __volatile__("movl %%dr0, %0\n\t" : "=r" (uDR0));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, dr0
mov [uDR0], rax
# else
mov eax, dr0
mov [uDR0], eax
# endif
}
# endif
return uDR0;
}
#endif
/**
* Gets dr1.
*
* @returns dr1.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetDR1(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetDR1(void)
{
RTCCUINTREG uDR1;
# if RT_INLINE_ASM_USES_INTRIN
uDR1 = __readdr(1);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%dr1, %0\n\t" : "=r" (uDR1));
# else
__asm__ __volatile__("movl %%dr1, %0\n\t" : "=r" (uDR1));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, dr1
mov [uDR1], rax
# else
mov eax, dr1
mov [uDR1], eax
# endif
}
# endif
return uDR1;
}
#endif
/**
* Gets dr2.
*
* @returns dr2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetDR2(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetDR2(void)
{
RTCCUINTREG uDR2;
# if RT_INLINE_ASM_USES_INTRIN
uDR2 = __readdr(2);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%dr2, %0\n\t" : "=r" (uDR2));
# else
__asm__ __volatile__("movl %%dr2, %0\n\t" : "=r" (uDR2));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, dr2
mov [uDR2], rax
# else
mov eax, dr2
mov [uDR2], eax
# endif
}
# endif
return uDR2;
}
#endif
/**
* Gets dr3.
*
* @returns dr3.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetDR3(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetDR3(void)
{
RTCCUINTREG uDR3;
# if RT_INLINE_ASM_USES_INTRIN
uDR3 = __readdr(3);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%dr3, %0\n\t" : "=r" (uDR3));
# else
__asm__ __volatile__("movl %%dr3, %0\n\t" : "=r" (uDR3));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, dr3
mov [uDR3], rax
# else
mov eax, dr3
mov [uDR3], eax
# endif
}
# endif
return uDR3;
}
#endif
/**
* Gets dr6.
*
* @returns dr6.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetDR6(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetDR6(void)
{
RTCCUINTREG uDR6;
# if RT_INLINE_ASM_USES_INTRIN
uDR6 = __readdr(6);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%dr6, %0\n\t" : "=r" (uDR6));
# else
__asm__ __volatile__("movl %%dr6, %0\n\t" : "=r" (uDR6));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, dr6
mov [uDR6], rax
# else
mov eax, dr6
mov [uDR6], eax
# endif
}
# endif
return uDR6;
}
#endif
/**
* Reads and clears DR6.
*
* @returns DR6.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetAndClearDR6(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetAndClearDR6(void)
{
RTCCUINTREG uDR6;
# if RT_INLINE_ASM_USES_INTRIN
uDR6 = __readdr(6);
__writedr(6, 0xffff0ff0U); /* 31-16 and 4-11 are 1's, 12 and 63-31 are zero. */
# elif RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uNewValue = 0xffff0ff0U;/* 31-16 and 4-11 are 1's, 12 and 63-31 are zero. */
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%dr6, %0\n\t"
"movq %1, %%dr6\n\t"
: "=r" (uDR6)
: "r" (uNewValue));
# else
__asm__ __volatile__("movl %%dr6, %0\n\t"
"movl %1, %%dr6\n\t"
: "=r" (uDR6)
: "r" (uNewValue));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, dr6
mov [uDR6], rax
mov rcx, rax
mov ecx, 0ffff0ff0h; /* 31-16 and 4-11 are 1's, 12 and 63-31 are zero. */
mov dr6, rcx
# else
mov eax, dr6
mov [uDR6], eax
mov ecx, 0ffff0ff0h; /* 31-16 and 4-11 are 1's, 12 is zero. */
mov dr6, ecx
# endif
}
# endif
return uDR6;
}
#endif
/**
* Gets dr7.
*
* @returns dr7.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(RTCCUINTREG) ASMGetDR7(void);
#else
DECLINLINE(RTCCUINTREG) ASMGetDR7(void)
{
RTCCUINTREG uDR7;
# if RT_INLINE_ASM_USES_INTRIN
uDR7 = __readdr(7);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %%dr7, %0\n\t" : "=r" (uDR7));
# else
__asm__ __volatile__("movl %%dr7, %0\n\t" : "=r" (uDR7));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, dr7
mov [uDR7], rax
# else
mov eax, dr7
mov [uDR7], eax
# endif
}
# endif
return uDR7;
}
#endif
/**
* Sets dr0.
*
* @param uDRVal Debug register value to write
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetDR0(RTCCUINTREG uDRVal);
#else
DECLINLINE(void) ASMSetDR0(RTCCUINTREG uDRVal)
{
# if RT_INLINE_ASM_USES_INTRIN
__writedr(0, uDRVal);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%dr0\n\t" : : "r" (uDRVal));
# else
__asm__ __volatile__("movl %0, %%dr0\n\t" : : "r" (uDRVal));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uDRVal]
mov dr0, rax
# else
mov eax, [uDRVal]
mov dr0, eax
# endif
}
# endif
}
#endif
/**
* Sets dr1.
*
* @param uDRVal Debug register value to write
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetDR1(RTCCUINTREG uDRVal);
#else
DECLINLINE(void) ASMSetDR1(RTCCUINTREG uDRVal)
{
# if RT_INLINE_ASM_USES_INTRIN
__writedr(1, uDRVal);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%dr1\n\t" : : "r" (uDRVal));
# else
__asm__ __volatile__("movl %0, %%dr1\n\t" : : "r" (uDRVal));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uDRVal]
mov dr1, rax
# else
mov eax, [uDRVal]
mov dr1, eax
# endif
}
# endif
}
#endif
/**
* Sets dr2.
*
* @param uDRVal Debug register value to write
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetDR2(RTCCUINTREG uDRVal);
#else
DECLINLINE(void) ASMSetDR2(RTCCUINTREG uDRVal)
{
# if RT_INLINE_ASM_USES_INTRIN
__writedr(2, uDRVal);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%dr2\n\t" : : "r" (uDRVal));
# else
__asm__ __volatile__("movl %0, %%dr2\n\t" : : "r" (uDRVal));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uDRVal]
mov dr2, rax
# else
mov eax, [uDRVal]
mov dr2, eax
# endif
}
# endif
}
#endif
/**
* Sets dr3.
*
* @param uDRVal Debug register value to write
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetDR3(RTCCUINTREG uDRVal);
#else
DECLINLINE(void) ASMSetDR3(RTCCUINTREG uDRVal)
{
# if RT_INLINE_ASM_USES_INTRIN
__writedr(3, uDRVal);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%dr3\n\t" : : "r" (uDRVal));
# else
__asm__ __volatile__("movl %0, %%dr3\n\t" : : "r" (uDRVal));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uDRVal]
mov dr3, rax
# else
mov eax, [uDRVal]
mov dr3, eax
# endif
}
# endif
}
#endif
/**
* Sets dr6.
*
* @param uDRVal Debug register value to write
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetDR6(RTCCUINTREG uDRVal);
#else
DECLINLINE(void) ASMSetDR6(RTCCUINTREG uDRVal)
{
# if RT_INLINE_ASM_USES_INTRIN
__writedr(6, uDRVal);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%dr6\n\t" : : "r" (uDRVal));
# else
__asm__ __volatile__("movl %0, %%dr6\n\t" : : "r" (uDRVal));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uDRVal]
mov dr6, rax
# else
mov eax, [uDRVal]
mov dr6, eax
# endif
}
# endif
}
#endif
/**
* Sets dr7.
*
* @param uDRVal Debug register value to write
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMSetDR7(RTCCUINTREG uDRVal);
#else
DECLINLINE(void) ASMSetDR7(RTCCUINTREG uDRVal)
{
# if RT_INLINE_ASM_USES_INTRIN
__writedr(7, uDRVal);
# elif RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("movq %0, %%dr7\n\t" : : "r" (uDRVal));
# else
__asm__ __volatile__("movl %0, %%dr7\n\t" : : "r" (uDRVal));
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [uDRVal]
mov dr7, rax
# else
mov eax, [uDRVal]
mov dr7, eax
# endif
}
# endif
}
#endif
/**
* Writes a 8-bit unsigned integer to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param u8 8-bit integer to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutU8(RTIOPORT Port, uint8_t u8);
#else
DECLINLINE(void) ASMOutU8(RTIOPORT Port, uint8_t u8)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("outb %b1, %w0\n\t"
:: "Nd" (Port),
"a" (u8));
# elif RT_INLINE_ASM_USES_INTRIN
__outbyte(Port, u8);
# else
__asm
{
mov dx, [Port]
mov al, [u8]
out dx, al
}
# endif
}
#endif
/**
* Reads a 8-bit unsigned integer from an I/O port, ordered.
*
* @returns 8-bit integer.
* @param Port I/O port to read from.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint8_t) ASMInU8(RTIOPORT Port);
#else
DECLINLINE(uint8_t) ASMInU8(RTIOPORT Port)
{
uint8_t u8;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("inb %w1, %b0\n\t"
: "=a" (u8)
: "Nd" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
u8 = __inbyte(Port);
# else
__asm
{
mov dx, [Port]
in al, dx
mov [u8], al
}
# endif
return u8;
}
#endif
/**
* Writes a 16-bit unsigned integer to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param u16 16-bit integer to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutU16(RTIOPORT Port, uint16_t u16);
#else
DECLINLINE(void) ASMOutU16(RTIOPORT Port, uint16_t u16)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("outw %w1, %w0\n\t"
:: "Nd" (Port),
"a" (u16));
# elif RT_INLINE_ASM_USES_INTRIN
__outword(Port, u16);
# else
__asm
{
mov dx, [Port]
mov ax, [u16]
out dx, ax
}
# endif
}
#endif
/**
* Reads a 16-bit unsigned integer from an I/O port, ordered.
*
* @returns 16-bit integer.
* @param Port I/O port to read from.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint16_t) ASMInU16(RTIOPORT Port);
#else
DECLINLINE(uint16_t) ASMInU16(RTIOPORT Port)
{
uint16_t u16;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("inw %w1, %w0\n\t"
: "=a" (u16)
: "Nd" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
u16 = __inword(Port);
# else
__asm
{
mov dx, [Port]
in ax, dx
mov [u16], ax
}
# endif
return u16;
}
#endif
/**
* Writes a 32-bit unsigned integer to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param u32 32-bit integer to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutU32(RTIOPORT Port, uint32_t u32);
#else
DECLINLINE(void) ASMOutU32(RTIOPORT Port, uint32_t u32)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("outl %1, %w0\n\t"
:: "Nd" (Port),
"a" (u32));
# elif RT_INLINE_ASM_USES_INTRIN
__outdword(Port, u32);
# else
__asm
{
mov dx, [Port]
mov eax, [u32]
out dx, eax
}
# endif
}
#endif
/**
* Reads a 32-bit unsigned integer from an I/O port, ordered.
*
* @returns 32-bit integer.
* @param Port I/O port to read from.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMInU32(RTIOPORT Port);
#else
DECLINLINE(uint32_t) ASMInU32(RTIOPORT Port)
{
uint32_t u32;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("inl %w1, %0\n\t"
: "=a" (u32)
: "Nd" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
u32 = __indword(Port);
# else
__asm
{
mov dx, [Port]
in eax, dx
mov [u32], eax
}
# endif
return u32;
}
#endif
/**
* Writes a string of 8-bit unsigned integer items to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param pau8 Pointer to the string buffer.
* @param c The number of items to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutStrU8(RTIOPORT Port, uint8_t const *pau8, size_t c);
#else
DECLINLINE(void) ASMOutStrU8(RTIOPORT Port, uint8_t const *pau8, size_t c)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep; outsb\n\t"
: "+S" (pau8),
"+c" (c)
: "d" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
__outbytestring(Port, (unsigned char *)pau8, (unsigned long)c);
# else
__asm
{
mov dx, [Port]
mov ecx, [c]
mov eax, [pau8]
xchg esi, eax
rep outsb
xchg esi, eax
}
# endif
}
#endif
/**
* Reads a string of 8-bit unsigned integer items from an I/O port, ordered.
*
* @param Port I/O port to read from.
* @param pau8 Pointer to the string buffer (output).
* @param c The number of items to read.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMInStrU8(RTIOPORT Port, uint8_t *pau8, size_t c);
#else
DECLINLINE(void) ASMInStrU8(RTIOPORT Port, uint8_t *pau8, size_t c)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep; insb\n\t"
: "+D" (pau8),
"+c" (c)
: "d" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
__inbytestring(Port, pau8, (unsigned long)c);
# else
__asm
{
mov dx, [Port]
mov ecx, [c]
mov eax, [pau8]
xchg edi, eax
rep insb
xchg edi, eax
}
# endif
}
#endif
/**
* Writes a string of 16-bit unsigned integer items to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param pau16 Pointer to the string buffer.
* @param c The number of items to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutStrU16(RTIOPORT Port, uint16_t const *pau16, size_t c);
#else
DECLINLINE(void) ASMOutStrU16(RTIOPORT Port, uint16_t const *pau16, size_t c)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep; outsw\n\t"
: "+S" (pau16),
"+c" (c)
: "d" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
__outwordstring(Port, (unsigned short *)pau16, (unsigned long)c);
# else
__asm
{
mov dx, [Port]
mov ecx, [c]
mov eax, [pau16]
xchg esi, eax
rep outsw
xchg esi, eax
}
# endif
}
#endif
/**
* Reads a string of 16-bit unsigned integer items from an I/O port, ordered.
*
* @param Port I/O port to read from.
* @param pau16 Pointer to the string buffer (output).
* @param c The number of items to read.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMInStrU16(RTIOPORT Port, uint16_t *pau16, size_t c);
#else
DECLINLINE(void) ASMInStrU16(RTIOPORT Port, uint16_t *pau16, size_t c)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep; insw\n\t"
: "+D" (pau16),
"+c" (c)
: "d" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
__inwordstring(Port, pau16, (unsigned long)c);
# else
__asm
{
mov dx, [Port]
mov ecx, [c]
mov eax, [pau16]
xchg edi, eax
rep insw
xchg edi, eax
}
# endif
}
#endif
/**
* Writes a string of 32-bit unsigned integer items to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param pau32 Pointer to the string buffer.
* @param c The number of items to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutStrU32(RTIOPORT Port, uint32_t const *pau32, size_t c);
#else
DECLINLINE(void) ASMOutStrU32(RTIOPORT Port, uint32_t const *pau32, size_t c)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep; outsl\n\t"
: "+S" (pau32),
"+c" (c)
: "d" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
__outdwordstring(Port, (unsigned long *)pau32, (unsigned long)c);
# else
__asm
{
mov dx, [Port]
mov ecx, [c]
mov eax, [pau32]
xchg esi, eax
rep outsd
xchg esi, eax
}
# endif
}
#endif
/**
* Reads a string of 32-bit unsigned integer items from an I/O port, ordered.
*
* @param Port I/O port to read from.
* @param pau32 Pointer to the string buffer (output).
* @param c The number of items to read.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMInStrU32(RTIOPORT Port, uint32_t *pau32, size_t c);
#else
DECLINLINE(void) ASMInStrU32(RTIOPORT Port, uint32_t *pau32, size_t c)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep; insl\n\t"
: "+D" (pau32),
"+c" (c)
: "d" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
__indwordstring(Port, (unsigned long *)pau32, (unsigned long)c);
# else
__asm
{
mov dx, [Port]
mov ecx, [c]
mov eax, [pau32]
xchg edi, eax
rep insd
xchg edi, eax
}
# endif
}
#endif
/**
* Invalidate page.
*
* @param pv Address of the page to invalidate.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMInvalidatePage(void *pv);
#else
DECLINLINE(void) ASMInvalidatePage(void *pv)
{
# if RT_INLINE_ASM_USES_INTRIN
__invlpg(pv);
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("invlpg %0\n\t"
: : "m" (*(uint8_t *)pv));
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pv]
invlpg [rax]
# else
mov eax, [pv]
invlpg [eax]
# endif
}
# endif
}
#endif
/**
* Write back the internal caches and invalidate them.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMWriteBackAndInvalidateCaches(void);
#else
DECLINLINE(void) ASMWriteBackAndInvalidateCaches(void)
{
# if RT_INLINE_ASM_USES_INTRIN
__wbinvd();
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("wbinvd");
# else
__asm
{
wbinvd
}
# endif
}
#endif
/**
* Invalidate internal and (perhaps) external caches without first
* flushing dirty cache lines. Use with extreme care.
*/
#if RT_INLINE_ASM_EXTERNAL
DECLASM(void) ASMInvalidateInternalCaches(void);
#else
DECLINLINE(void) ASMInvalidateInternalCaches(void)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("invd");
# else
__asm
{
invd
}
# endif
}
#endif
/**
* Memory load/store fence, waits for any pending writes and reads to complete.
* Requires the X86_CPUID_FEATURE_EDX_SSE2 CPUID bit set.
*/
DECLINLINE(void) ASMMemoryFenceSSE2(void)
{
#if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__ (".byte 0x0f,0xae,0xf0\n\t");
#elif RT_INLINE_ASM_USES_INTRIN
_mm_mfence();
#else
__asm
{
_emit 0x0f
_emit 0xae
_emit 0xf0
}
#endif
}
/**
* Memory store fence, waits for any writes to complete.
* Requires the X86_CPUID_FEATURE_EDX_SSE CPUID bit set.
*/
DECLINLINE(void) ASMWriteFenceSSE(void)
{
#if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__ (".byte 0x0f,0xae,0xf8\n\t");
#elif RT_INLINE_ASM_USES_INTRIN
_mm_sfence();
#else
__asm
{
_emit 0x0f
_emit 0xae
_emit 0xf8
}
#endif
}
/**
* Memory load fence, waits for any pending reads to complete.
* Requires the X86_CPUID_FEATURE_EDX_SSE2 CPUID bit set.
*/
DECLINLINE(void) ASMReadFenceSSE2(void)
{
#if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__ (".byte 0x0f,0xae,0xe8\n\t");
#elif RT_INLINE_ASM_USES_INTRIN
_mm_lfence();
#else
__asm
{
_emit 0x0f
_emit 0xae
_emit 0xe8
}
#endif
}
/** @} */
#endif